-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathuser-doc.html
135 lines (119 loc) · 7.96 KB
/
user-doc.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.org/TR/REC-html40/loose.dtd">
<!-- This document was created with Latte version 2.1 -->
<!-- For information on Latte, see http://www.latte.org/ -->
<html>
<head><meta name="generator" content="Latte 2.1"><title>Expressing Formulas</title></head>
<body bgcolor="ivory"><p><h1>Expressing formulas</h1>
<p>Here's how you can enter your formulas. It's almost but not quite
like ordinary math notation from the textbooks; there are differences
because you have to type into input boxes instead of writing things
out freehand. For instance, to express <i>x<sup>2</sup></i>+1 you type in
<code>x^2+1</code>.
<p><h2>Basics</h2>
<p>Adding and subtracting work as you'd expect: <code>x+5</code>, <code>1-x</code>.
<p>To multiply, use <code>*</code>: <code>7*x</code> means 7 times <i>x</i>.
<p>To divide, use <code>/</code>: <code>x/3</code> means <i>x</i> divided by 3.
<p><i>x <sup>n</sup></i> is written <code>x^n</code>.
<p>The square root of <i>x</i> is written <code>sqrt(x)</code>.
<p>Putting all this together, here's a bigger example, a solution to the
quadratic equation:<br><code>sqrt(b^2 - 4*a*c) / (2*a)</code>.
<p><h2>Reference Manual</h2>
<p><table align="center" width="95%" cellpadding="5" border="0"><tr><td><b>Feature</b></td>
<td><b>Syntax</b></td>
<td><b>Examples</b></td></tr> <tr><td>Numbers</td>
<td><code>1</code></td>
<td><dl><dt><code>42.5</code></dt></dl></td></tr> <tr><td>Variables</td>
<td><code>x</code></td>
<td><dl><dt><code>longvariablename</code></dt></dl></td></tr> <tr><td><i>x <sup>y</sup></i></td>
<td><code>x ^ y</code></td>
<td><dl><dt><code>3^2 = 9</code></dt><dt><code>2^2^3 = 2^8 = 256</code></dt></dl></td></tr> <tr><td>Multiply, divide</td>
<td><code>x * y</code></td>
<td><dl><dt><code>3*2 = 6</code></dt></dl></td></tr> <tr><td></td>
<td><code>x / y</code></td>
<td><dl><dt><code>3/2 = 1.5</code></dt></dl></td></tr> <tr><td>Add, subtract, negate</td>
<td><code>x + y</code></td>
<td><dl><dt><code>3+2 = 5</code></dt></dl></td></tr> <tr><td></td>
<td><code>x - y</code></td>
<td><dl><dt><code>3-2 = 1</code></dt></dl></td></tr> <tr><td></td>
<td><code>-x</code></td>
<td><dl><dt><code>-3 = 0-3</code></dt></dl></td></tr> <tr><td>Comparison</td>
<td><code>x < y</code></td>
<td><dl><dt><code>2<3 = 1</code></dt><dt><code>2<2 = 0</code></dt><dt><code>3<2 = 0</code></dt></dl></td></tr> <tr><td></td>
<td><code>x <= y</code></td>
<td><dl><dt><code>2<=3 = 1</code></dt><dt><code>2<=2 = 1</code></dt><dt><code>3<=2 = 0</code></dt></dl></td></tr> <tr><td></td>
<td><code>x = y</code></td>
<td><dl><dt><code>2=3 = 0</code></dt><dt><code>2=2 = 1</code></dt></dl></td></tr> <tr><td></td>
<td><code>x <> y</code></td>
<td><dl><dt><code>2<>3 = 1</code></dt><dt><code>2<>2 = 0</code></dt></dl></td></tr> <tr><td></td>
<td><code>x >= y</code></td>
<td><dl><dt>same as <code>y <= x</code></dt></dl></td></tr> <tr><td></td>
<td><code>x > y</code></td>
<td><dl><dt>same as <code>y < x</code></dt></dl></td></tr> <tr><td>Conjunction</td>
<td><code>x and y</code></td>
<td><dl><dt><code>1 and 1 = 1</code></dt><dt><code>1 and 0 = 0</code></dt><dt><code>0 and 0 = 0</code></dt></dl></td></tr> <tr><td>Disjunction</td>
<td><code>x or y</code></td>
<td><dl><dt><code>1 or 1 = 1</code></dt><dt><code>1 or 0 = 1</code></dt><dt><code>0 or 0 = 0</code></dt></dl></td></tr> <tr><td>Absolute value</td>
<td><code>abs(x)</code></td>
<td><dl><dt><code>abs(-2) = 2</code></dt><dt><code>abs(2) = 2</code></dt></dl></td></tr> <tr><td>Arc-cosine</td>
<td><code>acos(x)</code></td>
<td><dl><dt><code>acos(1) = 0</code></dt></dl></td></tr> <tr><td>Arc-sine</td>
<td><code>asin(x)</code></td>
<td><dl><dt><code>asin(1) = pi/2</code></dt></dl></td></tr> <tr><td>Arc-tangent</td>
<td><code>atan(x)</code></td>
<td><dl><dt><code>atan(1) = pi/4</code></dt></dl></td></tr> <tr><td></td>
<td><code>atan2(x, y)</code></td>
<td><dl><dt><code>atan(-1, -1) = -3 pi / 4</code></dt></dl></td></tr> <tr><td>Ceiling</td>
<td><code>ceil(x)</code></td>
<td><dl><dt><code>ceil(3.5) = 4</code></dt><dt><code>ceil(-3.5) = -3</code></dt></dl></td></tr> <tr><td>Cosine</td>
<td><code>cos(x)</code></td>
<td><dl><dt><code>cos(0) = 1</code></dt></dl></td></tr> <tr><td><i>e <sup>x</sup></i></td>
<td><code>exp(x)</code></td>
<td><dl><dt><code>exp(1) = 2.7182818284590451</code></dt></dl></td></tr> <tr><td>Floor</td>
<td><code>floor(x)</code></td>
<td><dl><dt><code>floor(3.5) = 3</code></dt><dt><code>floor(-3.5) = -4</code></dt></dl></td></tr> <tr><td>Conditional</td>
<td><code>if(x, y, z)</code></td>
<td><dl><dt><code>if(1, 42, 137) = 42</code></dt><dt><code>if(0, 42, 137) = 137</code></dt></dl></td></tr> <tr><td>Natural logarithm</td>
<td><code>log(x)</code></td>
<td><dl><dt><code>log(2.7182818284590451) = 1</code></dt></dl></td></tr> <tr><td>Maximum</td>
<td><code>max(x, y)</code></td>
<td><dl><dt><code>max(2, 3) = 3</code></dt></dl></td></tr> <tr><td>Minimum</td>
<td><code>min(x, y)</code></td>
<td><dl><dt><code>min(2, 3) = 2</code></dt></dl></td></tr> <tr><td>Rounding</td>
<td><code>round(x)</code></td>
<td><dl><dt><code>round(3.5) = 4</code></dt><dt><code>round(-3.5) = -4</code></dt></dl></td></tr> <tr><td>Sine</td>
<td><code>sin(x)</code></td>
<td><dl><dt><code>sin(pi/2) = 1</code></dt></dl></td></tr> <tr><td>Square root</td>
<td><code>sqrt(x)</code></td>
<td><dl><dt><code>sqrt(9) = 3</code></dt></dl></td></tr> <tr><td>Tangent</td>
<td><code>tan(x)</code></td>
<td><dl><dt><code>tan(pi/4) = 1</code> (approximately)</dt></dl></td></tr></table>
<p><h2>Pitfalls</h2>
<p>When you write <code>a+b*c</code>, should that mean to add <i>a</i> and <i>b</i>, and then multiply by <i>c</i>? Or is it add <i>a</i> to the result of
multiplying <i>b</i> and <i>c</i>? In other words, which goes first, the
<code>+</code> or the <code>*</code>? The answer is clear if you look at the
original math notation, <i>a+bc</i>: the <i>b</i> and <i>c</i> go together,
then we add their product to <i>a</i>. What if you wanted it the other
way? In pencil-and-paper math, that'd be <i>(a+b)c</i>, and you can do
the same thing at the computer as <code>(a+b)*c</code>. In general,
operators listed earlier in the reference manual above, like <code>*</code>, come before later ones, like <code>+</code>.
<p>Write <code>0 < x and x < 5</code>, rather than <code>0 < x < 5</code>. The
latter is interpreted as <code>(0 < x) < 5</code>, which first evaluates
<code>0 < x</code> yielding a truth value (1 or 0 for true or false), then
compares that truth value to 5. Don't do that!
<p><code>a/b*c</code> is not <code>a/(b*c)</code>. In handwritten math notation
you could write that with <code>a</code> above the division line and <code>b*c</code> vertically below it, but we can't do that here: everything is
horizontal and so the program can't tell if you meant <code>(a/b)*c</code>
or <code>a/(b*c)</code>. (It chooses the first, in fact.) When in doubt,
use parentheses.
<p>The program does not understand <code>sin x</code>, but requires <code>sin(x)</code> instead. This is because, if you said <code>sin x * y</code>, it'd
be uncertain whether you meant <code>sin(x * y)</code> or <code>(sin(x)) *
y</code>. So all the functions need parentheses; the lessened ambiguity is
worth the extra typing.
<p>While you can refer to real numbers like pi and e and the square root
of 2, this program can't represent them exactly; it only holds onto a
fixed number of digits. For example, computing <code>tan(pi/4)</code>
doesn't give 1 exactly, but 0.99999999999999989. You can get
completely bogus answers if your formulas are too sensitive to these
imprecisions; there isn't space here to treat this issue.</body>
</html>