-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgroth1.tex
3122 lines (2730 loc) · 140 KB
/
groth1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% -------------------------------------------------------------
% NOTES ON SOME HACKS USED IN THIS FILE:
% -------------------------------------------------------------
% One of my pet peeves with amsthm is its use of italics in the theorem and
% proposition environments; this makes math and text indistinguishable in said
% enviroments. To avoid this, I redefine the enviroments to use the standard
% font and to use a hanging indent, along with a bold vertical bar to its
% left, to distinguish these environments from surrounding text. (Along with
% the advantage of distinguishing math from text, this also allows nesting
% several such environments inside each other, like a definition inside a
% remark. I'm not sure how good of an idea this is, though. There are also
% downsides related to the hanging indentation, such as footnotes out of it
% being painful to do right.) This is done starting from the line
% \theoremstyle{definition}
% and until the line
% {\end{leftbar}\end{exmp}}
\documentclass[numbers=enddot,12pt,final,onecolumn,notitlepage]{scrartcl}%
\usepackage[headsepline,footsepline,manualmark]{scrlayer-scrpage}
\usepackage[all,cmtip]{xy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{framed}
\usepackage{amsmath}
\usepackage{comment}
\usepackage{needspace}
\usepackage{color}
\usepackage{hyperref}
\usepackage[sc]{mathpazo}
\usepackage[T1]{fontenc}
\usepackage{amsthm}
\usepackage{ytableau}
\usepackage{tabu}
\usepackage{float}
%TCIDATA{OutputFilter=latex2.dll}
%TCIDATA{Version=5.50.0.2960}
%TCIDATA{LastRevised=Monday, June 08, 2015 22:39:34}
%TCIDATA{SuppressPackageManagement}
%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
%TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
%TCIDATA{BibliographyScheme=Manual}
%BeginMSIPreambleData
\providecommand{\U}[1]{\protect\rule{.1in}{.1in}}
%EndMSIPreambleData
\theoremstyle{definition}
\newtheorem{theo}{Theorem}[section]
\newenvironment{theorem}[1][]
{\begin{theo}[#1]\begin{leftbar}}
{\end{leftbar}\end{theo}}
\newtheorem{lem}[theo]{Lemma}
\newenvironment{lemma}[1][]
{\begin{lem}[#1]\begin{leftbar}}
{\end{leftbar}\end{lem}}
\newtheorem{prop}[theo]{Proposition}
\newenvironment{proposition}[1][]
{\begin{prop}[#1]\begin{leftbar}}
{\end{leftbar}\end{prop}}
\newtheorem{defi}[theo]{Definition}
\newenvironment{definition}[1][]
{\begin{defi}[#1]\begin{leftbar}}
{\end{leftbar}\end{defi}}
\newtheorem{remk}[theo]{Remark}
\newenvironment{remark}[1][]
{\begin{remk}[#1]\begin{leftbar}}
{\end{leftbar}\end{remk}}
\newtheorem{coro}[theo]{Corollary}
\newenvironment{corollary}[1][]
{\begin{coro}[#1]\begin{leftbar}}
{\end{leftbar}\end{coro}}
\newtheorem{conv}[theo]{Convention}
\newenvironment{condition}[1][]
{\begin{conv}[#1]\begin{leftbar}}
{\end{leftbar}\end{conv}}
%\newtheorem{quest}[theo]{TODO}
%\newenvironment{todo}[1][]
%{\begin{quest}[#1]\begin{leftbar}}
%{\end{leftbar}\end{quest}}
\newtheorem{warn}[theo]{Warning}
\newenvironment{conclusion}[1][]
{\begin{warn}[#1]\begin{leftbar}}
{\end{leftbar}\end{warn}}
\newtheorem{conj}[theo]{Conjecture}
\newenvironment{conjecture}[1][]
{\begin{conj}[#1]\begin{leftbar}}
{\end{leftbar}\end{conj}}
\newtheorem{exmp}[theo]{Example}
\newenvironment{example}[1][]
{\begin{exmp}[#1]\begin{leftbar}}
{\end{leftbar}\end{exmp}}
\iffalse
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\fi
%\newenvironment{verlong}{}{}
%\newenvironment{vershort}{}{}
\newenvironment{noncompile}{}{}
\newenvironment{obsolete}{}{}
\newenvironment{todo}{}{}
%\excludecomment{verlong}
%\includecomment{vershort}
\excludecomment{noncompile}
\excludecomment{obsolete}
\excludecomment{todo}
\newcommand{\kk}{\mathbf{k}}
\newcommand{\id}{\operatorname{id}}
\newcommand{\ev}{\operatorname{ev}}
\newcommand{\Comp}{\operatorname{Comp}}
\newcommand{\bk}{\mathbf{k}}
\newcommand{\Nplus}{\mathbb{N}_{+}}
\newcommand{\NN}{\mathbb{N}}
\let\sumnonlimits\sum
\let\prodnonlimits\prod
\renewcommand{\sum}{\sumnonlimits\limits}
\renewcommand{\prod}{\prodnonlimits\limits}
\setlength\textheight{22.5cm}
\setlength\textwidth{15cm}
\ihead{Refined dual stable Grothendieck polynomials}
\ohead{\today}
\def\seplist{{\operatorname{seplist}}} % what would be a good notation here? same question for the below:
\def\ceq{{\operatorname{ceq}}}
\def\ircont{{\operatorname{ircont}}}
\def\cont{{\operatorname{cont}}}
\def\ceqvar{{{\alpha}}} %??
\def\seplistvar{{{\nu}}} % ???
\def\supp{{\operatorname{supp}}}
\def\NS{{\operatorname{NR}}}
\def\g{{\widetilde{g}}}
\def\t{{\mathbf{t}}}
\def\x{{\mathbf{x}}}
\def\lm{{\lambda/\mu}}
\def\lmp{{(\lambda/\mu)}}
\def\N{{\mathbb{N}}}
\def\Z{{\mathbb{Z}}}
\def\B{{\mathbf{B}}}
\def\OneTwoRPP{{\operatorname{RPP}^{12}\left( \lambda/\mu\right)}}
\def\BenignTables{{\operatorname{BT}^{12}\left( \lambda/\mu\right)}}
\def\OneTwoRPPCutvar{{\operatorname{RPP}^{12}\left( \lambda/\mu ;\seplistvar \right)}}
\def\flip{{\operatorname{flip}}}
\begin{document}
\title{Refined dual stable Grothendieck polynomials and generalized Bender-Knuth involutions}
\author{Pavel Galashin, Darij Grinberg, and Gaku Liu}
\date{\today}
\maketitle
\begin{abstract}
The dual stable Grothendieck polynomials are a deformation of
the Schur functions, originating in the study of the $K$-theory of the
Grassmannian. We generalize these polynomials by introducing a
countable family of additional parameters, and we prove that this
generalization still defines symmetric functions. For this fact, we
give two self-contained proofs, one of which constructs a family of
involutions on the set of reverse plane partitions generalizing the
Bender-Knuth involutions on semistandard tableaux, whereas the other
classifies the structure of reverse plane partitions with entries $1$
and $2$.
\end{abstract}
\section{Introduction}
Thomas Lam and Pavlo Pylyavskyy, in \cite[\S 9.1]{LamPyl}, (and earlier Mark
Shimozono and Mike Zabrocki in unpublished work of 2003) studied \textit{dual
stable Grothendieck polynomials}, a deformation (in a sense) of the Schur
functions. Let us briefly recount their definition.
\begin{comment}
\footnote{All definitions
that will be made in this introduction are provisional. Every notion that will
be used in the paper is going to be defined in more detail and precision in
one of the sections below; thus, a reader not already familiar with Schur
functions and partitions should start reading from Section
\ref{sect.notations} on.}
\end{comment}
Let $\lambda/\mu$ be a skew partition. The Schur function $s_{\lambda/\mu}$ is
a multivariate generating function for the semistandard tableaux of shape
$\lambda/\mu$. In the same vein, the dual stable Grothendieck
polynomial
\begin{comment}
\footnote{The word \textquotedblleft polynomial\textquotedblright%
\ is a stretch: $g_{\lambda/\mu}$ is a bounded-degree power series in
infinitely many indeterminates (like $s_{\lambda/\mu}$).}
\end{comment}
$g_{\lambda/\mu}$ is
a generating function for the reverse plane partitions of shape $\lambda/\mu$;
these, unlike semistandard tableaux, are only required to have their entries
increase \textit{weakly} down columns (and along rows). More precisely,
$g_{\lambda/\mu}$ is a formal power series in countably many commuting
indeterminates $x_{1},x_{2},x_{3},\ldots$ defined by
\[
g_{\lambda/\mu}=\sum_{\substack{T\text{ is a reverse plane}\\\text{partition
of shape }\lambda/\mu}}\mathbf{x}^{\operatorname*{ircont}\left( T\right) },
\]
where $\mathbf{x}^{\operatorname*{ircont}\left( T\right) }$ is the monomial
$x_{1}^{a_{1}}x_{2}^{a_{2}}x_{3}^{a_{3}}\cdots$ whose $i$-th exponent $a_{i}$
is the number of \textit{columns} (rather than cells) %this is important enough to be repeated two times -- [PG]
of $T$ containing the entry $i$. As proven in
\cite[\S 9.1]{LamPyl}, this power series $g_{\lambda/\mu}$ is a symmetric
function (albeit, unlike $s_{\lambda/\mu}$, an inhomogeneous one in general).
Lam and Pylyavskyy connect the $g_{\lambda/\mu}$ to the (more familiar)
\textit{stable Grothendieck polynomials} $G_{\lambda/\mu}$ (via a duality
between the symmetric functions and their completion, which explains the name
of the $g_{\lambda/\mu}$; see \cite[\S 9.4]{LamPyl}) and to the $K$-theory of
Grassmannians (\cite[\S 9.5]{LamPyl}).
We devise a common generalization of the dual stable Grothendieck polynomial
$g_{\lambda/\mu}$ and the classical skew Schur function $s_{\lambda/\mu}$.
Namely, if $t_{1},t_{2},t_{3},\ldots$ are countably many indeterminates, then we
set%
\[
\widetilde{g}_{\lambda/\mu}=\sum_{\substack{T\text{ is a reverse
plane}\\\text{partition of shape }\lambda/\mu}}\mathbf{t}^{\operatorname*{ceq}%
\left( T\right) }\mathbf{x}^{\operatorname*{ircont}\left( T\right) },
\]
where $\mathbf{t}^{\operatorname*{ceq}\left( T\right) }$ is the product
$t_{1}^{b_{1}}t_{2}^{b_{2}}t_{3}^{b_{3}}\cdots$ whose $i$-th exponent $b_{i}$
is the number of cells in the $i$-th row of $T$ whose entry equals the entry
of their neighbor cell directly below them. This $\widetilde{g}_{\lambda/\mu}$
becomes $g_{\lambda/\mu}$ when all the $t_{i}$ are set to $1$, and becomes
$s_{\lambda/\mu}$ when all the $t_{i}$ are set to $0$.
Our main result, Theorem \ref{thm.gtilde.symm}, states that
$\widetilde{g}_{\lambda/\mu}$ is a symmetric function (in the $x_{1}%
,x_{2},x_{3},\ldots$).
We prove this result (thus obtaining a new proof of
\cite[Theorem 9.1]{LamPyl}) first using an elaborate generalization
of the classical Bender-Knuth involutions to reverse plane partitions,
and then for a second time by analyzing the structure of reverse plane
partitions whose entries lie in $\left\{1, 2\right\}$. The second
proof reflects back on the first, in particular providing an
alternative definition of the generalized Bender-Knuth involutions
constructed in the first proof, and showing that these involutions
are (in a sense) ``the only reasonable choice''.
We notice that both our proofs are explicitly bijective, unlike
the proof of \cite[Theorem 9.1]{LamPyl} which relies on computations
in an algebra of operators.
The present paper is organized as follows: In Section \ref{sect.notations}, we
recall classical definitions and introduce notations pertaining to
combinatorics and symmetric functions. In Section \ref{sect.def}, we define
the refined dual stable Grothendieck polynomials $\widetilde{g}_{\lambda/\mu}$, state
our main result (that they are symmetric functions), and do the first steps of
its proof (by reducing it to a purely combinatorial statement about the
existence of an involution with certain properties). In Section \ref{sect.construction}, we describe the idea of constructing this involution in an elementary way without proofs. In Section
\ref{sect.proof}, we prove various properties of this involution advertised in Section \ref{sect.construction}, thus finishing the proof of our main result. In Section \ref{sect.BKclassical}, we
recapitulate the definition of the classical Bender-Knuth involution, and
show that our involution is a generalization of the latter.
Finally, in Section \ref{sect.structure} we study the structure of
reverse plane partitions with entries belonging to $\left\{1, 2\right\}$,
which (in particular) gives us an explicit formula for the
$\mathbf{t}$-coefficients of $\g_\lm(x_1,x_2,0,0,\dots;\t)$, and shines
a new light on the involution constructed in Sections \ref{sect.construction}
and \ref{sect.proof}
(also showing that it is the unique involution that shares certain natural
properties with the classical Bender-Knuth involutions).
An extended abstract of this paper, omitting the proofs, is to appear
as \cite{GaGrLi16}.
\begin{todo}
\begin{itemize}
\item More reasons why the reader should
care about dual stable Grothendieck polynomials?
\item What I wrote about $K$-theory is rather shallow. More details?
More specifically, and interestingly, I am wondering if our $\widetilde{g}%
_{\lambda/\mu}$ aren't K-theoretical classes of something multigraded (toric
structure on the Grassmannian? there are two sides from which we can multiply
a matrix by a diagonal matrix, and even if we \textquotedblleft use
up\textquotedblright\ one for taking \textquotedblleft
characters\textquotedblright, the other one is still there).
\end{itemize}
\end{todo}
\subsection{Acknowledgments}
We owe our familiarity with dual stable Grothendieck polynomials to Richard
Stanley. We thank Alexander Postnikov for providing context and motivation,
and Thomas Lam and Pavlo Pylyavskyy for interesting conversations.
\begin{todo}
Keep this up to date.
\end{todo}
\section{\label{sect.notations}Notations and definitions}
Let us begin by defining our notations (including some standard conventions
from algebraic combinatorics).
\subsection{Partitions and tableaux}
We set $\mathbb{N}=\left\{ 0,1,2,\ldots\right\} $ and $\mathbb{N}%
_{+}=\left\{ 1,2,3,\ldots\right\} $.
A sequence $\alpha=\left(\alpha_{1},\alpha_{2},\alpha_{3},\ldots\right)$ of nonnegative integers is called a \textit{weak composition} if the sum of its entries (denoted $\left\vert \alpha\right\vert$) is finite.
We shall always write $\alpha_i$ for the $i$-th entry of a weak composition $\alpha$.
A \textit{partition} is a weak composition $\left( \alpha_{1},\alpha
_{2},\alpha_{3},\ldots\right) $ satisfying $\alpha_{1}\geq\alpha_{2}
\geq\alpha_{3}\geq\cdots$.
As usual, we often omit trailing zeroes when writing a partition (e.g.,
the partition $\left(5,2,1,0,0,0,\ldots\right)$ can thus be written as
$\left(5,2,1\right)$).
We identify each partition $\lambda$ with the subset
$\left\{ \left( i, j \right) \in \Nplus^2 \mid j \leq \lambda_i \right\}$
of $\Nplus^{2}$ (called \textit{the Young diagram of $\lambda$}).
We draw this subset as a Young diagram (which is a left-aligned table of
empty boxes, where the box $(1,1)$ is in the top-left corner while the
box $(2,1)$ is directly below it; this is the \textit{English notation},
also known as the \textit{matrix notation}); see \cite{Fulton97} for
the detailed definition.
\begin{todo}
What is the easiest place to refer the reader to for Young diagram basics,
which uses notations compatible with ours (such as "filling" and "skew
partition")?
%[PG] Fulton's book is pretty good for that. English notation, ``filling'', and so on. Although he uses ``skew diagram'' instead of ``skew partition'', but that's probably not that important.
\end{todo}
A \textit{skew partition} $\lambda/\mu$ is a pair $\left(\lambda, \mu\right)$ of partitions satisfying $\mu\subseteq\lambda$ (as subsets of the plane). In this case, we shall also often use the notation $\lambda/\mu$ for the set-theoretic difference of $\lambda$ and $\mu$.
% We cannot *identify* the pair with the set-theoretic difference since this assignment fails to be injective.
If $\lm$ is a skew partition, then a \textit{filling} of $\lm$ means a map $T:\lm\rightarrow\Nplus$. It is visually represented by drawing $\lm$ and filling each box $c$ with the entry $T(c)$. Three examples of a filling can be found on Figure \ref{fig:fillings}.
A filling $T:\lm\rightarrow\Nplus$ of $\lm$ is called a \textit{reverse plane partition of shape $\lm$} if its values increase weakly in each row of $\lm$ from left to right and in each column of $\lm$ from top to bottom. If, in addition, the values of $T$ increase strictly down each column, then $T$ is called a \textit{semistandard tableau of shape $\lm$}. (See Fulton's \cite{Fulton97} for an exposition of properties and applications of semistandard tableaux\footnote{Fulton calls semistandard tableaux just ``tableaux'', but otherwise is consistent with most of our notation.}.) We denote the set of all reverse plane partitions of shape $\lm$ by $\operatorname{RPP}\left( \lambda/\mu\right)$. We abbreviate reverse plane partitions as \textit{rpps}.
Examples of an rpp, of a non-rpp and of a semistandard tableau can be found on Figure \ref{fig:fillings}.
\begin{figure}
\begin{center}
\begin{tabular}{|c||c||c|}\hline
& & \\
\begin{ytableau}
\none& 6 & 3\\
2 & 4 \\
3 & 4\\
\end{ytableau} &
\begin{ytableau}
\none& 3 & 3\\
2 & 3 \\
3 & 4\\
\end{ytableau} &
\begin{ytableau}
\none& 3 & 3\\
2 & 4 \\
3 & 7\\
\end{ytableau} \\%&
%\begin{ytableau}
% \none& 1 & 2\\
% 1 & 1 \\
% 1 & 2\\
% \end{ytableau}\\
(a) & (b) & (c)\\% & (d)\\
\hline
\end{tabular}\\
\caption{\label{fig:fillings} Fillings of $(3,2,2)/(1)$: (a) is not an rpp as it has a $4$ below a $6$, (b) is an rpp but not a semistandard tableau as it has a $3$ below a $3$, (c) is a semistandard tableau (and hence also an rpp).}%, (d) is a 12-rpp.}
\end{center}
\end{figure}
\subsection{Symmetric functions}
\begin{comment}
The \textit{symmetric functions} over $\mathbf{k}$ are defined to be the
symmetric bounded-degree power series $f\in\mathbf{k}\left[ \left[
x_{1},x_{2},x_{3},\ldots\right] \right] $. They form a $\mathbf{k}%
$-subalgebra of $\mathbf{k}\left[ \left[ x_{1},x_{2},x_{3},\ldots\right]
\right] $. This $\mathbf{k}$-subalgebra is called the \textit{ring of
symmetric functions over }$\mathbf{k}$; it will be denoted by $\Lambda$ or
(when $\mathbf{k}$ is not clear from the context) by $\Lambda_{\mathbf{k}}$.
(The reader shall be warned that \cite{LamPyl} denotes this $\mathbf{k}%
$-algebra by $\operatorname*{Sym}$, while using the notation $\Lambda$ for the
set of all partitions.) Symmetric functions are a classical
field of research, and are closely related to Young diagrams and tableaux; see
\cite[Chapter 7]{Stan99}, \cite{Macdon95} and \cite[Chapter 2]{GriRei15} for expositions.
\begin{todo}
Decide whether we want to work over $\Z$ or over an arbitrary commutative field $\mathbf{k}$ with unity.
\end{todo}
\end{comment}
A \textit{symmetric function} is defined to be a
bounded-degree\footnote{A power series is said to be \textit{bounded-degree}
if there is an $N \in \mathbb{N}$ such that only monomials of degree $\leq N$
appear in the series.}
power series in countably many indeterminates $x_1,x_2,x_3,\dots$
over $\Z$ that is invariant under (finite)
permutations\footnote{A permutation is \textit{finite} if it fixes all but
finitely many elements.} of $x_1,x_2,x_3,\dots$.
The symmetric functions form a ring, which is called the \textit{ring of
symmetric functions} and denoted by $\Lambda$.
(In \cite{LamPyl} this ring is denoted by $\operatorname*{Sym}$, while the notation $\Lambda$ is reserved for the
set of all partitions.) Much research has been done on symmetric functions and
their relations to Young diagrams and tableaux; see
\cite[Chapter 7]{Stan99}, \cite{Macdon95} and \cite[Chapter 2]{GriRei15} for expositions.
Given a filling $T$ of a skew partition $\lm$, its \textit{content} is a weak composition $\operatorname*{cont}\left( T\right)=\left(r_1,r_2,r_3,\dots\right)$, where $r_i=\left|T^{-1}(i)\right|$ is the number of entries of $T$ equal to $i$. For a skew partition $\lambda/\mu$, we define the \textit{Schur function}
$s_{\lambda/\mu}$ to be the formal power series
\[
s_\lm(x_1,x_2,\dots)
= \sum_{\substack{T\text{ is a semistandard}\\\text{tableau of shape } \lm}}
\mathbf{x}^{\operatorname*{cont}\left( T\right) }
\in \Z\left[\left[x_1,x_2,x_3,\ldots\right]\right] .
\]
Here, for every weak composition $\alpha = \left(\alpha_1, \alpha_2, \alpha_3, \ldots\right)$, we define a monomial $\x^\alpha$ to be $x_1^{\alpha_1} x_2^{\alpha_2} x_3^{\alpha_3} \cdots$.
These Schur functions are symmetric:
%a skew partition $\lm$, the corresponding Schur function denoted $s_\lm(x_1,x_2,\dots)$ is defined as the generating function for semistandard tableaux of shape $\lm$:
% $$
% \left( \operatorname*{cont}\left( T\right) \right) _{i} & =\left\vert
% T^{-1}\left( i\right) \right\vert =\left( \text{the number of entries of
% }T\text{ equal to }i\right) \\
% & \ \ \ \ \ \ \ \ \ \ \text{for every }i\in\mathbb{N}_{+}.
% $$
\begin{proposition}
\label{prop.schur.symm}We have $s_{\lambda/\mu}\in\Lambda$ for every skew
partition $\lambda/\mu$.
\end{proposition}
This result appears, e.g., in \cite[Theorem 7.10.2]{Stan99} and
\cite[Proposition 2.11]{GriRei15}; it is commonly proven bijectively using the
so-called \textit{Bender-Knuth involutions}. We shall recall the definitions
of these involutions in Section \ref{sect.BKclassical}.
Replacing ``semistandard
tableau'' by ``rpp'' in the
definition of a Schur function in general gives a non-symmetric function. Nevertheless, Lam
and Pylyavskyy \cite[\S 9]{LamPyl} have been able to define
symmetric functions from rpps, albeit using a subtler construction
instead of the content $\operatorname{cont}\left( T\right)$.
Namely, for a filling $T$ of a skew partition $\lm$, we define its
\textit{irredundant content} (or, by way of abbreviation, its
\textit{ircont statistic})
as the weak composition $\operatorname*{ircont}\left(
T\right) = \left(r_1,r_2,r_3,\dots\right)$ where $r_i$ is the number of \emph{columns} (rather than cells) of $T$ that contain an entry equal to $i$. For instance, if $T_a$, $T_b$, and $T_c$ are the fillings from Figure \ref{fig:fillings}, then their irredundant contents are
\begin{align*}
\ircont(T_a)=(0,1,2,1,0,1),\ \ircont(T_b)=(0,1,3,1),\ \ircont(T_c)=(0,1,3,1,0,0,1)
\end{align*}
%it looked really weird on two lines
(where we omit trailing zeroes),
because, for example, $T_a$ has one column with a $4$ in it (so $(\ircont(T_a))_4=1$) and $T_b$ contains three columns with a $3$ (so $(\ircont(T_b))_3=3$).
Notice that if $T$ is a semistandard tableau, then $\cont(T)$ and $\ircont(T)$ coincide.
For the rest of this section, we fix a skew partition $\lambda/\mu$. Now, the
\textit{dual stable Grothendieck polynomial} $g_{\lambda/\mu}$ is defined to
be the formal power series%
\[
\sum_{\substack{T\text{ is an rpp}\\\text{of shape }\lm}}\mathbf{x}^{\operatorname*{ircont}\left( T\right) }.
\]
Unlike the Schur function $s_{\lambda/\mu}$, it is (in
general) not homogeneous, because whenever a column of an rpp $T$ contains an
entry several times, the corresponding monomial $\mathbf{x}%
^{\operatorname*{ircont}\left( T\right) }$ \textquotedblleft
counts\textquotedblright\ this entry only once. It is fairly clear that the
highest-degree homogeneous component of $g_{\lambda/\mu}$ is $s_{\lambda/\mu}$
(the component of degree $\left\vert \lambda\right\vert -\left\vert
\mu\right\vert $). Therefore, $g_{\lambda/\mu}$ can be regarded as an
inhomogeneous deformation of the Schur function $s_{\lambda/\mu}$.
Lam and Pylyavskyy, in \cite[\S 9.1]{LamPyl}, have shown the following fact:
\begin{proposition}
\label{prop.g.symm}We have $g_{\lambda/\mu}\in\Lambda$ for every skew
partition $\lambda/\mu$.
\end{proposition}
They prove this proposition using generalized plactic algebras \cite[Lemma
3.1]{FomGre} (and also give a second, combinatorial proof for the case
$\mu=\varnothing$ by explicitly expanding $g_{\lambda/\varnothing}$ as a sum
of Schur functions).
In the next section, we shall introduce a refinement of these $g_{\lambda/\mu
}$, and later we will reprove Proposition \ref{prop.g.symm} in a
%self-contained
bijective
and elementary way.
\section{\label{sect.def}Refined dual stable Grothendieck polynomials}
\subsection{Definition}
Let $\t=\left(t_{1},t_{2},t_{3},\ldots\right)$ be a sequence of further indeterminates. For any weak composition $\alpha$, we define $\t^\alpha$ to be the monomial $t_1^{\alpha_1} t_2^{\alpha_2} t_3^{\alpha_3} \cdots$.
If $T$ is a filling of a skew partition $\lm$,
then a \textit{redundant cell} of $T$ is a cell of $\lm$ whose entry is equal to the entry directly below it. That is, a cell $\left( i,j\right) $
of $\lm$ is redundant if $\left( i+1,j\right) $ is also a cell of $\lm$ and
$T\left( i,j\right) =T\left( i+1,j\right) $. Notice that a semistandard
tableau is the same thing as an rpp which has no redundant
cells.
If $T$ is a filling of $\lm$,
then we define the \textit{column equalities vector} (or,
by way of abbreviation, the \textit{ceq statistic})
of $T$ to be the weak composition
$\operatorname{ceq}\left( T\right)=\left(c_1,c_2,c_3,\dots\right)$
where $c_i$ is the number of $j\in\mathbb{N}_{+}$ such that $\left( i,j\right)$ is a redundant cell of $T$. Visually speaking, $\left( \operatorname{ceq}\left( T\right) \right)
_{i}$ is the number of columns of $T$ whose entry in the $i$-th row equals
their entry in the $\left( i+1\right) $-th row. For instance, for fillings $T_a,$ $T_b,$ $T_c$ from Figure \ref{fig:fillings} we have $\ceq(T_a)=(0,1),\ \ceq(T_b)=(1),$ and $\ceq(T_c)=()$, where we again drop trailing zeroes.
Notice that $\left|\ceq(T)\right|$ is the number of redundant cells in $T$, so we have
\begin{equation}\label{eq:sum.of.ceq.and.ircont}
\left|\ceq(T)\right|+\left|\ircont(T)\right|=\left|\lm\right|
\end{equation}
for all rpps $T$ of shape $\lm$.
Let now $\lambda/\mu$ be a skew partition. We set%
\[
\widetilde{g}_{\lambda/\mu}(\mathbf{x};\t)=\sum_{\substack{T\text{ is an rpp}\\\text{of shape
}\lm }}\mathbf{t}^{\operatorname*{ceq}\left(
T\right) }\mathbf{x}^{\operatorname*{ircont}\left( T\right) }
\in \Z\left[t_1, t_2, t_3, \ldots\right]\left[\left[x_1, x_2, x_3, \ldots\right]\right] .
\]
%I think the brackets are unnecessary and also kind of ugly
Let us give some examples of $\widetilde{g}_{\lambda/\mu}$.
\begin{example}
\label{exa.gtilde.1}
\begin{enumerate}
\item[\textbf{(a)}] If $\lm$ is a single row with $n$ cells, then for each rpp $T$ of shape $\lm$ we have $\ceq(T)=(0,0,\dots)$ and $\ircont(T)=\cont(T)$ (in fact, any rpp of shape $\lm$ is a semistandard tableau in this case). Therefore we get
\[
\g_\lm(\x;\t)=h_n(\x)=\sum_{a_1\leq a_2\leq\dots\leq a_n} x_{a_1}x_{a_2}\cdots x_{a_n}.
\]
Here $h_n(\x)$ is the $n$-th complete homogeneous symmetric function.
\item[\textbf{(b)}] If $\lm$ is a single column with $n$ cells, then, by (\ref{eq:sum.of.ceq.and.ircont}), for all rpps $T$ of shape $\lm$ we have $|\ceq(T)|+|\ircont(T)|=n$, so in this case
\[
\g_\lm(\x;\t)=\sum_{k=0}^{n}e_{k}\left( t_{1},t_{2},\ldots,t_{n-1}\right)
e_{n-k}\left( x_{1},x_{2},\ldots\right) =e_n(t_1,t_2,\dots,t_{n-1},x_1,x_2,\dots),
\]
where $e_{i}\left( \xi_{1},\xi_{2},\xi_{3},\ldots\right) $ denotes the
$i$-th elementary symmetric function in the indeterminates $\xi_{1},\xi
_{2},\xi_{3},\ldots$.
\begin{comment}
\item[\textbf{(c)}] Let now $n=3$, let $\lambda=\left( 2,1\right) $ and let
$\mu=\varnothing$. Then, the rpps $T$ of shape $\lm$
have the form $%
%TCIMACRO{\TeXButton{Y}{\ytableausetup{notabloids}
%\begin{ytableau}
%a & b \\
%c
%\end{ytableau}}}%
%BeginExpansion
\ytableausetup{notabloids}
\begin{ytableau}
a & b \\
c
\end{ytableau}%
%EndExpansion
$ with $a\leq b$ and $a\leq c$. Each such rpp $T$ satisfies $\mathbf{t}%
^{\operatorname*{ceq}\left( T\right) }=\left\{
\begin{array}
[c]{c}%
1,\text{ if }a<c;\\
t_{1},\text{ if }a=c
\end{array}
\right. $ and $\mathbf{x}^{\operatorname*{ircont}\left( T\right) }=\left\{
%
\begin{array}
[c]{c}%
x_{a}x_{b}x_{c},\ \text{if }a<c;\\
x_{a}x_{b},\ \text{if }a=c
\end{array}
\right. $. Thus,%
\begin{align*}
\widetilde{g}_{\lambda/\mu} & =\sum_{\substack{T\text{ is an rpp}\\\text{of
shape }\lm }}\mathbf{t}^{\operatorname*{ceq}\left(
T\right) }\mathbf{x}^{\operatorname*{ircont}\left( T\right) }=\sum_{a\leq
b;\ a\leq c}\left\{
\begin{array}
[c]{c}%
1,\text{ if }a<c;\\
t_{1},\text{ if }a=c
\end{array}
\right. \left\{
\begin{array}
[c]{c}%
x_{a}x_{b}x_{c},\ \text{if }a<c;\\
x_{a}x_{b},\ \text{if }a=c
\end{array}
\right. \\
& =\sum_{a\leq b;\ a<c}x_{a}x_{b}x_{c}+t_{1}\sum_{a\leq b}x_{a}x_{b}.
\end{align*}
\end{comment}
\end{enumerate}
\end{example}
The power series $\widetilde{g}_{\lambda/\mu}$ generalize the power series
$g_{\lambda/\mu}$ and $s_{\lambda/\mu}$ studied before. The following proposition is clear:
\begin{proposition}
\label{prop.gtilde.gener}Let $\lambda/\mu$ be a skew partition.
\begin{enumerate}
\item[\textbf{(a)}] Specifying $\t=\left(
1,1,1,\ldots\right) $ yields $\widetilde{g}_{\lambda/\mu}(\x;\t)=g_{\lambda/\mu}(\x)$.
\item[\textbf{(b)}] Specifying $\t =\left(
0,0,0,\ldots\right) $ yields $\widetilde{g}_{\lambda/\mu}(\x;\t)=s_{\lambda/\mu}(\x)$.
\end{enumerate}
\end{proposition} \qed
\subsection{The symmetry statement}
Our main result is now the following:
\begin{theorem}
\label{thm.gtilde.symm}Let $\lambda/\mu$ be a skew partition. Then
$\widetilde{g}_{\lambda/\mu}(\x;\t)$ is symmetric in $\x$.
\end{theorem}
Here, ``symmetric in $\x$'' means ``invariant under all finite
permutations of the indeterminates $x_1, x_2, x_3, \ldots$''
(while $t_1, t_2, t_3, \ldots$ remain unchanged).
Clearly, Theorem~\ref{thm.gtilde.symm} implies the symmetry of
$g_\lm$ and $s_\lm$ due to Proposition~\ref{prop.gtilde.gener}.
We shall prove Theorem \ref{thm.gtilde.symm} bijectively. The core of our
proof will be the following restatement of Theorem \ref{thm.gtilde.symm}:
\begin{theorem}
\label{thm.BK}Let $\lambda/\mu$ be a skew partition and let $i\in\mathbb{N}_{+}$. Then, there exists an
involution $\mathbf{B}_{i}:\operatorname{RPP}\left( \lambda/\mu\right)
\rightarrow\operatorname{RPP}\left( \lambda/\mu\right) $ which preserves the ceq statistics and acts on the ircont statistic by the transposition of its $i$-th and $i+1$-th entries.
\end{theorem}
This involution $\mathbf{B}_{i}$ is a generalization of the $i$-th
Bender-Knuth involution defined for semistandard tableaux (see, e.g.,
\cite[proof of Proposition 2.11]{GriRei15}), but its definition is more
complicated than that of the latter.\footnote{We will compare our involution
$\mathbf{B}_{i}$ with the $i$-th Bender-Knuth involution in Section
\ref{sect.BKclassical}.} Defining it and proving its properties will take a
significant part of this paper.
\begin{proof}[Proof of Theorem~\ref{thm.gtilde.symm} using
Theorem~\ref{thm.BK}.]
We need to prove that $\widetilde{g}_{\lambda/\mu}(\x;\t)$ is invariant
under all finite permutations of the indeterminates
$x_1, x_2, x_3, \ldots$. The group of such permutations is generated by
$s_1, s_2, s_3, \ldots$, where for each $i \in \Nplus$, we define $s_i$
as the permutation of $\Nplus$ which transposes $i$ with $i+1$ and
leaves all other positive integers unchanged. Hence, it suffices to
show that $\widetilde{g}_{\lambda/\mu}(\x;\t)$ is invariant under each
of the permutations $s_1, s_2, s_3, \ldots$. In other words, it suffices
to show that $s_i \cdot \widetilde{g}_{\lambda/\mu}(\x;\t)
= \widetilde{g}_{\lambda/\mu}(\x;\t)$ for each $i \in \Nplus$.
So fix $i \in \Nplus$. In order to prove
$s_i \cdot \widetilde{g}_{\lambda/\mu}(\x;\t)
= \widetilde{g}_{\lambda/\mu}(\x;\t)$, it suffices to find a bijection
$\mathbf{B}_{i}:\operatorname{RPP}\left( \lambda/\mu\right)
\rightarrow\operatorname{RPP}\left( \lambda/\mu\right) $ with the
property that every $T \in \operatorname{RPP}\left( \lambda/\mu\right)$
satisfies $\ceq\left(\mathbf{B}_i\left(T\right)\right) = \ceq \left(T\right)$ and
$\ircont\left(\mathbf{B}_i\left(T\right)\right) = s_i \cdot \ircont \left(T\right)$.
Theorem~\ref{thm.BK} yields precisely such a bijection (even an
involution).
\end{proof}
\subsection{Reduction to 12-rpps}
Fix a skew partition $\lm$. We shall make one further simplification before we step to the actual proof of
Theorem \ref{thm.BK}. We define a \textit{12-rpp} to be an rpp whose entries all belong to the set $\left\{ 1,2\right\} $. We let $\OneTwoRPP$ be the set of all 12-rpps of shape $\lm$.
\begin{lemma}
\label{lem.BK} There exists an
involution $\mathbf{B}:\OneTwoRPP\rightarrow\OneTwoRPP$
which preserves the ceq statistic and switches the number of columns containing a $1$ with the number of columns containing a $2$ (that is, switches the first two entries of the ircont statistic).
\end{lemma}
This Lemma implies Theorem \ref{thm.BK}: for any $i\in\Nplus$ and for $T$ an rpp of shape $\lm$, we construct $\B_i(T)$ as follows:
\begin{itemize}
\item Ignore all entries of $T$ not equal to $i$ or $i+1$.
\item Replace all occurrences of $i$ by $1$ and all occurrences of $i+1$ by $2$. We get a 12-rpp $T'$ of some smaller shape (which is still a skew partition\footnote{Fine print: It has the form $\lm$ for some skew partition $\lm$, but this skew partition $\lm$ is not always uniquely determined (e.g., $\left(3,1,1\right)/\left(2,1\right)$ and $\left(3,2,1\right)/\left(2,2\right)$ have the same Young diagram). But the involution $\mathbf{B}$ constructed in the proof of Lemma~\ref{lem.BK} depends only on the Young diagram of $\lm$, and thus the choice of $\lm$ does not matter.}).
\item Replace $T'$ by $\B(T')$.
\item In $\B(T')$, replace back all occurrences of $1$ by $i$ and all occurrences of $2$ by $i+1$.
\item Finally, restore the remaining entries of $T$ that were ignored on the first step.
\end{itemize}
It is clear that this operation acts on $\ircont(T)$ by a transposition of the $i$-th and $i+1$-th entries. The fact that it does not change $\ceq(T)$ is also not hard to show: the set of redundant cells remains the same.
% This is one of the rare cases where my writing is shorter :) Also, we never defined what a "column equality" is. -- DG
% the number column equalities with both entries equal to $i$ or with both entries equal to $i+1$ in each row does not change by the properties of $\B$ while the number of column equalities with both entries equal to something other than $i$ or $i+1$ in each row does not change because the values in the corresponding cells remain unchanged.
\def\B{{\mathbf{B}}}
\section{Construction of $\mathbf{B}$\label{sect.construction}}
In this section we are going to sketch the definition of $\mathbf{B}$ and state some of its properties. We postpone the proofs until the next section.
For the whole Sections \ref{sect.construction} and \ref{sect.proof},
we shall be working in the situation of Lemma \ref{lem.BK}. In
particular, we fix a skew partition $\lm$.
A \textit{12-table} means a filling $T:\lm\rightarrow\left\{ 1,2\right\} $
of $\lm$
such that the entries of $T$ are weakly increasing down columns. (We do not
require them to be weakly increasing along rows.) Every column of a 12-table
is a sequence of the form $(1,1,\ldots,1,2,2,\ldots,2)$. We say that such a sequence is
\begin{itemize}
\item \textit{1-pure} if it is nonempty and consists purely of $1$'s,
\item \textit{2-pure} if it is nonempty and consists purely of $2$'s,
\item \textit{mixed} if it contains both $1$'s and $2$'s.
\end{itemize}
\def\flip{{\operatorname*{flip}}}
\begin{definition}
\label{defi.flip}
For a 12-table $T$, we define $\flip(T)$ to be the 12-table obtained from $T$ by changing each column of $T$ as follows:
\begin{itemize}
\item \textbf{If} this column is 1-pure, we replace all its entries by $2$'s
(so that it becomes 2-pure).
\textbf{Otherwise}, if this column is 2-pure, we replace all its entries by
$1$'s (so that it becomes 1-pure).
\textbf{Otherwise} (i.e., if this column is mixed or empty), we do not change it.
\end{itemize}
\end{definition}
If $T$ is a 12-rpp then $\flip(T)$ need not be a 12-rpp, because it can contain a $2$ to the left of a $1$ in some row. We say that a positive integer $k$ is a \textit{descent} of a 12-table $P$ if there is a $2$ in the column $k$ and there is a $1$ to the right of it in the column $k+1$. We will encounter three possible kinds of descents depending on the types of columns $k$ and $k+1$:
\begin{itemize}
\item[(M1)] The $k$-th column of $P$ is mixed and the $\left( k+1\right) $-th column of $P$ is 1-pure.
\item[(2M)] The $k$-th column of $P$ is 2-pure and the $\left( k+1\right) $-th column of $P$ is mixed.
\item[(21)] The $k$-th column of $P$ is 2-pure and the $\left( k+1\right) $-th column of $P$ is 1-pure.
\end{itemize}
For an arbitrary 12-table it can happen also that two mixed columns form a descent, but such a descent will never arise in our process.
For each of the three types of descents, we will define what it means to \textit{resolve} this descent. This is an operation which transforms the 12-table $P$ by changing the entries in its $k$-th and $\left(k+1\right)$-th columns. These changes can be informally explained by Figure \ref{fig:des-res-preliminary}:
\begin{figure}[H]
\begin{tabular}{||ccc||ccc||ccc||}\hline
& & & & & & & & \\
\begin{tabular}{cc}
\cline{2-2} & \multicolumn{1}{|c|}{}\\
\cline{1-1} \multicolumn{1}{|c|}{} & \multicolumn{1}{|c|}{} \\
\multicolumn{1}{|c|}{1} & \multicolumn{1}{|c|}{1}\\
\cline{1-1} \multicolumn{1}{|c|}{} & \multicolumn{1}{|c|}{}\\
\multicolumn{1}{|c|}{2} & \multicolumn{1}{|c|}{}\\
\cline{2-2} \multicolumn{1}{|c|}{} \\
\cline{1-1}
\end{tabular}
&
$\rightarrow$
&
\begin{tabular}{cc}
\cline{2-2} & \multicolumn{1}{|c|}{}\\
\cline{1-1} \multicolumn{1}{|c|}{} & \multicolumn{1}{|c|}{1} \\
\multicolumn{1}{|c|}{} & \multicolumn{1}{|c|}{}\\
\cline{2-2} \multicolumn{1}{|c|}{1} & \multicolumn{1}{|c|}{}\\
\multicolumn{1}{|c|}{} & \multicolumn{1}{|c|}{2}\\
\cline{2-2} \multicolumn{1}{|c|}{} \\
\cline{1-1}
\end{tabular}
&%_________________________________________________________
\begin{tabular}{cc}
\cline{2-2} & \multicolumn{1}{|c|}{}\\
\cline{1-1} \multicolumn{1}{|c|}{} & \multicolumn{1}{|c|}{1} \\
\multicolumn{1}{|c|}{} & \multicolumn{1}{|c|}{}\\
\cline{2-2} \multicolumn{1}{|c|}{2} & \multicolumn{1}{|c|}{}\\
\multicolumn{1}{|c|}{} & \multicolumn{1}{|c|}{2}\\
\cline{2-2} \multicolumn{1}{|c|}{} \\
\cline{1-1}
\end{tabular}
&
$\rightarrow$
&
\begin{tabular}{cc}
\cline{2-2} & \multicolumn{1}{|c|}{}\\
\cline{1-1} \multicolumn{1}{|c|}{} & \multicolumn{1}{|c|}{} \\
\multicolumn{1}{|c|}{1} & \multicolumn{1}{|c|}{2}\\
\cline{1-1} \multicolumn{1}{|c|}{} & \multicolumn{1}{|c|}{}\\
\multicolumn{1}{|c|}{2} & \multicolumn{1}{|c|}{}\\
\cline{2-2} \multicolumn{1}{|c|}{} \\
\cline{1-1}
\end{tabular}
&%_________________________________________________________
\begin{tabular}{cc}
\cline{2-2} & \multicolumn{1}{|c|}{}\\
\cline{1-1} \multicolumn{1}{|c|}{} & \multicolumn{1}{|c|}{} \\
\multicolumn{1}{|c|}{} & \multicolumn{1}{|c|}{1}\\
\multicolumn{1}{|c|}{2} & \multicolumn{1}{|c|}{}\\
\multicolumn{1}{|c|}{} & \multicolumn{1}{|c|}{}\\
\cline{2-2} \multicolumn{1}{|c|}{} \\
\cline{1-1}
\end{tabular}
&
$\rightarrow$
&
\begin{tabular}{cc}
\cline{2-2} & \multicolumn{1}{|c|}{}\\
\cline{1-1} \multicolumn{1}{|c|}{} & \multicolumn{1}{|c|}{} \\
\multicolumn{1}{|c|}{} & \multicolumn{1}{|c|}{2}\\
\multicolumn{1}{|c|}{1} & \multicolumn{1}{|c|}{}\\
\multicolumn{1}{|c|}{} & \multicolumn{1}{|c|}{}\\
\cline{2-2} \multicolumn{1}{|c|}{} \\
\cline{1-1}
\end{tabular}\\
& (M1) & & & (2M) & & & (21) & \\\hline
\end{tabular}
\caption{The three descent-resolution steps \label{fig:des-res-preliminary}}
\end{figure}
\def\resk{{\operatorname{res}_{k}}}
For example, if $k$ is a descent of type (M1) in a 12-table $P$, then we define the 12-table $\resk P$ as follows: the $k$-th column of $\resk P$ is 1-pure; the $\left( k+1\right) $-th column of $\resk P$ is mixed and the highest $2$ in it is in the same row as the highest $2$ in the $k$-th column of $P$; all other columns of $\resk P$ are
copied over from $P$ unchanged. The definitions of $\resk P$ for the other two types of descents are similar (and will be elaborated upon in Subsection~\ref{subsect.resolving}). We say that $\resk P$ is obtained from $P$ by \textit{resolving} the descent $k$, and we say that passing from $P$ to $\resk P$ constitutes a \textit{descent-resolution step}. (Of course, a 12-table $P$ can have several descents and thus offer several ways to proceed by descent-resolution steps.)
Now the map $\B$ is defined as follows: take any 12-rpp $T$ and apply flip to it to get a 12-table $\flip(T)$. Next, apply descent-resolution steps to $\flip(T)$ in arbitrary order until we get a 12-table with no descents left. Put $\B(T):=P$. (A rigorous statement of this is Definition \ref{defi.B}.)
In the next section we will see that $\B(T)$ is well-defined (that is, the process terminates after a finite number of descent-resolution steps, and the result does not depend on the order of steps). We will also see that $\B$ is an involution $\OneTwoRPP\to\OneTwoRPP$ that satisfies the claims of Lemma \ref{lem.BK}. An alternative proof of all these facts can be found in Section \ref{sect.structure}.
% [DG] Strictly speaking, do you really give an alternative
% proof of these facts, or just an alternative proof of the
% existence of an involution with the required properties?
\section{\label{sect.proof}Proof of Lemma \ref{lem.BK}}
We shall now prove Lemma \ref{lem.BK} in detail.
Recall that every column of a 12-table
is a sequence of the form $(1,1,\ldots,1,2,2,\ldots,2)$. If $s$ is a sequence of the form $(1,1,\ldots,1,2,2,\ldots,2)$, then we define the
\textit{signature} $\operatorname*{sig}\left( s\right)
$ of $s$ to be
\[
\operatorname*{sig}\left( s\right) = \left\{
\begin{array}
[c]{l}%
0,\text{ if }s\text{ is 2-pure or empty;}\\
1,\text{ if }s\text{ is mixed;}\\
2,\text{ if }s\text{ is 1-pure}%
\end{array}
\right.
.
\]
\begin{definition}
\label{defi.fourtypes}
For any 12-table $T$, we define a nonnegative integer $\ell\left(
T\right) $ by%
\[
\ell\left( T\right) =\sum_{h\in\mathbb{N}_{+}}h\cdot\operatorname*{sig}%
\left( \text{the }h\text{-th column of }T\right) .
\]
\end{definition}
For instance, if $T$ is the 12-table
\begin{equation}
%
%TCIMACRO{\TeXButton{Y}{\ytableausetup{notabloids}
%\begin{ytableau}
%\none& \none& 1 & 2 & 1 & 2 \\
%\none& 1 & 1 & 2 \\
%2 & 1 & 1 & 2 \\
%2 & 2
%\end{ytableau}}}%
%BeginExpansion
\ytableausetup{notabloids}
\begin{ytableau}
\none& \none& 1 & 2 & 1 & 2 \\
\none& 1 & 1 & 2 \\
2 & 1 & 1 & 2 \\
2 & 2
\end{ytableau}%
%EndExpansion
\label{eq.example-12-table.1}
\end{equation}
then $\ell\left( T\right) =1\cdot0+2\cdot1+3\cdot2+4\cdot0+5\cdot
2+6\cdot0+7\cdot0+8\cdot0+\cdots=18$.
\subsection{\label{subsection:benign}Descents, separators, and benign 12-tables}
In Subsection~\ref{sect.construction}, we have defined a ``descent''
of a 12-table. Let us reword this definition in more formal terms:
If $T$ is a 12-table, then we define a \textit{descent} of $T$ to be a
positive integer $i$ such that there exists an $r\in\mathbb{N}_{+}$ satisfying
$\left( r,i\right) \in \lm$, $\left( r,i+1\right) \in \lm$, $T\left(
r,i\right) =2$ and $T\left( r,i+1\right) =1$. For instance,
the descents of the 12-table shown in (\ref{eq.example-12-table.1})
are $1$ and $4$. Clearly, a 12-rpp of shape $\lm$ is the same as a 12-table which has no
descents.
If $T$ is a 12-table, and if $k\in\mathbb{N}_{+}$ is such that the $k$-th
column of $T$ is mixed, then we define $\operatorname*{sep}\nolimits_{k}T$ to
be the smallest $r\in\mathbb{N}_{+}$ such that $\left( r,k\right) \in \lm$ and
$T\left( r,k\right) =2$. Thus, every 12-table $T$, every
$r\in\mathbb{N}_{+}$ and every $k\in\mathbb{N}_{+}$ such that the $k$-th
column of $T$ is mixed and such that $\left( r,k\right) \in \lm$ satisfy%
\begin{equation}
T\left( r,k\right) =\left\{
\begin{array}
[c]{l}%
1,\ \ \ \ \ \ \ \ \ \ \text{if }r<\operatorname*{sep}\nolimits_{k}T;\\
2,\ \ \ \ \ \ \ \ \ \ \text{if }r\geq\operatorname*{sep}\nolimits_{k}T.
\end{array}
\right. \label{pf.lem.BK.Tsep}%
\end{equation}
If $T$ is a 12-table, then we let $\operatorname*{seplist}T$ denote the list
of all values $\operatorname*{sep}\nolimits_{k}T$ (in the order of increasing
$k$), where $k$ ranges over all positive integers for which the $k$-th column
of $T$ is mixed. For instance, if $T$ is
\[
%
%TCIMACRO{\TeXButton{Y}{\ytableausetup{notabloids}
%\begin{ytableau}
%\none& \none& 1 & 1 & 1 \\
%\none& 2 & 1 & 1 & 2 \\
%1 & 2 & 1 \\
%2 & 2 & 2
%\end{ytableau}}}%
%BeginExpansion
\ytableausetup{notabloids}
\begin{ytableau}
\none& \none& 1 & 1 & 1 \\
\none& 2 & 1 & 1 & 2 \\
1 & 2 & 1 \\
2 & 2 & 2
\end{ytableau}%
%EndExpansion
\]
then $\operatorname*{sep}\nolimits_{1}T=4$, $\operatorname*{sep}\nolimits_{3}T=4$, and
$\operatorname*{sep}\nolimits_{5}T=2$ (and there are no other $k$ for which $\operatorname*{sep}\nolimits_{k}T$ is defined), so that $\operatorname*{seplist}T=\left( 4,4,2\right) $.
We say that a 12-table $T$ is \textit{benign} if the list
$\operatorname*{seplist}T$ is weakly decreasing.\footnote{For
example, the 12-table in (\ref{eq.example-12-table.1}) is benign,
but replacing its third column by $\left(1,2,2\right)$ and its
fourth column by $\left(1,1,2\right)$ would yield a 12-table
which is not benign.}
%For instance, the 12-table
%$T=%