-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhw5s.tex
executable file
·4149 lines (3636 loc) · 179 KB
/
hw5s.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[numbers=enddot,12pt,final,onecolumn,notitlepage]{scrartcl}%
\usepackage[headsepline,footsepline,manualmark]{scrlayer-scrpage}
\usepackage[all,cmtip]{xy}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{framed}
\usepackage{comment}
\usepackage{color}
\usepackage{hyperref}
\usepackage{ifthen}
\usepackage[sc]{mathpazo}
\usepackage[T1]{fontenc}
\usepackage{needspace}
\usepackage{tabls}
\usepackage{epigraph}
\newcounter{exer}
\theoremstyle{definition}
\newtheorem{theo}{Theorem}[section]
\newenvironment{theorem}[1][]
{\begin{theo}[#1]\begin{leftbar}}
{\end{leftbar}\end{theo}}
\newtheorem{lem}[theo]{Lemma}
\newenvironment{lemma}[1][]
{\begin{lem}[#1]\begin{leftbar}}
{\end{leftbar}\end{lem}}
\newtheorem{prop}[theo]{Proposition}
\newenvironment{proposition}[1][]
{\begin{prop}[#1]\begin{leftbar}}
{\end{leftbar}\end{prop}}
\newtheorem{defi}[theo]{Definition}
\newenvironment{definition}[1][]
{\begin{defi}[#1]\begin{leftbar}}
{\end{leftbar}\end{defi}}
\newtheorem{remk}[theo]{Remark}
\newenvironment{remark}[1][]
{\begin{remk}[#1]\begin{leftbar}}
{\end{leftbar}\end{remk}}
\newtheorem{coro}[theo]{Corollary}
\newenvironment{corollary}[1][]
{\begin{coro}[#1]\begin{leftbar}}
{\end{leftbar}\end{coro}}
\newtheorem{conv}[theo]{Convention}
\newenvironment{condition}[1][]
{\begin{conv}[#1]\begin{leftbar}}
{\end{leftbar}\end{conv}}
\newtheorem{quest}[theo]{Question}
\newenvironment{algorithm}[1][]
{\begin{quest}[#1]\begin{leftbar}}
{\end{leftbar}\end{quest}}
\newtheorem{warn}[theo]{Warning}
\newenvironment{conclusion}[1][]
{\begin{warn}[#1]\begin{leftbar}}
{\end{leftbar}\end{warn}}
\newtheorem{conj}[theo]{Conjecture}
\newenvironment{conjecture}[1][]
{\begin{conj}[#1]\begin{leftbar}}
{\end{leftbar}\end{conj}}
\newtheorem{exam}[theo]{Example}
\newenvironment{example}[1][]
{\begin{exam}[#1]\begin{leftbar}}
{\end{leftbar}\end{exam}}
\newtheorem{exmp}[exer]{Exercise}
\newenvironment{exercise}[1][]
{\begin{exmp}[#1]\begin{leftbar}}
{\end{leftbar}\end{exmp}}
\newenvironment{statement}{\begin{quote}}{\end{quote}}
\iffalse
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\fi
\let\sumnonlimits\sum
\let\prodnonlimits\prod
\let\cupnonlimits\bigcup
\let\capnonlimits\bigcap
\renewcommand{\sum}{\sumnonlimits\limits}
\renewcommand{\prod}{\prodnonlimits\limits}
\renewcommand{\bigcup}{\cupnonlimits\limits}
\renewcommand{\bigcap}{\capnonlimits\limits}
\setlength\tablinesep{3pt}
\setlength\arraylinesep{3pt}
\setlength\extrarulesep{3pt}
\voffset=0cm
\hoffset=-0.7cm
\setlength\textheight{22.5cm}
\setlength\textwidth{15.5cm}
\newenvironment{verlong}{}{}
\newenvironment{vershort}{}{}
\newenvironment{noncompile}{}{}
\excludecomment{verlong}
\includecomment{vershort}
\excludecomment{noncompile}
\newcommand{\id}{\operatorname{id}}
\newcommand{\rev}{\operatorname{rev}}
\newcommand{\conncomp}{\operatorname{conncomp}}
\newcommand{\conn}{\operatorname{conn}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\powset}[2][]{\ifthenelse{\equal{#2}{}}{\mathcal{P}\left(#1\right)}{\mathcal{P}_{#1}\left(#2\right)}}
% $\powset[k]{S}$ stands for the set of all $k$-element subsets of
% $S$. The argument $k$ is optional, and if not provided, the result
% is the whole powerset of $S$.
\newcommand{\set}[1]{\left\{ #1 \right\}}
% $\set{...}$ yields $\left\{ ... \right\}$.
\newcommand{\abs}[1]{\left| #1 \right|}
% $\abs{...}$ yields $\left| ... \right|$.
\newcommand{\tup}[1]{\left( #1 \right)}
% $\tup{...}$ yields $\left( ... \right)$.
\newcommand{\ive}[1]{\left[ #1 \right]}
% $\ive{...}$ yields $\left[ ... \right]$.
\newcommand{\verts}[1]{\operatorname{V}\left( #1 \right)}
% $\verts{...}$ yields $\operatorname{V}\left( ... \right)$.
\newcommand{\edges}[1]{\operatorname{E}\left( #1 \right)}
% $\edges{...}$ yields $\operatorname{E}\left( ... \right)$.
\newcommand{\arcs}[1]{\operatorname{A}\left( #1 \right)}
% $\arcs{...}$ yields $\operatorname{A}\left( ... \right)$.
\newcommand{\underbrack}[2]{\underbrace{#1}_{\substack{#2}}}
% $\underbrack{...1}{...2}$ yields
% $\underbrace{...1}_{\substack{...2}}$. This is useful for doing
% local rewriting transformations on mathematical expressions with
% justifications.
\newcommand{\are}{\ar@{-}}
% In an xymatrix environment, $\are$ gives an arrow without
% arrowhead. I use this to represent edges in graphs.
\newcommand{\arebi}[1][]{\ar@{<-}@/_/[#1] \ar@/^/[#1]}
% In an xymatrix environment, $\arebi$ gives two arrows with
% opposite direction. I use this to represent edges in
% bidirected digraphs.
\ihead{Math 5707 Spring 2017 (Darij Grinberg): homework set 5}
\ohead{page \thepage}
\cfoot{}
\begin{document}
\begin{center}
\textbf{Math 5707 Spring 2017 (Darij Grinberg): homework set 5}
\textbf{Solution sketches.}
\textbf{extended and generalized version, with an introduction to sandpile theory (\today).}
\end{center}
\epigraph{This tale grew in the telling.}{J. R. R. Tolkien}
\tableofcontents
\subsection{Reminders}
See the
\href{http://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf}{lecture notes}
and also the
\href{http://www.cip.ifi.lmu.de/~grinberg/t/17s/}{handwritten notes}
for relevant material.
See also
\href{http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf}{the solutions to homework set 2}
\cite{hw2s}
for various conventions and notations that are in use here.
\subsection{Sandpiles: the basic results}
Let me recall the definitions of the basic concepts on chip-firing
done in class.
Various sources on this material are
\cite{BjoLov92} (and, less directly, \cite{BjLoSh91}),
\cite{HLMPPW13}, \cite[Lectures 29--31]{Musike09} and \cite{CorPet16}.
(None of these is as readable as I would like to have it, but the
whole subject is about 30 years old, with most activity very
recent...
Also, be aware of incompatible notations, as well as of the fact that
some of the sources only consider undirected graphs.)
The particular case of the ``integer lattice'' graph has attracted
particular attention due to the mysterious pictures it generates;
see \url{http://www.math.cmu.edu/~wes/sand.html#next-page} for some
of these pictures, as well as
\url{http://www.math.cornell.edu/~levine/apollonian-slides.pdf} for a
talk with various illustrations.
Let me give a survey of the basics of the theory.
(Due to a reliance on constructive proofs, this survey is
unfortunately longer than I expected it to be.)
\subsubsection{Configurations, $\ZZ$-configurations and toppling}
We refer to \cite{hw2s} for the definition of a multidigraph, as well
as for the definitions of walks, paths, circuits and cycles in a
multidigraph.
If $v$ is a vertex of a multidigraph $\tup{V, A, \phi}$, then the
\textit{outdegree} $\deg^+ v$ of $v$ is defined to be the number
of all arcs $a \in A$ whose source is $v$.
Similarly,
if $v$ is a vertex of a multidigraph $\tup{V, A, \phi}$, then the
\textit{indegree} $\deg^- v$ of $v$ is defined to be the number
of all arcs $a \in A$ whose target is $v$.
An arc $a$ of a multidigraph is said to be a \textit{loop}
if the source of $a$ is the target of $a$.
Fix a multidigraph $D = \tup{V, A, \phi}$.
\begin{definition}
A \textit{configuration} (on $D$) means a map $f : V \to \NN$.
(Recall that $\NN = \set{0, 1, 2, \ldots}$.)
A configuration is also called a \textit{chip configuration} or
\textit{sandpile}.
We like to think of a configuration as a way to place
a finite number of game chips on the vertices of $D$:
Namely, the configuration $f$ corresponds to placing
$f \tup{v}$ chips on the vertex $v$ for each $v \in V$.
The chips are understood to be undistinguishable, so the
only thing that matters is how many of them are placed on
each given vertex.
Sometimes, we speak of grains of sand instead of chips.
\end{definition}
\begin{definition}
A \textit{$\ZZ$-configuration} (on $D$) means a map
$f : V \to \ZZ$.
We shall regard each configuration as a $\ZZ$-configuration
(since $\NN \subseteq \ZZ$).
\end{definition}
\begin{definition}
Let $f : V \to \ZZ$ be a $\ZZ$-configuration.
\textbf{(a)} A vertex $v \in V$ is said to be
\textit{active} in $f$ if and only if
$f\tup{v} \geq \deg^+ v$.
(Recall that $\deg^+ v$ is the outdegree of $v$.)
\textbf{(b)} The $\ZZ$-configuration $f$ is said to be
\textit{stable} if no vertex $v \in V$ is active in $f$.
\end{definition}
Thus, a $\ZZ$-configuration $f : V \to \ZZ$ is stable
if and only if each vertex $v \in V$ satisfies
$f \tup{v} < \deg^+ v$.
Notice that there are only finitely many stable configurations
(because if $f$ is a stable configuration, then, for each
$v \in V$, the stability of $f$ implies $f \tup{v} \leq \deg^+ v$,
whereas the fact that $f$ is a configuration implies
$f \tup{v} \geq 0$; but these two inequalities combined
leave only finitely many possible values for $f \tup{v}$).
\begin{definition} \label{def.chip.add-configs}
The set $\ZZ^V$ of all $\ZZ$-configurations can be equipped with
operations of addition and subtraction, defined as follows:
\begin{itemize}
\item For any two $\ZZ$-configurations $f : V \to \ZZ$ and
$g : V \to \ZZ$, we define a $\ZZ$-configuration
$f + g : V \to \ZZ$ by setting
\[
\tup{f + g} \tup{v}
= f \tup{v} + g \tup{v}
\qquad \text{ for each } v \in V .
\]
\item For any two $\ZZ$-configurations $f : V \to \ZZ$ and
$g : V \to \ZZ$, we define a $\ZZ$-configuration
$f - g : V \to \ZZ$ by setting
\[
\tup{f - g} \tup{v}
= f \tup{v} - g \tup{v}
\qquad \text{ for each } v \in V .
\]
\end{itemize}
These operations of addition and subtraction satisfy the
standard rules (e.g., we always have
$\tup{f+g} + h = f + \tup{g+h}$ and
$\tup{f-g} - h = f - \tup{g+h}$).
Hence, we can write terms like $f + g + h$ or $f - g - h$
without having to explicitly place parentheses.
Also, we can define a ``zero configuration'' $0 : V \to \ZZ$,
which is the configuration that sends each $v \in V$ to the
number $0$.
(Hopefully, the dual use of the symbol $0$ for both the number
$0$ and this zero configuration is not too confusing.)
Also, for each $\ZZ$-configuration $f : V \to \ZZ$ and each
integer $N$, we define a $\ZZ$-configuration $Nf : V \to \ZZ$
by
\[
\tup{Nf} \tup{v} = N f \tup{v}
\qquad \text{ for each } v \in V .
\]
\end{definition}
\begin{definition}
Let $f : V \to \ZZ$ be any $\ZZ$-configuration.
Then, $\sum f$ shall denote the integer
$\sum_{v \in V} f \tup{v}$.
This integer $\sum f$ is called the \textit{degree} of $f$.
\end{definition}
If $f$ is a configuration, then $\sum f$ is the total
number of chips in $f$.
It is easy to see that any two $\ZZ$-configurations $f$ and
$g$ satisfy $\sum \tup{f+g} = \sum f + \sum g$ and
$\sum \tup{f-g} = \sum f - \sum g$.
Also, any $N \in \ZZ$ and any $\ZZ$-configuration $f$
satisfy $\sum \tup{Nf} = N \sum f$.
\begin{proposition} \label{prop.chip.sum-greater}
Let $f$ be a configuration.
Let $h = \sum f$ and $w \in V$.
Then, $f \tup{w} \leq h$.
\end{proposition}
\begin{proof}[Proof of Proposition~\ref{prop.chip.sum-greater} (sketched).]
We have $h = \sum f = \sum_{v \in V} f \tup{v}$;
this is a sum of nonnegative integers (since $f$ is a
configuration).
But a sum of nonnegative integers is always $\geq$ to
each of its addends.
Hence, $\sum_{v \in V} f \tup{v} \geq f \tup{w}$.
Thus, $h = \sum_{v \in V} f \tup{v} \geq f \tup{w}$.
This proves Proposition~\ref{prop.chip.sum-greater}.
\end{proof}
\begin{definition}
\label{def.iverson}
We shall use the \textit{Iverson bracket notation}:
If $\mathcal{A}$ is any logical statement, then we define
an integer $\ive{ \mathcal{A} } \in \set{0, 1}$ by
\[
\ive{ \mathcal{A} } =
\begin{cases}
1, & \text{if }\mathcal{A}\text{ is true};\\
0, & \text{if }\mathcal{A}\text{ is false}
\end{cases}
.
\]
For example, $\ive{1+1=2} =1$ (since $1+1=2$ is true), whereas
$\ive{1+1=1} =0$ (since $1+1=1$ is false).
\end{definition}
\begin{definition}
If $v$ and $w$ are any two vertices of $D$, then
$a_{v, w}$ shall denote the number of all arcs of $D$ having
source $v$ and target $w$.
This is a nonnegative integer.
\end{definition}
(Note that $a_{v, w}$ might be $> 1$, since $D$ is a multidigraph.
Note also that $a_{v, v}$ might be nonzero, since loops are
allowed.)
\begin{definition}
Let $v \in V$ be a vertex.
Then, a $\ZZ$-configuration $\Delta v$ is defined by setting
\[
\tup{\Delta v} \tup{w}
= \ive{w = v} \deg^+ v - a_{v, w}
\qquad \text{ for all } w \in V .
\]
\end{definition}
Let us unpack the definition of $\Delta v$ we just gave:
It says that
\[
\tup{\Delta v} \tup{w} = - a_{v, w}
\qquad \text{ for each vertex } w \in V \text{ distinct from } v
\]
(because if $w$ is distinct
from $v$, then $\ive{w = v} = 0$);
and it says that
\[
\tup{\Delta v} \tup{v} = \deg^+ v - a_{v, v} .
\]
\begin{definition}
Let $v \in V$ be a vertex.
Then, \textit{firing $v$} is the operation on
$\ZZ$-configurations (i.e., formally speaking, the mapping from
$\ZZ^V$ to $\ZZ^V$) that sends each $\ZZ$-configuration
$f : V \to \ZZ$ to $f - \Delta v$.
We sometimes say ``toppling $v$'' instead of ``firing $v$''.
\end{definition}
If $f : V \to \NN$ is a configuration, then the
$\ZZ$-configuration $f - \Delta v$ obtained by firing $v$ can be
described as follows:
The vertex $v$ ``donates'' $\deg^+ v$ of its chips to its
neighbors, by sending one chip along each of its outgoing arcs
(i.e., for each arc having source $v$, the vertex $v$ sends one
chip along this arc to the target of this arc).
Thus, the number of chips on $v$ (weakly) decreases, while the
number of chips on each other vertex (weakly) increases.
Of course, the resulting $\ZZ$-configuration $f - \Delta v$ is
not necessarily a configuration.
In fact, it is a configuration if the vertex $v$ is
active in $f$,
and also in some other cases:
\begin{proposition} \label{prop.chip.fire-conf}
Let $f : V \to \NN$ be a configuration.
Let $v \in V$.
\textbf{(a)} If the vertex $v$ is active in $f$, then
$f - \Delta v$ is a configuration.
\textbf{(b)} If $f - \Delta v$ is a configuration, and if
$D$ has no loops with source and target $v$, then
the vertex $v$ is active in $f$.
\end{proposition}
Note that the converse of
Proposition~\ref{prop.chip.fire-conf} \textbf{(a)} does not
hold when $D$ has loops with source and target $v$.
\begin{proof}[Proof of Proposition~\ref{prop.chip.fire-conf} (sketched).]
\textbf{(a)} Assume that the vertex $v$ is active in $f$.
Thus, $f \tup{v} \geq \deg^+ v$.
Hence,
\[
\tup{f - \Delta v} \tup{v}
= \underbrace{\tup{ f \tup{v} }}_{\geq \deg^+ v}
- \underbrace{\tup{ \tup{\Delta v} \tup{v} }}_{= \deg^+ v - a_{v, v} }
\geq \deg^+ v - \tup{\deg^+ v - a_{v, v}} = a_{v, v} \geq 0 .
\]
Also, each vertex $w \in V$ distinct from $v$ satisfies
\[
\tup{f - \Delta v} \tup{w}
= f \tup{w}
- \underbrace{\tup{ \tup{\Delta v} \tup{w} }}_{= - a_{v, w} \leq 0 }
\geq f \tup{w} \geq 0
\]
(since $f$ is a configuration).
Combining these two inequalities, we conclude that
$\tup{f - \Delta v} \tup{w} \geq 0$
for each $w \in V$.
In other words, $f - \Delta v$ is a configuration.
This proves Proposition~\ref{prop.chip.fire-conf} \textbf{(a)}.
\textbf{(b)} Assume that $f - \Delta v$ is a configuration.
Also, assume that $D$ has no loops with source and target $v$.
Thus, $a_{v, v} = 0$.
Now, $\tup{f - \Delta v} \tup{v} \geq 0$ (since
$f - \Delta v$ is a configuration), so that
\begin{align*}
0 &\leq \tup{f - \Delta v} \tup{v}
= f \tup{v}
- \underbrace{\tup{ \tup{\Delta v} \tup{v} }}_{= \deg^+ v - a_{v, v} }
= f \tup{v} - \tup{\deg^+ v - a_{v, v}} \\
&= f \tup{v} - \deg^+ v + \underbrace{a_{v, v}}_{= 0}
= f \tup{v} - \deg^+ v .
\end{align*}
In other words, $f \tup{v} \geq \deg^+ v$. In other words,
the vertex $v$ is active in $f$.
This proves Proposition~\ref{prop.chip.fire-conf} \textbf{(b)}.
\end{proof}
\begin{proposition} \label{prop.chip.sumDv=0}
We have $\sum \tup{\Delta v} = 0$ for each vertex $v \in V$.
\end{proposition}
\begin{proof}[Proof of Proposition~\ref{prop.chip.sumDv=0} (sketched).]
Let $v\in V$ be any vertex. Then,
\begin{align*}
\sum\left( \Delta v\right) & =\sum_{w\in V}\underbrace{\left( \Delta
v\right) \left( w\right) }_{=\left[ w=v\right] \deg^{+}v-a_{v,w}}%
=\sum_{w\in V}\left( \left[ w=v\right] \deg^{+}v-a_{v,w}\right) \\
& =\underbrace{\sum_{w\in V}\left[ w=v\right] }_{=1}\deg^{+}%
v-\underbrace{\sum_{w\in V}a_{v,w}}_{\substack{=\left( \text{the number of
all arcs with source }v\right) \\=\deg^{+}v}}\\
& =\deg^{+}v-\deg^{+}v=0.
\end{align*}
This proves Proposition~\ref{prop.chip.sumDv=0}.
\end{proof}
Thus,
\[
\sum \tup{f - \Delta v}
= \sum f - \underbrack{\sum \tup{\Delta v}}{= 0 \\ \text{(by Proposition~\ref{prop.chip.sumDv=0})}}
= \sum f
\]
for each $\ZZ$-configuration $f : V \to \ZZ$ and each vertex $v$.
In other words, firing a vertex $v$ does not change the degree of
a $\ZZ$-configuration.
\subsubsection{Legal and stabilizing sequences}
The word ``sequence'' shall always mean ``finite sequence''
(which is the same as ``finite list'' or ``tuple'').
We shall now study the effects of repeatedly firing vertices
of $D$ (that is, firing several vertices one after the other).
If $v_1, v_2, \ldots, v_k$ are finitely many elements of $V$,
and if $f : V \to \ZZ$ is any $\ZZ$-configuration,
then firing the vertices $v_1, v_2, \ldots, v_k$
(one after the other, in this order) results in the
$\ZZ$-configuration
$f - \Delta v_1 - \Delta v_2 - \cdots - \Delta v_k$.
This shows, in particular, that the order in which we fire
the vertices does not matter for the final result
(i.e., firing them in any other order would yield the same
resulting $\ZZ$-configuration);
however, the intermediate configurations of course do depend
on the order.
\begin{definition}
Let $f : V \to \ZZ$ be a $\ZZ$-configuration.
Let $\tup{v_1, v_2, \ldots, v_k}$ be a sequence of vertices of
$D$.
\textbf{(a)} The sequence $\tup{v_1, v_2, \ldots, v_k}$ is said
to be \textit{legal} for $f$ if for each
$i \in \set{1, 2, \ldots, k}$, the vertex $v_i$ is active in
the $\ZZ$-configuration
$f - \Delta v_1 - \Delta v_2 - \cdots - \Delta v_{i-1}$.
\textbf{(b)} The sequence $\tup{v_1, v_2, \ldots, v_k}$ is said
to be \textit{stabilizing} for $f$ if the $\ZZ$-configuration
$f - \Delta v_1 - \Delta v_2 - \cdots - \Delta v_k$ is stable.
\end{definition}
What is the rationale behind the notions of ``legal'' and
``stabilizing''?
A sequence of vertices provides a way to modify a
$\ZZ$-configuration by first firing the first vertex in the
sequence, then firing the second, and so on.
The sequence is said to be \textit{legal} (for $f$) if only
active vertices are being fired in this process
(i.e., each vertex that gets fired is active at the time of
its firing);
thus, in particular, if $f$ was a configuration, then
it remains a configuration throughout this process
(i.e., at no point does a vertex have a negative number of
chips)\footnote{This follows from
Proposition~\ref{prop.chip.fire-conf} \textbf{(a)}
(applied repeatedly).
\par
If our multidigraph $D$ has no loops, then
the converse is also true:
If the configuration remains a configuration throughout the
process, then the sequence is legal.
(This follows from
Proposition~\ref{prop.chip.fire-conf} \textbf{(b)}.)
But if $D$ has loops, this is not always the case.}.
The sequence is said to be \textit{stabilizing} (for $f$) if
the $\ZZ$-configuration resulting from it at the very end is
stable.
We notice some obvious consequences of the definitions:
\begin{proposition} \label{prop.chip.obvious}
Let $f$ be a $\ZZ$-configuration.
\textbf{(a)}
If $f$ is a configuration, and if
a sequence $\tup{v_1, v_2, \ldots, v_k}$ is legal
for $f$, then all of the
$\ZZ$-configurations
$f - \Delta v_1 - \Delta v_2 - \cdots - \Delta v_i$
for $i \in \set{0, 1, \ldots, k}$ are actually
configurations.
\textbf{(b)}
If a sequence $\tup{v_1, v_2, \ldots, v_k}$ is legal
for $f$, then each prefix of this
sequence (i.e., each sequence of the form
$\tup{v_1, v_2, \ldots, v_i}$ for some
$i \in \set{0, 1, \ldots, k}$) is legal for $f$ as
well.
\textbf{(c)}
If a sequence $\tup{v_1, v_2, \ldots, v_k}$ is
stabilizing for $f$, then each
permutation of this sequence (i.e., each sequence of
the form
$\tup{v_{\sigma\tup{1}}, v_{\sigma\tup{2}}, \ldots,
v_{\sigma\tup{k}}}$ for a permutation
$\sigma$ of $\set{1, 2, \ldots, k}$) is stabilizing
for $f$ as well.
\textbf{(d)}
If $\tup{v_1, v_2, \ldots, v_k}$ is a legal sequence
for $f$, then
$\tup{v_1, v_2, \ldots, v_k}$ is stabilizing if and
only if there exist no $v \in V$ such that the
sequence $\tup{v_1, v_2, \ldots, v_k, v}$ is legal.
\end{proposition}
An important property of chip-firing is the following result
(sometimes called the ``least action principle''):
\begin{theorem} \label{thm.chip.lap}
Let $f : V \to \ZZ$ be any $\ZZ$-configuration.
Let $\ell$ and $s$ be two sequences of vertices of $D$ such
that $\ell$ is legal for $f$ while $s$ is stabilizing for $f$.
Then, $\ell$ is a subpermutation of $s$.
\end{theorem}
Here, we are using the following notation:
\begin{definition}
Let $\tup{p_1, p_2, \ldots, p_u}$ and
$\tup{q_1, q_2, \ldots, q_v}$ be two finite sequences.
Then, we say that $\tup{p_1, p_2, \ldots, p_u}$ is
a \textit{subpermutation} of $\tup{q_1, q_2, \ldots, q_v}$
if and only if, for each object $t$, the following holds:
The number of $i \in \set{1, 2, \ldots, u}$ satisfying
$p_i = t$ is less or equal to the number of
$j \in \set{1, 2, \ldots, v}$ satisfying $q_j = t$.
Equivalently, the sequence $\tup{p_1, p_2, \ldots, p_u}$ is
a subpermutation of the sequence $\tup{q_1, q_2, \ldots, q_v}$
if and only if you can obtain the former from the latter by
removing some entries and permuting the remaining entries.
(``Some'' allows for the possibility of ``zero''.)
\end{definition}
Our proof of Theorem \ref{thm.chip.lap} relies on the following
simple facts about subpermutations (whose proofs are left
to the reader):
\begin{lemma} \label{lem.subper.simple-stuff}
\textbf{(a)} Any permutation of a finite sequence $s$ is a
subpermutation of $s$.
\textbf{(b)} If three finite sequences $a$, $b$ and $c$ have
the property that $a$ is a subpermutation of $b$, and that
$b$ is a subpermutation of $c$, then
$a$ is a subpermutation of $c$.
\textbf{(c)} If $\tup{a_1, a_2, \ldots, a_N}$
and $\tup{b_1, b_2, \ldots, b_M}$ are two finite sequences
such that $N > 0$ and $M > 0$ and $a_1 = b_1$,
and if the sequence $\tup{a_2, a_3, \ldots, a_N}$ is a
subpermutation of $\tup{b_2, b_3, \ldots, b_M}$, then
the sequence $\tup{a_1, a_2, \ldots, a_N}$ is a
subpermutation of $\tup{b_1, b_2, \ldots, b_M}$.
\textbf{(d)} If two finite sequences $a$ and $b$ are such
that $a$ is a subpermutation of $b$ and $b$ is a subpermutation
of $a$, then $a$ is a permutation of $b$.
\textbf{(e)} Any subpermutation of a finite sequence $s$ is
at most as long as $s$.
\end{lemma}
\begin{proof}[Proof of Theorem \ref{thm.chip.lap} (sketched).]
We shall prove Theorem \ref{thm.chip.lap} by induction on the length of $\ell$.
\textit{Induction base:} Theorem \ref{thm.chip.lap} is obvious when the length
of $\ell$ is $0$.
\textit{Induction step:} Fix a positive integer $N$. Assume (as the induction
hypothesis) that Theorem \ref{thm.chip.lap} is true when the sequence $\ell$
has length $N-1$. We must prove that Theorem \ref{thm.chip.lap} is true when
the sequence $\ell$ has length $N$.
So let $f$, $\ell$ and $s$ be as in Theorem \ref{thm.chip.lap}, and assume
that $\ell$ has length $N$. We must then prove that $\ell$ is a subpermutation
of $s$.
Write the sequence $s$ in the form $s=\left( s_{1},s_{2},\ldots,s_{M}\right)
$.
Write the sequence $\ell$ in the form $\ell=\left( \ell_{1},\ell_{2}%
,\ldots,\ell_{N}\right) $ (this is possible, since $\ell$ has length $N$).
The entry $\ell_{1}$ exists (since $N$ is positive). Clearly, the vertex
$\ell_{1}$ is active in $f$ (because $\ell_{1}$ is the first entry of a
sequence that is legal for $f$). In other words, $f\left( \ell_{1}\right)
\geq\deg^{+}\left( \ell_{1}\right) $.
Now, we claim that $\ell_{1}\in\left\{ s_{1},s_{2},\ldots,s_{M}\right\} $.
Indeed, assume the contrary. Thus, $\ell_{1}\notin\left\{ s_{1},s_{2}%
,\ldots,s_{M}\right\} $. In other words, $\ell_{1}\neq s_{i}$ for each
$i\in\left\{ 1,2,\ldots,M\right\} $. Hence, for each $i\in\left\{
1,2,\ldots,M\right\} $, the definition of $\Delta s_{i}$ yields
\begin{equation}
\left( \Delta s_{i}\right) \left( \ell_{1}\right) =\underbrace{\left[
\ell_{1}=s_{i}\right] }_{\substack{=0\\\text{(since }\ell_{1}\neq
s_{i}\text{)}}}\deg^{+}\left( s_{i}\right) -\underbrace{a_{s_{i},\ell_{1}}%
}_{\geq0}\leq0.\label{pf.thm.chip.lap.4}%
\end{equation}
But the sequence $\left( s_{1},s_{2},\ldots,s_{M}\right) =s$ is stabilizing;
in other words, the $\ZZ$-configuration $f-\Delta s_{1}-\Delta
s_{2}-\cdots-\Delta s_{M}$ is stable. Thus, in particular,
\[
\left( f-\Delta s_{1}-\Delta s_{2}-\cdots-\Delta s_{M}\right) \left(
\ell_{1}\right) <\deg^{+}\left( \ell_{1}\right) \leq f\left( \ell
_{1}\right)
\]
(since $f\left( \ell_{1}\right) \geq\deg^{+}\left( \ell_{1}\right) $).
Hence,%
\[
f\left( \ell_{1}\right) >\left( f-\Delta s_{1}-\Delta s_{2}-\cdots-\Delta
s_{M}\right) \left( \ell_{1}\right) =f\left( \ell_{1}\right) -\sum
_{i=1}^{M}\underbrace{\left( \Delta s_{i}\right) \left( \ell_{1}\right)
}_{\substack{\leq0\\\text{(by (\ref{pf.thm.chip.lap.4}))}}}\geq f\left(
\ell_{1}\right) ,
\]
which is absurd. This contradiction completes our proof of $\ell_{1}%
\in\left\{ s_{1},s_{2},\ldots,s_{M}\right\} $.
In other words, $\ell_{1}$ is an entry of the sequence $s$. Thus, there exists
a permutation $t$ of the sequence $s$ such that $\ell_{1}$ is the
\textbf{first} entry of $t$. Consider such a $t$. Write $t$ in the form
$t=\left( t_{1},t_{2},\ldots,t_{M}\right) $. (This is possible, since $t$
has length $M$, being a permutation of the length-$M$ sequence $s$.)
We know that $\ell_{1}$ is the first entry of the sequence $t=\left(
t_{1},t_{2},\ldots,t_{M}\right) $. In other words, $\ell_{1}=t_{1}$. In
particular, $M>0$.
Recall that $\left( t_{1},t_{2},\ldots,t_{M}\right) =t$ is a permutation of
the sequence $\left( s_{1},s_{2},\ldots,s_{M}\right) =s$. Thus, $f-\Delta
t_{1}-\Delta t_{2}-\cdots-\Delta t_{M}=f-\Delta s_{1}-\Delta s_{2}%
-\cdots-\Delta s_{M}$.
We have
\begin{align*}
& \left( f-\Delta\underbrace{\ell_{1}}_{=t_{1}}\right) -\Delta t_{2}-\Delta
t_{3}-\cdots-\Delta t_{M}\\
& =\left( f-\Delta t_{1}\right) -\Delta t_{2}-\Delta t_{3}-\cdots-\Delta
t_{M}\\
& =f-\Delta t_{1}-\Delta t_{2}-\cdots-\Delta t_{M}=f-\Delta s_{1}-\Delta
s_{2}-\cdots-\Delta s_{M}.
\end{align*}
Hence, the $\ZZ$-configuration $\left( f-\Delta\ell_{1}\right)
-\Delta t_{2}-\Delta t_{3}-\cdots-\Delta t_{M}$ is stable (since the
$\ZZ$-configuration $f-\Delta s_{1}-\Delta s_{2}-\cdots-\Delta s_{M}$
is stable). In other words, the sequence $\left( t_{2},t_{3},\ldots
,t_{M}\right) $ is stabilizing for the $\ZZ$-configuration
$f-\Delta\ell_{1}$.
On the other hand, the sequence $\left( \ell_{1},\ell_{2},\ldots,\ell
_{N}\right) =\ell$ is legal for $f$. Hence, for each $i\in\left\{
2,3,\ldots,N\right\} $, the vertex $\ell_{i}$ is active in the $\ZZ%
$-configuration $f-\Delta\ell_{1}-\Delta\ell_{2}-\cdots-\Delta\ell_{i-1}$. In
other words, for each $i\in\left\{ 2,3,\ldots,N\right\} $, the vertex
$\ell_{i}$ is active in the $\ZZ$-configuration $\left( f-\Delta
\ell_{1}\right) -\Delta\ell_{2}-\Delta\ell_{3}-\cdots-\Delta\ell_{i-1}$
(since
$f-\Delta\ell_{1}-\Delta\ell_{2}-\cdots-\Delta\ell_{i-1}
= \left( f-\Delta
\ell_{1}\right) -\Delta\ell_{2}-\Delta\ell_{3}-\cdots-\Delta\ell_{i-1}$).
Renaming $i$ as $i+1$ in this fact, we obtain the following: For each
$i\in\left\{ 1,2,\ldots,N-1\right\} $, the vertex $\ell_{i+1}$ is active in
the $\ZZ$-configuration $\left( f-\Delta\ell_{1}\right) -\Delta
\ell_{2}-\Delta\ell_{3}-\cdots-\Delta\ell_{i}$. In other words, the sequence
$\left( \ell_{2},\ell_{3},\ldots,\ell_{N}\right) $ is legal for the
$\ZZ$-configuration $f-\Delta\ell_{1}$. Moreover, this sequence has
length $N-1<N$.
Hence, by the induction hypothesis, we can apply Theorem \ref{thm.chip.lap} to
$f-\Delta\ell_{1}$, $\left( \ell_{2},\ell_{3},\ldots,\ell_{N}\right) $ and
$\left( t_{2},t_{3},\ldots,t_{M}\right) $ instead of $f$, $\ell$ and $t$. We
thus conclude that the sequence $\left( \ell_{2},\ell_{3},\ldots,\ell
_{N}\right) $ is a subpermutation of $\left( t_{2},t_{3},\ldots
,t_{M}\right) $. Hence, Lemma \ref{lem.subper.simple-stuff} \textbf{(c)}
(applied to $a_{i}=\ell_{i}$ and $b_{j}=t_{j}$) shows that the sequence
$\left( \ell_{1},\ell_{2},\ldots,\ell_{N}\right) $ is a subpermutation of
$\left( t_{1},t_{2},\ldots,t_{M}\right) $ (since $N>0$ and $M>0$ and
$\ell_{1}=t_{1}$). In other words, the sequence $\ell$ is a subpermutation of
$t$ (since $\ell=\left( \ell_{1},\ell_{2},\ldots,\ell_{N}\right) $ and
$t=\left( t_{1},t_{2},\ldots,t_{M}\right) $).
But the sequence $t$ is a permutation of $s$, and thus a subpermutation of $s$
(by Lemma \ref{lem.subper.simple-stuff} \textbf{(a)}). Hence, Lemma
\ref{lem.subper.simple-stuff} \textbf{(b)} (applied to $a=\ell$, $b=t$ and
$c=s$) shows that the sequence $\ell$ is a subpermutation of $s$. This
completes the induction step. Thus, Theorem \ref{thm.chip.lap} is proven.
\end{proof}
\begin{corollary} \label{cor.chip.lap-cor}
Let $f : V \to \NN$ be any configuration.
Let $\ell$ and $\ell'$ be two sequences of vertices of $D$
that are both legal and stabilizing for $f$.
Then:
\textbf{(a)} The sequence $\ell'$ is a permutation of $\ell$.
In particular:
\textbf{(b)} The sequences $\ell$ and $\ell'$ have the
same length.
\textbf{(c)} For each $t \in V$, the number of times $t$
appears in $\ell'$ equals the number of times $t$ appears in
$\ell$.
\textbf{(d)} The configuration obtained from $f$ by firing
all vertices in $\ell$ (one after the other) equals the
configuration obtained from $f$ by firing
all vertices in $\ell'$ (one after the other).
\end{corollary}
\begin{proof}[Proof of Corollary~\ref{cor.chip.lap-cor} (sketched).]
Theorem \ref{thm.chip.lap} (applied to $\ell^{\prime}$ instead of $s$) shows
that $\ell$ is a subpermutation of $\ell^{\prime}$. But Theorem
\ref{thm.chip.lap} (applied to $\ell^{\prime}$ and $\ell$ instead of $\ell$
and $s$) shows that $\ell^{\prime}$ is a subpermutation of $\ell$. Hence,
Lemma \ref{lem.subper.simple-stuff} \textbf{(d)} (applied to $a=\ell^{\prime}$
and $b=\ell$) shows that $\ell^{\prime}$ is a permutation of $\ell$. This
proves part \textbf{(a)} of Corollary~\ref{cor.chip.lap-cor}. Parts
\textbf{(b)} and \textbf{(c)} follow immediately from part \textbf{(a)}. Part
\textbf{(d)} also follows from part \textbf{(a)}, because we know that the
order in which we fire a sequence of vertices does not matter for the final
result (so any permutation of a sequence yields the same configuration as the
sequence itself).
\end{proof}
\subsubsection{Concatenation of legal sequences}
For the next lemma, we need a simple piece of notation:
\begin{definition} \label{def.concat}
\textbf{(a)} If $u=\left( u_{1},u_{2},\ldots,u_{p}\right) $ and $v=\left(
v_{1},v_{2},\ldots,v_{q}\right) $ are two finite sequences, then $u\ast v$
denote the sequence $\left( u_{1},u_{2},\ldots,u_{p},v_{1},v_{2},\ldots
,v_{q}\right) $. This sequence $u\ast v$ is called the \textit{concatenation}
of the sequences $u$ and $v$.
\textbf{(b)} If $u$ is a finite sequence, and if $k\in\mathbb{N}$, then
$u^{\ast k}$ denotes the sequence $\underbrace{u\ast u\ast\cdots\ast
u}_{k\text{ times}}$. (This is well-defined, since the operation of
concatenation is associative. Notice that $u^{\ast0}$ is the empty sequence
$\left( {}\right) $.)
\end{definition}
\begin{lemma}
\label{lem.chip.leg-concat1}
Let $f : V \to \ZZ$ be a $\ZZ$-configuration.
Let $u$ be a legal sequence for $f$.
Let $g$ be the $\ZZ$-configuration obtained from $f$
by firing all vertices in $u$
(that is, $g=f-\Delta u_{1}-\Delta u_{2}-\cdots-\Delta u_{p}$, where $u$ is
written in the form $u=\left( u_{1},u_{2},\ldots,u_{p}\right) $).
Let $v$ be a legal sequence for $g$.
Then, $u\ast v$ is a legal sequence for $f$.
\end{lemma}
\begin{proof}
[Proof of Lemma \ref{lem.chip.leg-concat1} (sketched).] Write the sequence $u$
in the form $u=\left( u_{1},u_{2},\ldots,u_{p}\right) $. Write the sequence
$v$ in the form $v=\left( v_{1},v_{2},\ldots,v_{q}\right) $. Then, the
definition of $u\ast v$ yields $u\ast v=\left( u_{1},u_{2},\ldots
,u_{p},v_{1},v_{2},\ldots,v_{q}\right) $.
We want to prove that the sequence $u\ast v$ is legal for $f$. In other words,
we want to prove that the sequence $\left( u_{1},u_{2},\ldots,u_{p}%
,v_{1},v_{2},\ldots,v_{q}\right) $ is legal for $f$ (since $u\ast v=\left(
u_{1},u_{2},\ldots,u_{p},v_{1},v_{2},\ldots,v_{q}\right) $). In other words,
we want to prove that if we start with the $\mathbb{Z}$-configuration $f$, and
fire the vertices $u_{1},u_{2},\ldots,u_{p},v_{1},v_{2},\ldots,v_{q}$ one by
one (from first to last), then each vertex we fire is active at the time of firing.
This process can be subdivided into two phases: The phase where we fire the
first $p$ vertices $u_{1},u_{2},\ldots,u_{p}$ will be called \textit{phase
}$1$. It is followed by a phase where we fire the next $q$ vertices, which are
$v_{1},v_{2},\ldots,v_{q}$; this latter phase will be called \textit{phase
}$2$.
We must prove that each vertex we fire in our process is active at the time of
firing. We call this the \textit{activity claim}. This claim is obvious for
the first $p$ vertices being fired (because these are the vertices
$u_{1},u_{2},\ldots,u_{p}$, and we already know that the sequence $\left(
u_{1},u_{2},\ldots,u_{p}\right) =u$ is legal for $f$); in other words, the
activity claim is obvious for the vertices fired in phase $1$. It thus remains
to prove the activity claim for the vertices fired in phase $2$.
In phase $1$, the $\mathbb{Z}$-configuration $f$ is transformed by firing all
vertices in $u$ (because the vertices $u_{1},u_{2},\ldots,u_{p}$ are precisely
the vertices in $u$). Thus, the $\mathbb{Z}$-configuration obtained at the end
of phase $1$ is $g$ (because $g$ is \textbf{defined} as the $\mathbb{Z}%
$-configuration obtained from $f$ by firing all vertices in $u$). In phase
$2$, this $\mathbb{Z}$-configuration $g$ is transformed further by firing the
vertices $v_{1},v_{2},\ldots,v_{q}$. Since the sequence $\left( v_{1}%
,v_{2},\ldots,v_{q}\right) $ is legal for $g$, we thus conclude that these
vertices are active at the time of firing (in phase $2$). Hence, the activity
claim for the vertices fired in phase $2$ is proven. As we have explained,
this completes our proof of Lemma \ref{lem.chip.leg-concat1}.
\end{proof}
\begin{lemma}
\label{lem.chip.leg-concat2}Let $f:V\rightarrow\mathbb{Z}$ be a $\mathbb{Z}%
$-configuration. Let $u=\left( u_{1},u_{2},\ldots,u_{p}\right) $ be a legal
sequence for $f$ such that $\Delta u_{1}+\Delta u_{2}+\cdots+\Delta u_{p}=0$.
Let $k\in\mathbb{N}$. Then, the sequence $u^{\ast k}$ is legal for $f$.
\end{lemma}
\begin{proof}
[Proof of Lemma \ref{lem.chip.leg-concat2} (sketched).] We want to prove that%
\begin{equation}
\text{the sequence }u^{\ast k}\text{ is legal for }%
f.\label{pf.lem.chip.leg-concat2.goal}%
\end{equation}
We shall prove this by induction over $k$:
\textit{Induction base:} The sequence $u^{\ast0}=\left( {}\right) $ (the
empty sequence) is clearly legal for $f$. In other words,
(\ref{pf.lem.chip.leg-concat2.goal}) holds for $k=0$. This completes the
induction base.
\textit{Induction step:} Let $K\in\mathbb{N}$. Assume that
(\ref{pf.lem.chip.leg-concat2.goal}) holds for $k=K$. We must prove that
(\ref{pf.lem.chip.leg-concat2.goal}) holds for $k=K+1$.
We have assumed that (\ref{pf.lem.chip.leg-concat2.goal}) holds for $k=K$. In
other words, the sequence $u^{\ast K}$ is legal for $f$.
Let $g$ be the $\mathbb{Z}$-configuration obtained from $f$ by firing all
vertices in $u$. Thus,
\[
g=f-\Delta u_{1}-\Delta u_{2}-\cdots-\Delta u_{p}=f-\underbrace{\left( \Delta
u_{1}+\Delta u_{2}+\cdots+\Delta u_{p}\right) }_{=0}=f.
\]
Hence, the sequence $u^{\ast K}$ is legal for $g$ (since the sequence $u^{\ast
K}$ is legal for $f$). Thus, Lemma \ref{lem.chip.leg-concat1} (applied to
$v=u^{\ast K}$) shows that the sequence $u\ast u^{\ast K}$ is legal for $f$.
In other words, the sequence $u^{\ast\left( K+1\right) }$ is legal for $f$
(since $u^{\ast\left( K+1\right) }=u\ast u^{\ast K}$). In other words,
(\ref{pf.lem.chip.leg-concat2.goal}) holds for $k=K+1$. This completes the
induction step.
Thus, (\ref{pf.lem.chip.leg-concat2.goal}) is proven. This proves Lemma
\ref{lem.chip.leg-concat2}.
\end{proof}
\begin{lemma} \label{lem.chip.leg-repeat}
Let $f : V \to \ZZ$ be a $\ZZ$-configuration.
Let $\ell=\left( \ell_{1},\ell_{2},\ldots,\ell_{k}\right) $
be a legal sequence for $f$.
Let $i$ and $j$ be two elements of $\set{0, 1, \ldots, k}$ such that
$i < j$ and
\begin{equation}
f-\Delta\ell_{1}-\Delta\ell_{2}-\cdots-\Delta\ell_{i}=f-\Delta\ell_{1}%
-\Delta\ell_{2}-\cdots-\Delta\ell_{j}.\label{eq.lem.chip.leg-repeat.cond}%
\end{equation}
Then:
\textbf{(a)} For every $r\in\mathbb{N}$, the sequence $\left( \ell_{1}%
,\ell_{2},\ldots,\ell_{i}\right) \ast\left( \ell_{i+1},\ell_{i+2}%
,\ldots,\ell_{j}\right) ^{\ast r}$ is legal for $f$. (This is the sequence
which begins with $\ell_{1},\ell_{2},\ldots,\ell_{i}$ and then goes on
repeating the $j-i$ elements $\ell_{i+1},\ell_{i+2},\ldots,\ell_{j}$ for a
total of $r$ times.)
\textbf{(b)} There exist legal sequences (for $f$) of arbitrary length.
\end{lemma}
\begin{proof}
[Proof of Lemma \ref{lem.chip.leg-repeat} (sketched).] If we subtract
$f-\Delta\ell_{1}-\Delta\ell_{2}-\cdots-\Delta\ell_{i}$ from both sides of
(\ref{eq.lem.chip.leg-repeat.cond}), we obtain%
\[
0=-\Delta\ell_{i+1}-\Delta\ell_{i+2}-\cdots-\Delta\ell_{j}.
\]
Thus,%
\begin{equation}
\Delta\ell_{i+1}+\Delta\ell_{i+2}+\cdots+\Delta\ell_{j}%
=0.\label{pf.lem.chip.leg-repeat.zerosum}%
\end{equation}
\textbf{(a)} Let $r\in\mathbb{N}$. The sequence $\left( \ell_{1},\ell
_{2},\ldots,\ell_{k}\right) $ is legal for $f$. Thus, its prefix $\left(
\ell_{1},\ell_{2},\ldots,\ell_{i}\right) $ is also legal for $f$.
Let $g$ be the $\mathbb{Z}$-configuration obtained from $f$ by firing all
vertices in $\left( \ell_{1},\ell_{2},\ldots,\ell_{i}\right) $. Thus,
$g=f-\Delta\ell_{1}-\Delta\ell_{2}-\cdots-\Delta\ell_{i}$. Then, the sequence
$\left( \ell_{i+1},\ell_{i+2},\ldots,\ell_{j}\right) $ is legal for
$g$\ \ \ \ \footnote{\textit{Proof.} We need to show that for each
$p\in\left\{ 1,2,\ldots,j-i\right\} $, the vertex $\ell_{i+p}$ is active in
the $\mathbb{Z}$-configuration $g-\Delta\ell_{i+1}-\Delta\ell_{i+2}%
-\cdots-\Delta\ell_{i+p-1}$.
\par
So let $p\in\left\{ 1,2,\ldots,j-i\right\} $. Then, the vertex $\ell_{i+p}$
is active in the $\mathbb{Z}$-configuration $f-\Delta\ell_{1}-\Delta\ell
_{2}-\cdots-\Delta\ell_{i+p-1}$ (since the sequence $\left( \ell_{1},\ell
_{2},\ldots,\ell_{k}\right) $ is legal for $f$). In view of%
\begin{align*}
f-\Delta\ell_{1}-\Delta\ell_{2}-\cdots-\Delta\ell_{i+p-1} &
=\underbrace{\left( f-\Delta\ell_{1}-\Delta\ell_{2}-\cdots-\Delta\ell
_{i}\right) }_{=g}-\Delta\ell_{i+1}-\Delta\ell_{i+2}-\cdots-\Delta
\ell_{i+p-1}\\
& =g-\Delta\ell_{i+1}-\Delta\ell_{i+2}-\cdots-\Delta\ell_{i+p-1},
\end{align*}
this rewrites as follows: The vertex $\ell_{i+p}$ is active in the
$\mathbb{Z}$-configuration $g-\Delta\ell_{i+1}-\Delta\ell_{i+2}-\cdots
-\Delta\ell_{i+p-1}$. But this is precisely what we needed to show.}. Hence,
Lemma \ref{lem.chip.leg-concat2} (applied to $g$, $j-i$, $\left( \ell
_{i+1},\ell_{i+2},\ldots,\ell_{j}\right) $, $\ell_{i+h}$ and $r$ instead of
$f$, $p$, $u$, $u_{h}$ and $k$) shows that the sequence $\left( \ell
_{i+1},\ell_{i+2},\ldots,\ell_{j}\right) ^{\ast r}$ is legal for $g$ (because
of (\ref{pf.lem.chip.leg-repeat.zerosum})). Hence, Lemma
\ref{lem.chip.leg-concat1} (applied to $\left( \ell_{1},\ell_{2},\ldots