forked from achlipala/frap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSets.v
610 lines (522 loc) · 16.5 KB
/
Sets.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
Require Import Bool Classical FunctionalExtensionality List.
Set Implicit Arguments.
Axiom prop_ext : forall P Q : Prop,
(P <-> Q) -> P = Q.
Section set.
Variable A : Type.
Definition set := A -> Prop.
Definition In (x : A) (s : set) := s x.
Definition constant (ls : list A) : set := fun x => List.In x ls.
Definition universe : set := fun _ => True.
Definition check (P : Prop) : set := fun _ => P.
Definition union (s1 s2 : set) : set := fun x => s1 x \/ s2 x.
Definition intersection (s1 s2 : set) : set := fun x => s1 x /\ s2 x.
Definition minus (s1 s2 : set) : set := fun x => s1 x /\ ~s2 x.
Definition complement (s : set) : set := fun x => ~s x.
Definition subseteq (s1 s2 : set) := forall x, s1 x -> s2 x.
Definition subset (s1 s2 : set) := subseteq s1 s2 /\ ~subseteq s2 s1.
Definition scomp (P : A -> Prop) : set := P.
Theorem sets_equal : forall s1 s2 : set, (forall x, s1 x <-> s2 x) -> s1 = s2.
Proof.
intros.
apply functional_extensionality; intros.
apply prop_ext; auto.
Qed.
End set.
Infix "\in" := In (at level 70).
(*Notation "[ P ]" := (check P).*)
Infix "\cup" := union (at level 40).
Infix "\cap" := intersection (at level 40).
Infix "\setminus" := minus (at level 40).
Infix "\subseteq" := subseteq (at level 70).
Infix "\subset" := subset (at level 70).
Notation "[ x | P ]" := (scomp (fun x => P)).
Module Type EMPTY.
End EMPTY.
Module SetNotations(M : EMPTY).
Notation "{ }" := (constant nil).
Notation "{ x1 , .. , xN }" := (constant (cons x1 (.. (cons xN nil) ..))).
End SetNotations.
Ltac sets' tac :=
unfold In, constant, universe, check, union, intersection, minus, complement, subseteq, subset, scomp in *;
tauto || intuition tac.
Ltac sets tac :=
try match goal with
| [ |- @eq (set _) _ _ ] => apply sets_equal; intro; split
end; sets' tac.
(** * Some of the usual properties of set operations *)
Section properties.
Variable A : Type.
Variable x : A.
Variables s1 s2 s3 : set A.
Theorem union_comm : s1 \cup s2 = s2 \cup s1.
Proof.
sets idtac.
Qed.
Theorem union_assoc : (s1 \cup s2) \cup s3 = s1 \cup (s2 \cup s3).
Proof.
sets idtac.
Qed.
Theorem intersection_comm : s1 \cap s2 = s2 \cap s1.
Proof.
sets idtac.
Qed.
Theorem intersection_assoc : (s1 \cap s2) \cap s3 = s1 \cap (s2 \cap s3).
Proof.
sets idtac.
Qed.
Theorem not_union : complement (s1 \cup s2) = complement s1 \cap complement s2.
Proof.
sets idtac.
Qed.
Theorem not_intersection : complement (s1 \cap s2) = complement s1 \cup complement s2.
Proof.
sets idtac.
Qed.
Theorem subseteq_refl : s1 \subseteq s1.
Proof.
unfold subseteq; eauto.
Qed.
Theorem subseteq_In : s1 \subseteq s2 -> x \in s1 -> x \in s2.
Proof.
unfold subseteq, In; eauto.
Qed.
Theorem cap_split : forall (P1 P2 : A -> Prop),
(forall s, P1 s \/ P2 s)
-> s1 \cap [s | P1 s] \subseteq s2
-> s1 \cap [s | P2 s] \subseteq s3
-> s1 \subseteq (s2 \cap [s | P1 s]) \cup (s3 \cap [s | P2 s]).
Proof.
intros; sets eauto.
specialize (H x0).
specialize (H0 x0).
specialize (H1 x0).
tauto.
Qed.
Variables ss1 ss2 : list A.
Theorem union_constant : constant ss1 \cup constant ss2 = constant (ss1 ++ ss2).
Proof.
unfold constant, union; simpl.
apply sets_equal; simpl; intuition.
Qed.
End properties.
Hint Resolve subseteq_refl subseteq_In : core.
(*Hint Rewrite union_constant.*)
(** * Removing duplicates from constant sets *)
Inductive removeDups A : list A -> list A -> Prop :=
| RdNil : removeDups nil nil
| RdNew : forall x ls ls',
~List.In x ls
-> removeDups ls ls'
-> removeDups (x :: ls) (x :: ls')
| RdDup : forall x ls ls',
List.In x ls
-> removeDups ls ls'
-> removeDups (x :: ls) ls'.
Theorem removeDups_fwd : forall A x (ls ls' : list A),
removeDups ls ls'
-> List.In x ls
-> List.In x ls'.
Proof.
induction 1; simpl; intuition.
subst; eauto.
Qed.
Theorem removeDups_bwd : forall A x (ls ls' : list A),
removeDups ls ls'
-> List.In x ls'
-> List.In x ls.
Proof.
induction 1; simpl; intuition.
Qed.
Theorem removeDups_ok : forall A (ls ls' : list A),
removeDups ls ls'
-> constant ls = constant ls'.
Proof.
intros.
apply sets_equal.
unfold constant; intuition eauto using removeDups_fwd, removeDups_bwd.
Qed.
Ltac someMatch ls :=
match ls with
| ?x :: ?ls' =>
let rec someMatch' ls :=
match ls with
| x :: _ => idtac
| _ :: ?ls' => someMatch' ls'
end
in someMatch' ls'
| _ :: ?ls' => someMatch ls'
end.
Ltac removeDups :=
match goal with
| [ |- context[constant ?ls] ] =>
someMatch ls;
erewrite (@removeDups_ok _ ls)
by repeat (apply RdNil
|| (apply RdNew; [ simpl; intuition congruence | ])
|| (apply RdDup; [ simpl; intuition congruence | ]))
end.
(** * Simplifying set subtraction with constant sets *)
Inductive doSubtract A : list A -> list A -> list A -> Prop :=
| DsNil : forall ls, doSubtract nil ls nil
| DsKeep : forall x ls ls0 ls',
~List.In x ls0
-> doSubtract ls ls0 ls'
-> doSubtract (x :: ls) ls0 (x :: ls')
| DsDrop : forall x ls ls0 ls',
List.In x ls0
-> doSubtract ls ls0 ls'
-> doSubtract (x :: ls) ls0 ls'.
Theorem doSubtract_fwd : forall A x (ls ls0 ls' : list A),
doSubtract ls ls0 ls'
-> List.In x ls
-> ~List.In x ls0
-> List.In x ls'.
Proof.
induction 1; simpl; intuition.
subst; eauto.
tauto.
Qed.
Theorem doSubtract_bwd1 : forall A x (ls ls0 ls' : list A),
doSubtract ls ls0 ls'
-> List.In x ls'
-> List.In x ls.
Proof.
induction 1; simpl; intuition.
Qed.
Theorem doSubtract_bwd2 : forall A x (ls ls0 ls' : list A),
doSubtract ls ls0 ls'
-> List.In x ls'
-> List.In x ls0
-> False.
Proof.
induction 1; simpl; intuition.
subst; eauto.
Qed.
Theorem doSubtract_ok : forall A (ls ls0 ls' : list A),
doSubtract ls ls0 ls'
-> constant ls \setminus constant ls0 = constant ls'.
Proof.
unfold minus.
intros.
apply sets_equal.
unfold constant; intuition eauto using doSubtract_fwd, doSubtract_bwd1, doSubtract_bwd2.
Qed.
Ltac fancy_neq :=
solve [ repeat match goal with
| [ H : @eq (nat -> _) _ _ |- _ ] => apply (f_equal (fun f => f 0)) in H
| [ H : _ = _ |- _ ] => inversion H; clear H; subst
end ].
Ltac doSubtract :=
match goal with
| [ |- context[@minus ?A (@constant ?A1 ?ls) (@constant ?A2 ?ls0)] ] =>
match A with
| A1 => idtac
| _ => change (@constant A1 ls) with (@constant A ls)
end;
match A with
| A2 => idtac
| _ => change (@constant A2 ls0) with (@constant A ls0)
end;
erewrite (@doSubtract_ok A ls ls0)
by repeat (apply DsNil
|| (apply DsKeep; [ simpl; intuition (congruence || fancy_neq) | ])
|| (apply DsDrop; [ simpl; intuition congruence | ]))
end.
(** Undetermined set variables in fixed points should be turned into the empty set. *)
Ltac unifyTails :=
match goal with
| [ |- context[_ \cup ?x] ] => is_evar x;
match type of x with
| set ?A => unify x (constant (@nil A))
| ?A -> Prop => unify x (constant (@nil A))
end
end.
(** * But wait... there's a reflective way to do some of this, too. *)
Require Import Arith.
Import List ListNotations.
Section setexpr.
Variable A : Type.
Inductive setexpr :=
| Literal (vs : list nat)
| Constant (s : set A)
| Union (e1 e2 : setexpr).
Fixpoint interp_setexpr (env : list A) (e : setexpr) : set A :=
match e with
| Literal vs =>
match env with
| [] => constant []
| x :: _ => constant (map (nth_default x env) vs)
end
| Constant s => s
| Union e1 e2 => interp_setexpr env e1 \cup interp_setexpr env e2
end.
Record normal_form := {
Elements : list nat;
Other : option (set A)
}.
Fixpoint member (n : nat) (ls : list nat) : bool :=
match ls with
| [] => false
| m :: ls' => (n =? m) || member n ls'
end.
Fixpoint dedup (ls : list nat) : list nat :=
match ls with
| [] => []
| n :: ls =>
let ls' := dedup ls in
if member n ls' then ls' else n :: ls'
end.
Fixpoint setmerge (ls1 ls2 : list nat) : list nat :=
match ls1 with
| [] => ls2
| n :: ls1' =>
if member n ls2 then setmerge ls1' ls2 else n :: setmerge ls1' ls2
end.
Fixpoint normalize_setexpr (e : setexpr) : normal_form :=
match e with
| Literal vs => {| Elements := dedup vs; Other := None |}
| Constant s => {| Elements := []; Other := Some s |}
| Union e1 e2 =>
let nf1 := normalize_setexpr e1 in
let nf2 := normalize_setexpr e2 in
{| Elements := setmerge nf1.(Elements) nf2.(Elements);
Other := match nf1.(Other), nf2.(Other) with
| None, None => None
| o, None => o
| None, o => o
| Some s1, Some s2 => Some (s1 \cup s2)
end |}
end.
Definition interp_normal_form (env : list A) (nf : normal_form) : set A :=
let cs := match env with
| [] => constant []
| x :: _ => constant (map (nth_default x env) nf.(Elements))
end in
match nf.(Other) with
| None => cs
| Some o => cs \cup o
end.
Lemma member_ok : forall n ns,
if member n ns then In n ns else ~In n ns.
Proof.
induction ns; simpl; intuition.
case_eq (n =? a); simpl; intros.
apply beq_nat_true in H; auto.
apply beq_nat_false in H.
destruct (member n ns); intuition.
Qed.
Lemma In_dedup_fwd : forall n ns,
In n (dedup ns)
-> In n ns.
Proof.
induction ns; simpl; intuition.
pose proof (member_ok a (dedup ns)).
destruct (member a (dedup ns)); simpl in *; intuition.
Qed.
Lemma In_dedup_bwd : forall n ns,
In n ns
-> In n (dedup ns).
Proof.
induction ns; simpl; intuition.
pose proof (member_ok a (dedup ns)).
destruct (member a (dedup ns)); simpl in *; intuition congruence.
pose proof (member_ok a (dedup ns)).
destruct (member a (dedup ns)); simpl in *; intuition congruence.
Qed.
Lemma constant_dedup : forall (f : _ -> A) vs,
constant (map f (dedup vs)) = constant (map f vs).
Proof.
induction vs; simpl; intuition.
pose proof (member_ok a (dedup vs)).
case_eq (member a (dedup vs)); intro.
rewrite IHvs.
rewrite H0 in H.
apply In_dedup_fwd in H.
apply sets_equal.
unfold constant.
simpl.
intuition.
apply in_map_iff.
eauto.
simpl.
apply sets_equal.
simpl.
intuition congruence.
Qed.
Lemma constant_map_setmerge : forall (f : _ -> A) ns2 ns1,
constant (map f (setmerge ns1 ns2)) = constant (map f ns1) \cup constant (map f ns2).
Proof.
induction ns1; simpl; intros.
sets ltac:(simpl in *; intuition).
pose proof (member_ok a ns2).
destruct (member a ns2).
rewrite IHns1.
sets ltac:(simpl in *; intuition).
right.
eapply in_map_iff; eauto.
simpl.
sets ltac:(simpl in *; intuition).
change (In x (map f (setmerge ns1 ns2))) with ((fun x => In x (map f (setmerge ns1 ns2))) x) in H1.
rewrite IHns1 in H1.
tauto.
change (In x (map f (setmerge ns1 ns2))) with ((fun x => In x (map f (setmerge ns1 ns2))) x).
rewrite IHns1.
tauto.
change (In x (map f (setmerge ns1 ns2))) with ((fun x => In x (map f (setmerge ns1 ns2))) x).
rewrite IHns1.
tauto.
Qed.
Theorem normalize_setexpr_ok : forall env e,
interp_normal_form env (normalize_setexpr e) = interp_setexpr env e.
Proof.
induction e; simpl; intros.
unfold interp_normal_form; simpl.
destruct env; trivial.
apply constant_dedup.
unfold interp_normal_form; simpl.
destruct env; sets ltac:(simpl in *; intuition).
unfold interp_normal_form in *; simpl in *.
destruct (Other (normalize_setexpr e1)), (Other (normalize_setexpr e2)).
destruct env.
rewrite <- IHe1.
rewrite <- IHe2.
sets ltac:(simpl in *; intuition).
rewrite <- IHe1.
rewrite <- IHe2.
rewrite constant_map_setmerge.
sets ltac:(simpl in *; intuition).
destruct env.
rewrite <- IHe1.
rewrite <- IHe2.
sets ltac:(simpl in *; intuition).
rewrite constant_map_setmerge.
rewrite <- IHe1.
rewrite <- IHe2.
sets ltac:(simpl in *; intuition).
destruct env.
rewrite <- IHe1.
rewrite <- IHe2.
sets ltac:(simpl in *; intuition).
rewrite constant_map_setmerge.
rewrite <- IHe1.
rewrite <- IHe2.
sets ltac:(simpl in *; intuition).
destruct env.
rewrite <- IHe1.
rewrite <- IHe2.
sets ltac:(simpl in *; intuition).
rewrite constant_map_setmerge.
rewrite <- IHe1.
rewrite <- IHe2.
sets ltac:(simpl in *; intuition).
Qed.
Fixpoint included (ns1 ns2 : list nat) : bool :=
match ns1 with
| [] => true
| n :: ns1' => member n ns2 && included ns1' ns2
end.
Lemma included_true : forall ns2 ns1,
included ns1 ns2 = true
-> (forall x, In x ns1 -> In x ns2).
Proof.
induction ns1; simpl; intuition subst.
pose proof (member_ok x ns2).
destruct (member x ns2); simpl in *; auto; congruence.
pose proof (member_ok a ns2).
destruct (member a ns2); simpl in *; auto; congruence.
Qed.
Theorem compare_sets : forall env e1 e2,
let nf1 := normalize_setexpr e1 in
let nf2 := normalize_setexpr e2 in
match Other nf1, Other nf2 with
| None, None => included nf1.(Elements) nf2.(Elements)
&& included nf2.(Elements) nf1.(Elements) = true
| _, _ => False
end
-> interp_setexpr env e1 = interp_setexpr env e2.
Proof.
intros.
do 2 rewrite <- normalize_setexpr_ok.
subst nf1.
subst nf2.
unfold interp_normal_form.
destruct (Other (normalize_setexpr e1)), (Other (normalize_setexpr e2)); intuition.
destruct env; trivial.
apply andb_true_iff in H; intuition.
specialize (included_true _ _ H0).
specialize (included_true _ _ H1).
clear H0 H1.
intros.
apply sets_equal.
unfold constant; simpl; intuition.
apply in_map_iff.
apply in_map_iff in H1.
firstorder.
apply in_map_iff.
apply in_map_iff in H1.
firstorder.
Qed.
End setexpr.
Ltac quote E env k :=
let T := type of E in
match eval hnf in T with
| ?A -> Prop =>
let rec lookup E env k :=
match env with
| [] => k 0 [E]
| E :: _ => k 0 env
| ?E' :: ?env' =>
lookup E env' ltac:(fun pos env'' => k (S pos) (E' :: env''))
end in
let rec lookups Es env k :=
match Es with
| [] => k (@nil nat) env
| ?E :: ?Es' =>
lookup E env ltac:(fun pos env' =>
lookups Es' env' ltac:(fun poss env'' =>
k (pos :: poss) env''))
end in
let rec quote' E env k :=
match E with
| constant ?Es =>
lookups Es env ltac:(fun poss env' => k (Literal A poss) env')
| ?E1 \cup ?E2 =>
quote' E1 env ltac:(fun e1 env' =>
quote' E2 env' ltac:(fun e2 env'' =>
k (Union e1 e2) env''))
| _ =>
(let pf := constr:(eq_refl : E = constant []) in
k (Literal A []) env)
|| k (Constant E) env
end in
quote' E env k
end.
Ltac sets_cbv := cbv beta iota zeta delta [interp_normal_form normalize_setexpr nth_default
setmerge Elements Other nth_error map dedup member beq_nat orb
andb included].
Ltac sets_cbv_in H := cbv beta iota zeta delta [interp_normal_form normalize_setexpr nth_default
setmerge Elements Other nth_error map dedup member beq_nat orb
andb included] in H.
Ltac normalize_set :=
match goal with
| [ |- context[@union ?A ?X ?Y] ] =>
quote (@union A X Y) (@nil A) ltac:(fun e env =>
change (@union A X Y) with (interp_setexpr env e));
rewrite <- normalize_setexpr_ok; sets_cbv
| [ H : context[@union ?A ?X ?Y] |- _ ] =>
quote (@union A X Y) (@nil A) ltac:(fun e env =>
change (@union A X Y) with (interp_setexpr env e) in H);
rewrite <- normalize_setexpr_ok in H; sets_cbv_in H
end.
Ltac compare_sets :=
match goal with
| [ |- @eq ?T ?X ?Y ] =>
match eval hnf in T with
| ?A -> _ =>
quote X (@nil A) ltac:(fun x env =>
quote Y env ltac:(fun y env' =>
change (interp_setexpr env' x = interp_setexpr env' y)));
apply compare_sets; sets_cbv; reflexivity
end
end.