-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfunctions-to-import-data.jl
221 lines (185 loc) · 10.3 KB
/
functions-to-import-data.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""
read_two_stage_data(input_folder)
Reads data from CSV files and returns sets and parameters.
# Arguments
- `input_folder::String`: The path to the folder containing the input CSV files.
# Returns
- `sets::Dict{Symbol, Any}`: A dictionary containing the sets P, SC, and G.
- `params::Dict{Symbol, Any}`: A dictionary containing the parameters `p_availability`, `p_demand`, `p_investment_cost`, `p_variable_cost`, `p_unit_capacity`, `p_sc_prob`, `p_rp_weight`, and `p_ens_cost`.
"""
function read_two_stage_data(input_folder)
# Files names
demand_file = joinpath(input_folder, "iGEP_Data_Demand.csv")
generation_file = joinpath(input_folder, "iGEP_Data_Generation.csv")
availability_file = joinpath(input_folder, "iGEP_Data_Availability.csv")
scenario_file = joinpath(input_folder, "iGEP_Data_Scenario.csv")
# Read data
demand_df = CSV.read(demand_file, DataFrames.DataFrame)
generation_df = CSV.read(generation_file, DataFrames.DataFrame)
availability_df = CSV.read(availability_file, DataFrames.DataFrame)
scenario_df = CSV.read(scenario_file, DataFrames.DataFrame)
# Sets
P = demand_df.p #time periods (e.g., hours)
SC = scenario_df.sc #scenarios
G = generation_df.g #generation units
sets = Dict(:P => P, :SC => SC, :G => G)
# Parameters
availability = Dict((row.sc, row.g, row.p) => row.pAviProf for row in eachrow(availability_df)) #availability profile [p.u.]
demand = Dict((row.p) => row.pDemand for row in eachrow(demand_df)) #demand per time period [MW]
investment_cost = Dict((row.g) => row.pInvCost for row in eachrow(generation_df)) #investment cost of generation units [kEUR/MW/year]
variable_cost = Dict((row.g) => row.pVarCost for row in eachrow(generation_df)) #variable cost of generation units [kEUR/MWh]
unit_capacity = Dict((row.g) => row.pUnitCap for row in eachrow(generation_df)) #capacity of generation units [MW]
sc_prob = Dict((row.sc) => row.pScProb for row in eachrow(scenario_df)) #probability of scenario [p.u.]
rp_weight = 365 #weight of representative period [days]
ens_cost = 0.180 #energy not supplied cost [kEUR/MWh]
params = Dict(
:availability => availability,
:demand => demand,
:investment_cost => investment_cost,
:variable_cost => variable_cost,
:unit_capacity => unit_capacity,
:sc_prob => sc_prob,
:rp_weight => rp_weight,
:ens_cost => ens_cost,
)
return sets, params
end
"""
read_multi_stage_data(input_folder)
Reads data from CSV files and returns sets and parameters.
# Arguments
- `input_folder::String`: The path to the folder containing the input CSV files.
# Returns
- `sets::Dict{Symbol, Any}`: A dictionary containing the sets P, ST, SC, and G.
- `params::Dict{Symbol, Any}`: A dictionary containing the parameters `availability`, `demand`, `investment_cost`, `variable_cost`, `unit_capacity`, `tree_node_prob`, `stochastic_paths`, `rp_weight`, `ens_cost`, and `discount_rate`.
"""
function read_multi_stage_data(input_folder)
# Files names
demand_file = joinpath(input_folder, "iGEP_Data_Demand.csv")
generation_file = joinpath(input_folder, "iGEP_Data_Generation.csv")
availability_file = joinpath(input_folder, "iGEP_Data_Availability.csv")
scenario_tree_file = joinpath(input_folder, "iGEP_Data_ScenarioTree.csv")
# Read data
demand_df = CSV.read(demand_file, DataFrames.DataFrame)
generation_df = CSV.read(generation_file, DataFrames.DataFrame)
availability_df = CSV.read(availability_file, DataFrames.DataFrame)
scenario_tree_df = CSV.read(scenario_tree_file, DataFrames.DataFrame)
# Sets
P = unique(demand_df.p) #time periods (e.g., hours)
ST = unique(scenario_tree_df.st) #stages
SC = unique(scenario_tree_df.sc) #scenarios
G = generation_df.g #generation units
sets = Dict(:P => P, :ST => ST, :SC => SC, :G => G)
# Parameters
availability = Dict((row.st, row.sc, row.g, row.p) => row.pAviProf for row in eachrow(availability_df)) #availability profile [p.u.]
demand = Dict((row.st, row.p) => row.pDemand for row in eachrow(demand_df)) #demand per time period [MW]
investment_cost = Dict((row.g) => row.pInvCost for row in eachrow(generation_df)) #investment cost of generation units [kEUR/MW/year]
variable_cost = Dict((row.g) => row.pVarCost for row in eachrow(generation_df)) #variable cost of generation units [kEUR/MWh]
unit_capacity = Dict((row.g) => row.pUnitCap for row in eachrow(generation_df)) #capacity of generation units [MW]
tree_node_prob = Dict((row.st, row.sc) => row.pNodeProb for row in eachrow(scenario_tree_df)) #probability of scenario [p.u.]
st_order = Dict(value => index for (index, value) in enumerate(ST)) #stage order
rp_weight = 365 #weight of representative period [days]
ens_cost = 0.18 #energy not supplied cost [kEUR/MWh]
discount_rate = 0.05 #discount rate
stochastic_paths = Dict(
(st, sc) => get_stochastic_path_to_node(scenario_tree_df, st, sc) for st in ST for sc in SC
)
params = Dict(
:availability => availability,
:demand => demand,
:investment_cost => investment_cost,
:variable_cost => variable_cost,
:unit_capacity => unit_capacity,
:tree_node_prob => tree_node_prob,
:stochastic_paths => stochastic_paths,
:st_order => st_order,
:rp_weight => rp_weight,
:ens_cost => ens_cost,
:discount_rate => discount_rate,
)
return sets, params
end
"""
Function to find the stochastic path from the root to a given node in the scenario tree.
Parameters:
- scenario_tree (DataFrame): The scenario tree data.
- stage (String): The stage of the target node.
- scenario (String): The scenario identifier of the target node.
Returns:
- path (Vector{Tuple{String, String}}): A list of tuples, where each tuple represents a node in the path,
formatted as (stage, scenario).
"""
function get_stochastic_path_to_node(scenario_tree, stage, scenario)
# Initialize the path list
path = []
# Find the target node
target_node = filter(row -> row[:st] == stage && row[:sc] == scenario, scenario_tree)
# Check if the target node exists
if isempty(target_node)
return push!(path, ("empty", "empty"))
end
# Loop to trace back to the root from the target node
while target_node[1, :sc_ancestor] != "none"
# Extract details of the current node
node_info = target_node[1, :]
pushfirst!(path, (node_info[:st], node_info[:sc]))
# Move to the ancestor node
ancestor_scenario = node_info[:sc_ancestor]
target_node = filter(row -> row[:sc] == ancestor_scenario, scenario_tree)
end
# Add the root node to the path
root_node = filter(row -> row[:sc] == "root", scenario_tree)[1, :]
pushfirst!(path, (root_node[:st], root_node[:sc]))
return path
end
"""
read_aro_data(input_folder)
Reads data from CSV files and returns sets and parameters.
# Arguments
- `input_folder::String`: The path to the folder containing the input CSV files.
# Returns
- `sets::Dict{Symbol, Any}`: A dictionary containing the sets P, and G.
- `params::Dict{Symbol, Any}`: A dictionary containing the parameters `p_availability`, `p_demand`, `p_investment_cost`, `p_variable_cost`, `p_unit_capacity`, `p_rp_weight`, and `p_ens_cost`.
"""
function read_aro_data(input_folder)
# Files names
demand_file = joinpath(input_folder, "iGEP_Data_Demand.csv")
generation_file = joinpath(input_folder, "iGEP_Data_Generation.csv")
availability_file = joinpath(input_folder, "iGEP_Data_Availability.csv")
# Read data
demand_df = CSV.read(demand_file, DataFrames.DataFrame)
generation_df = CSV.read(generation_file, DataFrames.DataFrame)
availability_df = CSV.read(availability_file, DataFrames.DataFrame)
# Sets
P = demand_df.p #time periods (e.g., hours)
G = generation_df.g #generation units
sets = Dict(:P => P, :G => G)
# Parameters
max_availability = Dict((row.g, row.p) => row.pMaxAviProf for row in eachrow(availability_df)) #maximum availability profile [p.u.]
min_availability = Dict((row.g, row.p) => row.pMinAviProf for row in eachrow(availability_df)) #minimum availability profile [p.u.]
demand = Dict((row.p) => row.pDemand for row in eachrow(demand_df)) #demand per time period [MW]
investment_cost = Dict((row.g) => row.pInvCost for row in eachrow(generation_df)) #investment cost of generation units [kEUR/MW/year]
variable_cost = Dict((row.g) => row.pVarCost for row in eachrow(generation_df)) #variable cost of generation units [kEUR/MWh]
unit_capacity = Dict((row.g) => row.pUnitCap for row in eachrow(generation_df)) #capacity of generation units [MW]
is_renewable = Dict((row.g) => row.pIsRenew for row in eachrow(generation_df)) #renewable generation units (1: renewable, 0: non-renewable)
availability_factor = Dict((row.g) => row.pAvaiFactor for row in eachrow(generation_df)) #generation availability factor [p.u.]
rp_weight = 365 #weight of representative period [days]
ens_cost = 0.180 #energy not supplied cost [kEUR/MWh]
exc_cost = 0.180 #excess cost [kEUR/MWh]
uncertainty_budget = 0.5 #uncertainty budget
params = Dict(
:max_availability => max_availability,
:min_availability => min_availability,
:demand => demand,
:investment_cost => investment_cost,
:variable_cost => variable_cost,
:unit_capacity => unit_capacity,
:is_renewable => is_renewable,
:availability_factor => availability_factor,
:rp_weight => rp_weight,
:ens_cost => ens_cost,
:exc_cost => exc_cost,
:uncertainty_budget => uncertainty_budget,
)
return sets, params
end