-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhw4.tex
executable file
·495 lines (421 loc) · 17.6 KB
/
hw4.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
\documentclass[numbers=enddot,12pt,final,onecolumn,notitlepage]{scrartcl}%
\usepackage[headsepline,footsepline,manualmark]{scrlayer-scrpage}
\usepackage[all,cmtip]{xy}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{framed}
\usepackage{comment}
\usepackage{color}
\usepackage{hyperref}
\usepackage{ifthen}
\usepackage[sc]{mathpazo}
\usepackage[T1]{fontenc}
\usepackage{needspace}
\usepackage{tabls}
%TCIDATA{OutputFilter=latex2.dll}
%TCIDATA{Version=5.50.0.2960}
%TCIDATA{LastRevised=Friday, September 16, 2016 20:39:00}
%TCIDATA{SuppressPackageManagement}
%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
%TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
%TCIDATA{BibliographyScheme=Manual}
%TCIDATA{Language=American English}
%BeginMSIPreambleData
\providecommand{\U}[1]{\protect\rule{.1in}{.1in}}
%EndMSIPreambleData
\newcounter{exer}
\theoremstyle{definition}
\newtheorem{theo}{Theorem}[section]
\newenvironment{theorem}[1][]
{\begin{theo}[#1]\begin{leftbar}}
{\end{leftbar}\end{theo}}
\newtheorem{lem}[theo]{Lemma}
\newenvironment{lemma}[1][]
{\begin{lem}[#1]\begin{leftbar}}
{\end{leftbar}\end{lem}}
\newtheorem{prop}[theo]{Proposition}
\newenvironment{proposition}[1][]
{\begin{prop}[#1]\begin{leftbar}}
{\end{leftbar}\end{prop}}
\newtheorem{defi}[theo]{Definition}
\newenvironment{definition}[1][]
{\begin{defi}[#1]\begin{leftbar}}
{\end{leftbar}\end{defi}}
\newtheorem{remk}[theo]{Remark}
\newenvironment{remark}[1][]
{\begin{remk}[#1]\begin{leftbar}}
{\end{leftbar}\end{remk}}
\newtheorem{coro}[theo]{Corollary}
\newenvironment{corollary}[1][]
{\begin{coro}[#1]\begin{leftbar}}
{\end{leftbar}\end{coro}}
\newtheorem{conv}[theo]{Convention}
\newenvironment{condition}[1][]
{\begin{conv}[#1]\begin{leftbar}}
{\end{leftbar}\end{conv}}
\newtheorem{quest}[theo]{Question}
\newenvironment{algorithm}[1][]
{\begin{quest}[#1]\begin{leftbar}}
{\end{leftbar}\end{quest}}
\newtheorem{warn}[theo]{Warning}
\newenvironment{conclusion}[1][]
{\begin{warn}[#1]\begin{leftbar}}
{\end{leftbar}\end{warn}}
\newtheorem{conj}[theo]{Conjecture}
\newenvironment{conjecture}[1][]
{\begin{conj}[#1]\begin{leftbar}}
{\end{leftbar}\end{conj}}
\newtheorem{exam}[theo]{Example}
\newenvironment{example}[1][]
{\begin{exam}[#1]\begin{leftbar}}
{\end{leftbar}\end{exam}}
\newtheorem{exmp}[exer]{Exercise}
\newenvironment{exercise}[1][]
{\begin{exmp}[#1]\begin{leftbar}}
{\end{leftbar}\end{exmp}}
\newenvironment{statement}{\begin{quote}}{\end{quote}}
\iffalse
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\fi
\let\sumnonlimits\sum
\let\prodnonlimits\prod
\let\cupnonlimits\bigcup
\let\capnonlimits\bigcap
\renewcommand{\sum}{\sumnonlimits\limits}
\renewcommand{\prod}{\prodnonlimits\limits}
\renewcommand{\bigcup}{\cupnonlimits\limits}
\renewcommand{\bigcap}{\capnonlimits\limits}
\setlength\tablinesep{3pt}
\setlength\arraylinesep{3pt}
\setlength\extrarulesep{3pt}
\voffset=0cm
\hoffset=-0.7cm
\setlength\textheight{22.5cm}
\setlength\textwidth{15.5cm}
\newenvironment{verlong}{}{}
\newenvironment{vershort}{}{}
\newenvironment{noncompile}{}{}
\excludecomment{verlong}
\includecomment{vershort}
\excludecomment{noncompile}
\newcommand{\id}{\operatorname{id}}
\newcommand{\rev}{\operatorname{rev}}
\newcommand{\conncomp}{\operatorname{conncomp}}
\newcommand{\conn}{\operatorname{conn}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\powset}[2][]{\ifthenelse{\equal{#2}{}}{\mathcal{P}\left(#1\right)}{\mathcal{P}_{#1}\left(#2\right)}}
% $\powset[k]{S}$ stands for the set of all $k$-element subsets of
% $S$. The argument $k$ is optional, and if not provided, the result
% is the whole powerset of $S$.
\newcommand{\set}[1]{\left\{ #1 \right\}}
% $\set{...}$ yields $\left\{ ... \right\}$.
\newcommand{\abs}[1]{\left| #1 \right|}
% $\abs{...}$ yields $\left| ... \right|$.
\newcommand{\tup}[1]{\left( #1 \right)}
% $\tup{...}$ yields $\left( ... \right)$.
\newcommand{\ive}[1]{\left[ #1 \right]}
% $\ive{...}$ yields $\left[ ... \right]$.
\newcommand{\verts}[1]{\operatorname{V}\left( #1 \right)}
% $\verts{...}$ yields $\operatorname{V}\left( ... \right)$.
\newcommand{\edges}[1]{\operatorname{E}\left( #1 \right)}
% $\edges{...}$ yields $\operatorname{E}\left( ... \right)$.
\newcommand{\arcs}[1]{\operatorname{A}\left( #1 \right)}
% $\arcs{...}$ yields $\operatorname{A}\left( ... \right)$.
\newcommand{\underbrack}[2]{\underbrace{#1}_{\substack{#2}}}
% $\underbrack{...1}{...2}$ yields
% $\underbrace{...1}_{\substack{...2}}$. This is useful for doing
% local rewriting transformations on mathematical expressions with
% justifications.
\ihead{Math 5707 Spring 2017 (Darij Grinberg): homework set 4}
\ohead{page \thepage}
\cfoot{}
\begin{document}
\begin{center}
\textbf{Math 5707 Spring 2017 (Darij Grinberg): homework set 4}
%\textbf{due: Wed, 29 Mar 2017, in class} or by email
%(\texttt{[email protected]}) before class
\textbf{Please hand in solutions to FIVE of the 7 problems.}
\end{center}
%\tableofcontents
\subsection{Reminders}
See the
\href{http://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf}{lecture notes}
and also the
\href{http://www.cip.ifi.lmu.de/~grinberg/t/17s/}{handwritten notes}
for relevant material.
See also
\href{http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf}{the solutions to homework set 2}
for various conventions and notations that are in use here.
\subsection{Exercise \ref{exe.hw4.menger.DA}: Directed arc-disjoint
version of Menger's theorem}
In class, you have seen the following two theorems:
\begin{theorem}[Menger's theorem, DVE (directed vertex-disjoint
version)] \label{thm.menger.DVE}
Let $D = \tup{V, A}$ be a digraph.
Let $S$ and $T$ be two subsets of $V$.
An \textit{$S$-$T$-path} in $D$ means a path in $D$ whose starting
point belongs to $S$ and whose ending point belongs to $T$.
Several paths are said to be \textit{vertex-disjoint} if no two
have a vertex in common.
A subset $C$ of $V$ is said to be \textit{$S$-$T$-disconnecting} if
each $S$-$T$-path contains at least one vertex in $C$.
The maximum number of vertex-disjoint $S$-$T$-paths equals the
minimum size of an $S$-$T$-disconnecting subset of $V$.
\end{theorem}
\begin{theorem}[Menger's theorem, DVI (directed internally
vertex-disjoint version)] \label{thm.menger.DVI}
Let $D = \tup{V, A}$ be a digraph.
Let $s$ and $t$ be two vertices of $D$ such that
$\tup{s, t} \notin A$.
An \textit{$s$-$t$-path} in $D$ means a path from $s$ to $t$ in $D$.
Several $s$-$t$-paths are said to be
\textit{internally vertex-disjoint} if no two have a vertex in common
except for the vertices $s$ and $t$.
A subset $C$ of $V$ is said to be an \textit{$s$-$t$-vertex-cut} if it
contains neither $s$ nor $t$, and if
each $s$-$t$-path contains at least one vertex in $C$.
The maximum number of internally vertex-disjoint $s$-$t$-paths equals
the minimum size of an $s$-$t$-vertex-cut.
\end{theorem}
Here are two other versions of Menger's theorem:
\begin{theorem}[Menger's theorem, DA (directed arc-disjoint
version)] \label{thm.menger.DA}
Let $D = \tup{V, A, \phi}$ be a multidigraph.
Let $s$ and $t$ be two distinct vertices of $D$.
An \textit{$s$-$t$-path} in $D$ means a path from $s$ to $t$ in $D$.
Several paths in $D$ are said to be
\textit{arc-disjoint} if no two have an arc in common.
A subset $C$ of $A$ is said to be an \textit{$s$-$t$-cut} if it has
the form
\[
C = \set{ a \in A \mid \text{the source of } a \text{ belongs to } U
\text{, but the target of } a \text{ does not}
}
\]
for some subset $U$ of $V$ satisfying $s \in U$ and $t \notin U$.
The maximum number of arc-disjoint $s$-$t$-paths equals
the minimum size of an $s$-$t$-cut.
\end{theorem}
\begin{remark}
The assumption in Theorem~\ref{thm.menger.DA} that $s$ and $t$ be
distinct is not really necessary -- you can omit it if you are willing
to put up with the idea that the maximum number of arc-disjoint
$s$-$t$-paths is $\infty$ (because you can count the trivial
path $\tup{s}$ infinitely often, thanks to it being arc-disjoint from
itself), and that the minimum size of an $s$-$t$-cut is $\infty$ as
well (since there exists no $s$-$t$-cut, and thus you are taking the
minimum of an empty set of integers, which according to one possible
convention is $\infty$).
Feel free to ignore these kinds of hairsplitting.
\end{remark}
\begin{theorem}[Menger's theorem, DAS (directed arc-disjoint set
version)] \label{thm.menger.DAS}
Let $D = \tup{V, A, \phi}$ be a multidigraph.
Let $S$ and $T$ be two disjoint subsets of $V$.
An \textit{$S$-$T$-path} in $D$ means a path in $D$ whose starting
point belongs to $S$ and whose ending point belongs to $T$.
Several paths in $D$ are said to be
\textit{arc-disjoint} if no two have an arc in common.
A subset $C$ of $A$ is said to be an \textit{$S$-$T$-cut} if it has
the form
\[
C = \set{ a \in A \mid \text{the source of } a \text{ belongs to } U
\text{, but the target of } a \text{ does not}
}
\]
for some subset $U$ of $V$ satisfying $S \subseteq U$ and
$T \cap U = \varnothing$.
The maximum number of arc-disjoint $S$-$T$-paths equals
the minimum size of an $S$-$T$-cut.
\end{theorem}
\begin{exercise} \label{exe.hw4.menger.DA}
Prove Theorem~\ref{thm.menger.DA} and
Theorem~\ref{thm.menger.DAS}.
(You are allowed to use Theorem~\ref{thm.menger.DVE} and
Theorem~\ref{thm.menger.DVI}.)
\end{exercise}
\subsection{Exercise \ref{exe.hw4.menger.undir}: Undirected Menger's
theorems}
\begin{exercise} \label{exe.hw4.menger.undir}
State and prove analogues of Theorem~\ref{thm.menger.DVE},
Theorem~\ref{thm.menger.DVI}, Theorem~\ref{thm.menger.DA} and
Theorem~\ref{thm.menger.DAS} for undirected graphs (simple graphs in
the case of the first two theorems; multigraphs for the last two).
(You can use the directed-graph versions in the proofs.)
\end{exercise}
\subsection{Exercise \ref{exe.hw4.matching-product}: matchings in a
Cartesian product}
Recall that each simple graph $G = \tup{V, E}$ can be viewed as a
multigraph in a natural way (namely, as the multigraph
$\tup{V, E, \iota}$, where $\iota$ is the map from $E$ to
$\powset[2]{V}$ sending each edge $e$ to $e$).
Thus, everything we say about multigraphs can be applied to simple
graphs.
Let me recall a definition from class in slightly greater generality:
\begin{definition}
Let $G = \tup{V, E, \phi}$ be a multigraph.
A \textit{matching} in $G$ means a subset $M$ of $E$ such that no two
distinct edges in $M$ have a vertex in common.
\end{definition}
In class, we have been discussing matchings in simple graphs; of
course, this is a particular case of matchings in multigraphs.
The difference between simple graphs and multigraphs does not really
matter for the purpose of the existence or nonexistence of matchings
(after all, a matching cannot use more than one edge through each
vertex, so it cannot include two parallel edges);
but it matters if you want to, e.g., count matchings.
\begin{definition}
A \textit{bipartite graph} is a triple $\tup{G, X, Y}$,
% (this is just a
% slightly suggestive notation for $\tup{G, X, Y}$, where the semicolon
% is supposed to separate the multigraph $G$ from the two sets $X$ and
% $Y$),
where $G$ is a multigraph, and
where $X$ and $Y$ are two subsets of $\verts{G}$
satisfying the following conditions:
\begin{itemize}
\item We have $X \cap Y = \varnothing$ and
$X \cup Y = \verts{G}$.
(In other words, each vertex of $G$ lies in exactly one of the
two sets $X$ and $Y$.)
\item Each edge of $G$ has exactly one endpoint in $X$ and exactly one
endpoint in $Y$.
\end{itemize}
We shall usually write $\tup{G; X, Y}$ instead of $\tup{G, X, Y}$ for
a bipartite graph, putting a semicolon between the $G$ and the $X$ in
order to stress the different roles that $G$ plays and that $X$ and
$Y$ play.
\end{definition}
In class, we used simple graphs instead of multigraphs in the above
definition (if I remember correctly).
Again, the difference is not important, as far as the things done in
class are concerned (i.e., comparing the sizes of
matchings and vertex covers).
Again, the difference starts creeping up when you start counting
(matchings, cycles, paths, etc.), but this is not a class about
counting.
\begin{definition}
Let $M$ be a matching in a multigraph $G$.
\textbf{(a)} A vertex $v$ of $G$ is said to be \textit{matched in $M$}
if there exists an edge $e \in M$ such that $v$ is an endpoint of $e$.
In this case, this edge is unique (since $M$ is a matching), and the
other endpoint of this edge (i.e., the one distinct from $v$) is
called the \textit{$M$-partner} of $v$.
\textbf{(b)} Let $S$ be a subset of $\verts{G}$.
The matching $M$ is said to be \textit{$S$-complete} if each vertex
$v \in S$ is matched in $M$.
\end{definition}
\begin{exercise} \label{exe.hw4.matching-product}
Let $\tup{G; X, Y}$ and $\tup{H; U, V}$ be bipartite graphs.
Assume that $G$ is a simple graph and has an $X$-complete matching.
Assume that $H$ is a simple graph and has a $U$-complete matching.
Consider the Cartesian product $G \times H$ of $G$ and $H$
defined in Exercise 1 of
\href{http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf}{homework set 2}.
\textbf{(a)} Show that
$\tup{G \times H; \tup{X \times V} \cup \tup{Y \times U},
\tup{X \times U} \cup \tup{Y \times V}}$
is a bipartite graph.
\textbf{(b)} Prove that the graph $G \times H$ has an
$\tup{X \times V} \cup \tup{Y \times U}$-complete matching.
\end{exercise}
(We required that $G$ and $H$ be simple graphs just in order to not
have to define $G \times H$ for multigraphs.)
\subsection{Exercise \ref{exe.hw4.subsets}: extending subsets}
\begin{exercise} \label{exe.hw4.subsets}
Let $S$ be a finite set.
Let $k \in \NN$ be such that $\abs{S} \geq 2k+1$.
Prove that there exists an injective map
$f : \powset[k]{S} \to \powset[k+1]{S}$ such that
each $X \in \powset[k]{S}$ satisfies
$f \tup{X} \supseteq X$.
(In other words, prove that we can add to each $k$-element subset
$X$ of $S$ an additional element from $S \setminus X$ such that the
resulting $\tup{k+1}$-element subsets are distinct.)
[\textbf{Hint:} First, reduce the problem to the case when
$\abs{S} = 2k+1$.
Then, in that case, restate it as a claim about matchings in a
certain bipartite graph.]
\end{exercise}
\subsection{Exercise \ref{exe.hw4.parabolic-derangements}:
the self-grading problem}
\begin{exercise} \label{exe.hw4.parabolic-derangements}
Let $S$ be a finite set, and let $k \in \NN$.
Let $A_1, A_2, \ldots, A_k$ be $k$ subsets of $S$
such that each element of $S$ lies in exactly one of these $k$
subsets.
Prove that the following statements are equivalent:
\begin{itemize}
\item \textit{Statement 1:} There exists a bijection
$\sigma : S \to S$ such that each $i \in \set{1, 2, \ldots, k}$
satisfies $\sigma \tup{A_i} \cap A_i = \varnothing$.
\item \textit{Statement 2:} Each $i \in \set{1, 2, \ldots, k}$
satisfies $\abs{A_i} \leq \abs{S} / 2$.
\end{itemize}
\end{exercise}
(A restatement of Exercise~\ref{exe.hw4.parabolic-derangements}:
Let $S$ be a finite set of students who have submitted homework.
The students have been collaborating on the homework, forming $k$
disjoint collaboration groups.
A lazy professor wants the students to grade each other's homework,
but he wants to avoid having a student grading the homework of a
student from the same collaboration group.
Prove that he can organize this (i.e., find a grader for each student)
if and only if each collaboration group has size $\leq \abs{S}/2$.)
\subsection{Exercise \ref{exe.hw4.lattice}: unions and intersections
of neighbor-critical sets}
\begin{definition}
Let $G$ be a multigraph.
If $S$ is a subset of $\verts{G}$, then
$N\tup{S}$ (or, to be more precise, $N_G\tup{S}$) shall denote the
subset
$\set{ u \in \verts{G} \mid \text{at least one neighbor of } u
\text{ belongs to } S }$
of $\verts{G}$.
\end{definition}
\begin{exercise} \label{exe.hw4.lattice}
Let $\tup{G; X, Y}$ be a bipartite graph.
Assume that each $S \subseteq X$ satisfies
$\abs{N\tup{S}} \geq \abs{S}$.
(Thus, Hall's theorem shows that $G$ has an $X$-complete matching.)
A subset $S$ of $X$ will be called \textit{neighbor-critical} if
$\abs{N\tup{S}} = \abs{S}$.
Let $A$ and $B$ be two neighbor-critical subsets of $X$.
Prove that the subsets $A \cup B$ and $A \cap B$ are also
neighbor-critical.
\end{exercise}
\subsection{Exercise \ref{exe.hw4.syscom}: systems of common
representatives}
\begin{exercise} \label{exe.hw4.syscom}
Let $S$ be a finite set. Let $k \in \NN$.
Let $A_1, A_2, \ldots, A_k$ be $k$ subsets of $S$.
Let $B_1, B_2, \ldots, B_k$ be $k$ subsets of $S$.
A \textit{system of common representatives} shall mean a
choice of $k$ distinct elements $t_1, t_2, \ldots, t_k$ of
$S$ as well as two bijections
$f : \set{1, 2, \ldots, k} \to \set{1, 2, \ldots, k}$
and
$g : \set{1, 2, \ldots, k} \to \set{1, 2, \ldots, k}$
such that each $i \in \set{1, 2, \ldots, k}$ satisfies
\[
t_i \in A_{f\tup{i}}
\qquad \text{ and } \qquad
t_i \in B_{g\tup{i}} .
\]
Prove that a system of common representatives exists if and only
if each two subsets $I$ and $J$ of $\set{1, 2, \ldots, k}$
satisfy
\[
\abs{\tup{\bigcup_{i \in I} A_i} \cap \tup{\bigcup_{j \in J} B_j}}
\geq \abs{I} + \abs{J} - k .
\]
[You are free to use any of
Theorem~\ref{thm.menger.DVE},
Theorem~\ref{thm.menger.DVI}, Theorem~\ref{thm.menger.DA} and
Theorem~\ref{thm.menger.DAS} here.]
\end{exercise}
\end{document}