-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvm.c
541 lines (455 loc) · 12.6 KB
/
vm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
#include "param.h"
#include "types.h"
#include "defs.h"
#include "x86.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "elf.h"
extern char data[]; // defined by kernel.ld
pde_t *kpgdir; // for use in scheduler()
// Set up CPU's kernel segment descriptors.
// Run once on entry on each CPU.
void
seginit(void)
{
struct cpu *c;
// Map "logical" addresses to virtual addresses using identity map.
// Cannot share a CODE descriptor for both kernel and user
// because it would have to have DPL_USR, but the CPU forbids
// an interrupt from CPL=0 to DPL=3.
c = &cpus[cpuid()];
c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
lgdt(c->gdt, sizeof(c->gdt));
}
// Return the address of the PTE in page table pgdir
// that corresponds to virtual address va. If alloc!=0,
// create any required page table pages.
static pte_t *
walkpgdir(pde_t *pgdir, const void *va, int alloc)
{
pde_t *pde;
pte_t *pgtab;
pde = &pgdir[PDX(va)];
if(*pde & PTE_P){
pgtab = (pte_t*)P2V(PTE_ADDR(*pde));
} else {
if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
return 0;
// Make sure all those PTE_P bits are zero.
memset(pgtab, 0, PGSIZE);
// The permissions here are overly generous, but they can
// be further restricted by the permissions in the page table
// entries, if necessary.
*pde = V2P(pgtab) | PTE_P | PTE_W | PTE_U;
}
return &pgtab[PTX(va)];
}
uint
num_of_PhysPages(pde_t* pgdir, uint size)
{
int count = 0; //use PTE_P (Present bit)
uint va = 0;
char *a, *last;
pte_t *pte;
pde_t *pde = &pgdir[PDX(va)];
uint pa = (uint)P2V(PTE_ADDR(*pde));
a = (char*)PGROUNDDOWN(va);
last = (char*)PGROUNDDOWN((va) + size - 1);
for(;;){
if((pte = walkpgdir(pgdir, a, 0)) == 0)
;
else if(*pte & PTE_P)
count++;
//*pte = pa | PTE_P;
if(a == last)
break;
a += PGSIZE;
pa += PGSIZE;
}
return count;
}
uint
num_of_PTPages(pde_t* pgdir, uint size)
{
int count = 0; //use PTE_P (Present bit)
for(int i = 0; i < NPDENTRIES; i++){
if(pgdir[i] & PTE_P){
count++;
}
}
return count + 1;
}
// Create PTEs for virtual addresses starting at va that refer to
// physical addresses starting at pa. va and size might not
// be page-aligned.
static int
mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
{
char *a, *last;
pte_t *pte;
a = (char*)PGROUNDDOWN((uint)va);
last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
for(;;){
if((pte = walkpgdir(pgdir, a, 1)) == 0)
return -1;
if(*pte & PTE_P)
panic("remap");
*pte = pa | perm | PTE_P;
if(a == last)
break;
a += PGSIZE;
pa += PGSIZE;
}
return 0;
}
// There is one page table per process, plus one that's used when
// a CPU is not running any process (kpgdir). The kernel uses the
// current process's page table during system calls and interrupts;
// page protection bits prevent user code from using the kernel's
// mappings.
//
// setupkvm() and exec() set up every page table like this:
//
// 0..KERNBASE: user memory (text+data+stack+heap), mapped to
// phys memory allocated by the kernel
// KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space)
// KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data)
// for the kernel's instructions and r/o data
// data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP,
// rw data + free physical memory
// 0xfe000000..0: mapped direct (devices such as ioapic)
//
// The kernel allocates physical memory for its heap and for user memory
// between V2P(end) and the end of physical memory (PHYSTOP)
// (directly addressable from end..P2V(PHYSTOP)).
// This table defines the kernel's mappings, which are present in
// every process's page table.
static struct kmap {
void *virt;
uint phys_start;
uint phys_end;
int perm;
} kmap[] = {
{ (void*)KERNBASE, 0, EXTMEM, PTE_W}, // I/O space
{ (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0}, // kern text+rodata
{ (void*)data, V2P(data), PHYSTOP, PTE_W}, // kern data+memory
{ (void*)DEVSPACE, DEVSPACE, 0, PTE_W}, // more devices
};
// Set up kernel part of a page table.
pde_t*
setupkvm(void)
{
pde_t *pgdir;
struct kmap *k;
if((pgdir = (pde_t*)kalloc()) == 0)
return 0;
memset(pgdir, 0, PGSIZE);
if (P2V(PHYSTOP) > (void*)DEVSPACE)
panic("PHYSTOP too high");
for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
if(mappages(pgdir, k->virt, k->phys_end - k->phys_start,
(uint)k->phys_start, k->perm) < 0) {
freevm(pgdir);
return 0;
}
return pgdir;
}
// Allocate one page table for the machine for the kernel address
// space for scheduler processes.
void
kvmalloc(void)
{
kpgdir = setupkvm();
switchkvm();
}
// Switch h/w page table register to the kernel-only page table,
// for when no process is running.
void
switchkvm(void)
{
lcr3(V2P(kpgdir)); // switch to the kernel page table
}
// Switch TSS and h/w page table to correspond to process p.
void
switchuvm(struct proc *p)
{
if(p == 0)
panic("switchuvm: no process");
if(p->kstack == 0)
panic("switchuvm: no kstack");
if(p->pgdir == 0)
panic("switchuvm: no pgdir");
pushcli();
mycpu()->gdt[SEG_TSS] = SEG16(STS_T32A, &mycpu()->ts,
sizeof(mycpu()->ts)-1, 0);
mycpu()->gdt[SEG_TSS].s = 0;
mycpu()->ts.ss0 = SEG_KDATA << 3;
mycpu()->ts.esp0 = (uint)p->kstack + KSTACKSIZE;
// setting IOPL=0 in eflags *and* iomb beyond the tss segment limit
// forbids I/O instructions (e.g., inb and outb) from user space
mycpu()->ts.iomb = (ushort) 0xFFFF;
ltr(SEG_TSS << 3);
lcr3(V2P(p->pgdir)); // switch to process's address space
popcli();
}
// Load the initcode into address 0 of pgdir.
// sz must be less than a page.
void
inituvm(pde_t *pgdir, char *init, uint sz)
{
char *mem;
if(sz >= PGSIZE)
panic("inituvm: more than a page");
mem = kalloc();
memset(mem, 0, PGSIZE);
mappages(pgdir, 0, PGSIZE, V2P(mem), PTE_W|PTE_U);
memmove(mem, init, sz);
}
// Load a program segment into pgdir. addr must be page-aligned
// and the pages from addr to addr+sz must already be mapped.
int
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
uint i, pa, n;
pte_t *pte;
if((uint) addr % PGSIZE != 0)
panic("loaduvm: addr must be page aligned");
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)
panic("loaduvm: address should exist");
pa = PTE_ADDR(*pte);
if(sz - i < PGSIZE)
n = sz - i;
else
n = PGSIZE;
if(readi(ip, P2V(pa), offset+i, n) != n)
return -1;
}
return 0;
}
// Allocate page tables and physical memory to grow process from oldsz to
// newsz, which need not be page aligned. Returns new size or 0 on error.
int
allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
{
char *mem;
uint a;
if(newsz >= KERNBASE)
return 0;
if(newsz < oldsz)
return oldsz;
a = PGROUNDUP(oldsz);
for(; a < newsz; a += PGSIZE){
mem = kalloc();
if(mem == 0){
cprintf("allocuvm out of memory\n");
deallocuvm(pgdir, newsz, oldsz);
return 0;
}
memset(mem, 0, PGSIZE);
if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){
cprintf("allocuvm out of memory (2)\n");
deallocuvm(pgdir, newsz, oldsz);
kfree(mem);
return 0;
}
}
return newsz;
}
// Deallocate user pages to bring the process size from oldsz to
// newsz. oldsz and newsz need not be page-aligned, nor does newsz
// need to be less than oldsz. oldsz can be larger than the actual
// process size. Returns the new process size.
int
deallocuvm(pde_t *pgdir, uint oldsz, uint newsz)
{
pte_t *pte;
uint a, pa;
if(newsz >= oldsz)
return oldsz;
a = PGROUNDUP(newsz);
for(; a < oldsz; a += PGSIZE){
pte = walkpgdir(pgdir, (char*)a, 0);
if(!pte)
a = PGADDR(PDX(a) + 1, 0, 0) - PGSIZE;
else if((*pte & PTE_P) != 0){
pa = PTE_ADDR(*pte);
if(pa == 0)
panic("kfree");
char *v = P2V(pa);
kfree(v);
*pte = 0;
}
}
return newsz;
}
// Free a page table and all the physical memory pages
// in the user part.
void
freevm(pde_t *pgdir)
{
uint i;
if(pgdir == 0)
panic("freevm: no pgdir");
deallocuvm(pgdir, KERNBASE, 0);
for(i = 0; i < NPDENTRIES; i++){
if(pgdir[i] & PTE_P){
char * v = P2V(PTE_ADDR(pgdir[i]));
kfree(v);
}
}
kfree((char*)pgdir);
}
// Clear PTE_U on a page. Used to create an inaccessible
// page beneath the user stack.
void
clearpteu(pde_t *pgdir, char *uva)
{
pte_t *pte;
pte = walkpgdir(pgdir, uva, 0);
if(pte == 0)
panic("clearpteu");
*pte &= ~PTE_U;
}
// Given a parent process's page table, create a copy
// of it for a child.
pde_t*
copyuvm(pde_t *pgdir, uint sz)
{
pte_t *pte;
uint flags, pa;
//char *mem;
pde_t *d = setupkvm();
if(d == 0)
return 0;
for(uint i = 0; i < sz; i = i + PGSIZE)
{
if((pte = walkpgdir(pgdir, (void *) i, 0)) == 0)
panic("copyuvm: pte should exist");
if(!(*pte & PTE_P))
panic("copyuvm: page not present");
*pte = (~ PTE_W) & *pte; // read only parent page
flags = PTE_FLAGS(*pte);
pa = PTE_ADDR(*pte);
/*flags = PTE_FLAGS(*pte);
if((mem = kalloc()) == 0)
goto bad;
memmove(mem, (char*)P2V(pa), PGSIZE);
*/
if(mappages(d, (void*)i, PGSIZE, pa, flags) < 0)
{
//kfree(mem);
freevm(d);
lcr3(V2P(pgdir)); // flush tlb
return 0;
}
increment_refC(pa);
}
lcr3(V2P(pgdir)); // flush tlb
return d;
}
//PAGEBREAK!
// Map user virtual address to kernel address.
char*
uva2ka(pde_t *pgdir, char *uva)
{
pte_t *pte;
pte = walkpgdir(pgdir, uva, 0);
if((*pte & PTE_P) == 0)
return 0;
if((*pte & PTE_U) == 0)
return 0;
return (char*)P2V(PTE_ADDR(*pte));
}
// Copy len bytes from p to user address va in page table pgdir.
// Most useful when pgdir is not the current page table.
// uva2ka ensures this only works for PTE_U pages.
int
copyout(pde_t *pgdir, uint va, void *p, uint len)
{
char *buf, *pa0;
uint n, va0;
buf = (char*)p;
while(len > 0){
va0 = (uint)PGROUNDDOWN(va);
pa0 = uva2ka(pgdir, (char*)va0);
if(pa0 == 0)
return -1;
n = PGSIZE - (va - va0);
if(n > len)
n = len;
memmove(pa0 + (va - va0), buf, n);
len -= n;
buf += n;
va = va0 + PGSIZE;
}
return 0;
}
//PAGEBREAK!
// Blank page.
//PAGEBREAK!
// Blank page.
//PAGEBREAK!
// Blank page.
// COW trap handling
void COW_handle_pgfault(uint err_code)
{
uint va = rcr2(); // get va
//errors taken care of
if(myproc() == 0) // null process
{
cprintf("Error in COW_handle_pgfault: No user process from cpu %d, cr2=0x%x\n", cpuid(), va); //va = rcr2()
panic("Page_Fault");
}
pte_t *pte;
pte = walkpgdir(myproc()->pgdir, (void*)va, 0);
// page has write perm_S enabled
if(PTE_W & *pte)
{
cprintf("error code: %x, addr 0x%x\n", err_code, va);
panic("Error in COW_handle_pgfault: Already writeable");
}
if( pte == 0 || !(*pte) || va >= KERNBASE || !PTE_U || ! PTE_P )
{
myproc()->killed = 1;
cprintf("Error in COW_handle_pgfault: Illegal (virtual) addr on cpu %d address 0x%x, killing proc %s id (pid) %d\n", cpuid(), va, myproc()->name, myproc()->pid);
return;
}
uint pa = PTE_ADDR(*pte); //get physical addr
uint refC = get_refC(pa); // get ref. count of curr. page
if(refC < 1)
{
panic("Error in COW_handle_pgfault: Incorrect Reference Count");
}
else if(refC == 1)
{
*pte = PTE_W | *pte; // writable now since alone
//flush tlb because PTEs changed
lcr3(V2P(myproc()->pgdir));
return;
}
else //refC > 1
{
//try for new page
char* mem = kalloc();
if(mem != 0) // page available
{
memmove(mem, (char*)P2V(pa), PGSIZE); // from line 387
// new PTE to new page
*pte = PTE_U | PTE_W | PTE_P | V2P(mem);
decrement_refC(pa);
//flush tlb because PTEs changed
lcr3(V2P(myproc()->pgdir));
return;
}
myproc()->killed = 1;
cprintf("Error in COW_handle_pgfault: Out of memory, kill proc %s with pid %d\n", myproc()->name, myproc()->pid);
return;
}
//flush tlb because PTEs changed
lcr3(V2P(myproc()->pgdir));
}