forked from achlipala/frap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSubsetTypes_template.v
203 lines (90 loc) · 3.08 KB
/
SubsetTypes_template.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
* Supplementary Coq material: subset types
* Author: Adam Chlipala
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/
* Much of the material comes from CPDT <http://adam.chlipala.net/cpdt/> by the same author. *)
Require Import FrapWithoutSets.
(* We import a pared-down version of the book library, to avoid notations that
* clash with some we want to use here. *)
Set Implicit Arguments.
Set Asymmetric Patterns.
(** * Introducing Subset Types *)
Definition pred (n : nat) : nat :=
match n with
| O => O
| S n' => n'
end.
Extraction pred.
(** * Decidable Proposition Types *)
Print sumbool.
Notation "'Yes'" := (left _ _).
Notation "'No'" := (right _ _).
Notation "'Reduce' x" := (if x then Yes else No) (at level 50).
Definition eq_nat_dec : forall n m : nat, {n = m} + {n <> m}.
Admitted.
Compute eq_nat_dec 2 2.
Compute eq_nat_dec 2 3.
Extraction eq_nat_dec.
Section In_dec.
Variable A : Set.
Variable A_eq_dec : forall x y : A, {x = y} + {x <> y}.
(* The final function is easy to write using the techniques we have developed
* so far. *)
Definition In_dec : forall (x : A) (ls : list A), {In x ls} + {~ In x ls}.
Admitted.
End In_dec.
Compute In_dec eq_nat_dec 2 (1 :: 2 :: nil).
Compute In_dec eq_nat_dec 3 (1 :: 2 :: nil).
Extraction In_dec.
(** * Partial Subset Types *)
Inductive maybe (A : Set) (P : A -> Prop) : Set :=
| Unknown : maybe P
| Found : forall x : A, P x -> maybe P.
Notation "{{ x | P }}" := (maybe (fun x => P)).
Notation "??" := (Unknown _).
Notation "[| x |]" := (Found _ x _).
Print sumor.
Notation "!!" := (inright _ _).
Notation "[|| x ||]" := (inleft _ [x]).
(** * Monadic Notations *)
Notation "x <- e1 ; e2" := (match e1 with
| Unknown => ??
| Found x _ => e2
end)
(right associativity, at level 60).
Definition doublePred : forall n1 n2 : nat, {{p | n1 = S (fst p) /\ n2 = S (snd p)}}.
Admitted.
Notation "x <-- e1 ; e2" := (match e1 with
| inright _ => !!
| inleft (exist x _) => e2
end)
(right associativity, at level 60).
Definition doublePred' : forall n1 n2 : nat,
{p : nat * nat | n1 = S (fst p) /\ n2 = S (snd p)}.
Admitted.
(** * A Type-Checking Example *)
Inductive exp :=
| Nat (n : nat)
| Plus (e1 e2 : exp)
| Bool (b : bool)
| And (e1 e2 : exp).
Inductive type := TNat | TBool.
Inductive hasType : exp -> type -> Prop :=
| HtNat : forall n,
hasType (Nat n) TNat
| HtPlus : forall e1 e2,
hasType e1 TNat
-> hasType e2 TNat
-> hasType (Plus e1 e2) TNat
| HtBool : forall b,
hasType (Bool b) TBool
| HtAnd : forall e1 e2,
hasType e1 TBool
-> hasType e2 TBool
-> hasType (And e1 e2) TBool.
Definition typeCheck : forall e : exp, {{t | hasType e t}}.
Admitted.
Compute typeCheck (Nat 0).
Compute typeCheck (Plus (Nat 1) (Nat 2)).
Compute typeCheck (Plus (Nat 1) (Bool false)).
Extraction typeCheck.