forked from achlipala/frap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHoareLogic_template.v
473 lines (400 loc) · 13.1 KB
/
HoareLogic_template.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
Require Import Frap.
(** * Syntax and semantics of a simple imperative language *)
Inductive exp :=
| Const (n : nat)
| Var (x : string)
| Read (e1 : exp)
| Plus (e1 e2 : exp)
| Minus (e1 e2 : exp)
| Mult (e1 e2 : exp).
Inductive bexp :=
| Equal (e1 e2 : exp)
| Less (e1 e2 : exp).
Definition heap := fmap nat nat.
Definition valuation := fmap var nat.
Definition assertion := heap -> valuation -> Prop.
Inductive cmd :=
| Skip
| Assign (x : var) (e : exp)
| Write (e1 e2 : exp)
| Seq (c1 c2 : cmd)
| If_ (be : bexp) (then_ else_ : cmd)
| While_ (inv : assertion) (be : bexp) (body : cmd)
| Assert (a : assertion).
(* Shorthand notation for looking up in a finite map, returning zero if the key
* is not found *)
Notation "m $! k" := (match m $? k with Some n => n | None => O end) (at level 30).
(* Start of expression semantics: meaning of expressions *)
Fixpoint eval (e : exp) (h : heap) (v : valuation) : nat :=
match e with
| Const n => n
| Var x => v $! x
| Read e1 => h $! eval e1 h v
| Plus e1 e2 => eval e1 h v + eval e2 h v
| Minus e1 e2 => eval e1 h v - eval e2 h v
| Mult e1 e2 => eval e1 h v * eval e2 h v
end.
(* Meaning of Boolean expressions *)
Fixpoint beval (b : bexp) (h : heap) (v : valuation) : bool :=
match b with
| Equal e1 e2 => if eval e1 h v ==n eval e2 h v then true else false
| Less e1 e2 => if eval e2 h v <=? eval e1 h v then false else true
end.
(* A big-step operational semantics for commands *)
Inductive exec : heap -> valuation -> cmd -> heap -> valuation -> Prop :=
| ExSkip : forall h v,
exec h v Skip h v
| ExAssign : forall h v x e,
exec h v (Assign x e) h (v $+ (x, eval e h v))
| ExWrite : forall h v e1 e2,
exec h v (Write e1 e2) (h $+ (eval e1 h v, eval e2 h v)) v
| ExSeq : forall h1 v1 c1 h2 v2 c2 h3 v3,
exec h1 v1 c1 h2 v2
-> exec h2 v2 c2 h3 v3
-> exec h1 v1 (Seq c1 c2) h3 v3
| ExIfTrue : forall h1 v1 b c1 c2 h2 v2,
beval b h1 v1 = true
-> exec h1 v1 c1 h2 v2
-> exec h1 v1 (If_ b c1 c2) h2 v2
| ExIfFalse : forall h1 v1 b c1 c2 h2 v2,
beval b h1 v1 = false
-> exec h1 v1 c2 h2 v2
-> exec h1 v1 (If_ b c1 c2) h2 v2
| ExWhileFalse : forall I h v b c,
beval b h v = false
-> exec h v (While_ I b c) h v
| ExWhileTrue : forall I h1 v1 b c h2 v2 h3 v3,
beval b h1 v1 = true
-> exec h1 v1 c h2 v2
-> exec h2 v2 (While_ I b c) h3 v3
-> exec h1 v1 (While_ I b c) h3 v3
(* Assertions execute only when they are true. They provide a way to embed
* proof obligations within programs. *)
| ExAssert : forall h v (a : assertion),
a h v
-> exec h v (Assert a) h v.
(** * Hoare logic *)
Inductive hoare_triple : assertion -> cmd -> assertion -> Prop :=
| HtSkip : forall P, hoare_triple P Skip P
| HtAssign : forall (P : assertion) x e,
hoare_triple P (Assign x e) (fun h v => exists v', P h v' /\ v = v' $+ (x, eval e h v'))
| HtWrite : forall (P : assertion) (e1 e2 : exp),
hoare_triple P (Write e1 e2) (fun h v => exists h', P h' v /\ h = h' $+ (eval e1 h' v, eval e2 h' v))
| HtSeq : forall (P Q R : assertion) c1 c2,
hoare_triple P c1 Q
-> hoare_triple Q c2 R
-> hoare_triple P (Seq c1 c2) R
| HtIf : forall (P Q1 Q2 : assertion) b c1 c2,
hoare_triple (fun h v => P h v /\ beval b h v = true) c1 Q1
-> hoare_triple (fun h v => P h v /\ beval b h v = false) c2 Q2
-> hoare_triple P (If_ b c1 c2) (fun h v => Q1 h v \/ Q2 h v)
| HtWhile : forall (I P : assertion) b c,
(forall h v, P h v -> I h v)
-> hoare_triple (fun h v => I h v /\ beval b h v = true) c I
-> hoare_triple P (While_ I b c) (fun h v => I h v /\ beval b h v = false)
| HtAssert : forall P I : assertion,
(forall h v, P h v -> I h v)
-> hoare_triple P (Assert I) P
| HtConsequence : forall (P Q P' Q' : assertion) c,
hoare_triple P c Q
-> (forall h v, P' h v -> P h v)
-> (forall h v, Q h v -> Q' h v)
-> hoare_triple P' c Q'.
Lemma hoare_triple_big_step_while: forall (I : assertion) b c,
(forall h v h' v', exec h v c h' v'
-> I h v
-> beval b h v = true
-> I h' v')
-> forall h v h' v', exec h v (While_ I b c) h' v'
-> I h v
-> I h' v' /\ beval b h' v' = false.
Proof.
induct 2; eauto.
Qed.
Theorem hoare_triple_big_step : forall pre c post,
hoare_triple pre c post
-> forall h v h' v', exec h v c h' v'
-> pre h v
-> post h' v'.
Proof.
induct 1; eauto; invert 1; eauto.
simplify.
eapply hoare_triple_big_step_while; eauto.
Qed.
(* BEGIN syntax macros that won't be explained *)
Coercion Const : nat >-> exp.
Coercion Var : string >-> exp.
Notation "*[ e ]" := (Read e) : cmd_scope.
Infix "+" := Plus : cmd_scope.
Infix "-" := Minus : cmd_scope.
Infix "*" := Mult : cmd_scope.
Infix "=" := Equal : cmd_scope.
Infix "<" := Less : cmd_scope.
Definition set (dst src : exp) : cmd :=
match dst with
| Read dst' => Write dst' src
| Var dst' => Assign dst' src
| _ => Assign "Bad LHS" 0
end.
Infix "<-" := set (no associativity, at level 70) : cmd_scope.
Infix ";;" := Seq (right associativity, at level 75) : cmd_scope.
Notation "'when' b 'then' then_ 'else' else_ 'done'" := (If_ b then_ else_) (at level 75, b at level 0).
Notation "{{ I }} 'while' b 'loop' body 'done'" := (While_ I b body) (at level 75).
Notation "'assert' {{ I }}" := (Assert I) (at level 75).
Delimit Scope cmd_scope with cmd.
(* END macros *)
(* We should draw some attention to the next notation, which defines special
* lambdas for writing assertions. *)
Notation "h & v ~> e" := (fun h v => e%nat%type) (at level 85, v at level 0).
(* And here's the classic notation for Hoare triples. *)
Notation "{{ P }} c {{ Q }}" := (hoare_triple P c%cmd Q) (at level 90, c at next level).
(* Special case of consequence: keeping the precondition; only changing the
* postcondition. *)
Lemma HtStrengthenPost : forall (P Q Q' : assertion) c,
hoare_triple P c Q
-> (forall h v, Q h v -> Q' h v)
-> hoare_triple P c Q'.
Proof.
simplify; eapply HtConsequence; eauto.
Qed.
(* Finally, three tactic definitions that we won't explain. The overall tactic
* [ht] tries to prove Hoare triples, essentially by rote application of the
* rules. Some other obligations are generated, generally of implications
* between assertions, and [ht] also makes a best effort to solve those. *)
Ltac ht1 :=
match goal with
| [ |- {{ _ }} _ {{ ?P }} ] =>
tryif is_evar P then
apply HtSkip || apply HtAssign || apply HtWrite || eapply HtSeq
|| eapply HtIf || eapply HtWhile || eapply HtAssert
else
eapply HtStrengthenPost
end.
Ltac t := cbv beta; propositional; subst;
repeat match goal with
| [ H : ex _ |- _ ] => invert H; propositional; subst
end;
simplify;
repeat match goal with
| [ _ : context[?a <=? ?b] |- _ ] => destruct (a <=? b); try discriminate
| [ H : ?E = ?E |- _ ] => clear H
end; simplify; propositional; auto; try equality; try linear_arithmetic.
Ltac ht := simplify; repeat ht1; t.
(** * Some examples of verified programs *)
(** ** Swapping the values in two variables *)
Theorem swap_ok : forall a b,
{{_&v ~> v $! "x" = a /\ v $! "y" = b}}
"tmp" <- "x";;
"x" <- "y";;
"y" <- "tmp"
{{_&v ~> v $! "x" = b /\ v $! "y" = a}}.
Proof.
Admitted.
(** ** Computing the maximum of two variables *)
Theorem max_ok : forall a b,
{{_&v ~> v $! "x" = a /\ v $! "y" = b}}
when "x" < "y" then
"m" <- "y"
else
"m" <- "x"
done
{{_&v ~> v $! "m" = max a b}}.
Proof.
Admitted.
(** ** Iterative factorial *)
Theorem fact_ok : forall n,
{{_&v ~> v $! "n" = n}}
"acc" <- 1;;
{{_&v ~> True}}
while 0 < "n" loop
"acc" <- "acc" * "n";;
"n" <- "n" - 1
done
{{_&v ~> v $! "acc" = fact n}}.
Proof.
Admitted.
(** ** Selection sort *)
(* This is our one example of a program reading/writing memory, which holds the
* representation of an array that we want to sort in-place. *)
(* One simple lemma turns out to be helpful to guide [eauto] properly. *)
Lemma leq_f : forall A (m : fmap A nat) x y,
x = y
-> m $! x <= m $! y.
Proof.
ht.
Qed.
Local Hint Resolve leq_f : core.
Local Hint Extern 1 (@eq nat _ _) => linear_arithmetic : core.
Local Hint Extern 1 (_ < _) => linear_arithmetic : core.
Local Hint Extern 1 (_ <= _) => linear_arithmetic : core.
(* We also register [linear_arithmetic] as a step to try during proof search. *)
Theorem selectionSort_ok :
{{_&_ ~> True}}
"i" <- 0;;
{{h&v ~> True}}
while "i" < "n" loop
"j" <- "i"+1;;
"best" <- "i";;
{{h&v ~> True}}
while "j" < "n" loop
when *["a" + "j"] < *["a" + "best"] then
"best" <- "j"
else
Skip
done;;
"j" <- "j" + 1
done;;
"tmp" <- *["a" + "best"];;
*["a" + "best"] <- *["a" + "i"];;
*["a" + "i"] <- "tmp";;
"i" <- "i" + 1
done
{{h&v ~> forall i j, i < j < v $! "n" -> h $! (v $! "a" + i) <= h $! (v $! "a" + j)}}.
Proof.
Admitted.
(** * An alternative correctness theorem for Hoare logic, with small-step semantics *)
Inductive step : heap * valuation * cmd -> heap * valuation * cmd -> Prop :=
| StAssign : forall h v x e,
step (h, v, Assign x e) (h, v $+ (x, eval e h v), Skip)
| StWrite : forall h v e1 e2,
step (h, v, Write e1 e2) (h $+ (eval e1 h v, eval e2 h v), v, Skip)
| StStepSkip : forall h v c,
step (h, v, Seq Skip c) (h, v, c)
| StStepRec : forall h1 v1 c1 h2 v2 c1' c2,
step (h1, v1, c1) (h2, v2, c1')
-> step (h1, v1, Seq c1 c2) (h2, v2, Seq c1' c2)
| StIfTrue : forall h v b c1 c2,
beval b h v = true
-> step (h, v, If_ b c1 c2) (h, v, c1)
| StIfFalse : forall h v b c1 c2,
beval b h v = false
-> step (h, v, If_ b c1 c2) (h, v, c2)
| StWhileFalse : forall I h v b c,
beval b h v = false
-> step (h, v, While_ I b c) (h, v, Skip)
| StWhileTrue : forall I h v b c,
beval b h v = true
-> step (h, v, While_ I b c) (h, v, Seq c (While_ I b c))
| StAssert : forall h v (a : assertion),
a h v
-> step (h, v, Assert a) (h, v, Skip).
Local Hint Constructors step : core.
Definition trsys_of (st : heap * valuation * cmd) := {|
Initial := {st};
Step := step
|}.
Definition unstuck (st : heap * valuation * cmd) :=
snd st = Skip
\/ exists st', step st st'.
Lemma hoare_triple_unstuck : forall P c Q,
{{P}} c {{Q}}
-> forall h v, P h v
-> unstuck (h, v, c).
Proof.
induct 1; unfold unstuck; simplify; propositional; eauto.
apply IHhoare_triple1 in H1.
unfold unstuck in H1; simplify; first_order; subst; eauto.
cases x.
cases p.
eauto.
cases (beval b h v); eauto.
cases (beval b h v); eauto.
apply H0 in H2.
apply IHhoare_triple in H2.
unfold unstuck in H2; simplify; first_order.
Qed.
Lemma hoare_triple_Skip : forall P Q,
{{P}} Skip {{Q}}
-> forall h v, P h v -> Q h v.
Proof.
induct 1; auto.
Qed.
Lemma hoare_triple_step : forall P c Q,
{{P}} c {{Q}}
-> forall h v h' v' c',
step (h, v, c) (h', v', c')
-> P h v
-> {{h''&v'' ~> h'' = h' /\ v'' = v'}} c' {{Q}}.
Proof.
induct 1.
invert 1.
invert 1; ht; eauto.
invert 1; ht; eauto.
invert 1; simplify.
eapply HtConsequence; eauto.
propositional; subst.
eapply hoare_triple_Skip; eauto.
econstructor; eauto.
invert 1; simplify.
eapply HtConsequence; eauto; equality.
eapply HtConsequence; eauto; equality.
invert 1; simplify.
eapply HtConsequence with (P := h'' & v'' ~> h'' = h' /\ v'' = v').
apply HtSkip.
auto.
simplify; propositional; subst; eauto.
econstructor.
eapply HtConsequence; eauto.
simplify; propositional; subst; eauto.
econstructor; eauto.
invert 1; simplify.
eapply HtConsequence; eauto.
econstructor.
simplify; propositional; subst; eauto.
simplify.
eapply HtConsequence.
eapply IHhoare_triple; eauto.
simplify; propositional; subst; eauto.
auto.
Qed.
Theorem hoare_triple_invariant : forall P c Q h v,
{{P}} c {{Q}}
-> P h v
-> invariantFor (trsys_of (h, v, c)) unstuck.
Proof.
simplify.
apply invariant_weaken with (invariant1 := fun st => {{h&v ~> h = fst (fst st)
/\ v = snd (fst st)}}
snd st
{{_&_ ~> True}}).
apply invariant_induction; simplify.
propositional; subst; simplify.
eapply HtConsequence; eauto.
equality.
cases s.
cases s'.
cases p.
cases p0.
simplify.
eapply hoare_triple_step; eauto.
simplify; auto.
simplify.
cases s.
cases p.
simplify.
eapply hoare_triple_unstuck; eauto.
simplify; auto.
Qed.
(* A very simple example, just to show all this in action *)
Definition forever := (
"i" <- 1;;
"n" <- 1;;
{{h&v ~> v $! "i" > 0}}
while 0 < "i" loop
"i" <- "i" * 2;;
"n" <- "n" + "i";;
assert {{h&v ~> v $! "n" >= 1}}
done;;
assert {{_&_ ~> False}}
(* Note that this last assertion implies that the program never terminates! *)
)%cmd.
Theorem forever_ok : {{_&_ ~> True}} forever {{_&_ ~> False}}.
Proof.
ht.
Qed.
Theorem forever_invariant : invariantFor (trsys_of ($0, $0, forever)) unstuck.
Proof.
eapply hoare_triple_invariant.
apply forever_ok.
simplify; trivial.
Qed.