-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain.py
247 lines (177 loc) · 9.64 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import numpy as np, os, gc, argparse
import torch
import torch.optim as optim
from torch.nn import functional as F
from utils import get_dataset
from models import LinearModel
from sklearn.metrics import accuracy_score
norm = {'booksdvd': 4.18, 'bookskitchen': 4.13, 'bookselectronics': 4.13,
'electronicskitchen': 3.56, 'electronicsdvd': 4.18, 'electronicsbooks': 4.45,
'kitchenbooks': 4.45, 'kitchenelectronics': 3.5, 'kitchendvd': 4.18,
'dvdelectronics': 3.62, 'dvdkitchen': 3.62, 'dvdbooks': 4.45}
def loss_ae(recon_x, x):
dim = x.size(1)
MSE = F.mse_loss(recon_x, x.view(-1, dim), reduction='mean')
return MSE
def train_model(model, optimizer, loss_class, loss_domain, X_s1, X_s2, Y_s, X_t1, X_t2, al=1):
loss1, loss2, loss3, loss4, loss5 = [], [], [], [], []
preds1, preds2, preds3 = [], [], []
labels1, labels2, labels3 = [], [], []
permutation = torch.randperm(X_s.size(0))
for i in range(0, X_s.size(0), batch_size):
p = float(i + epoch * len_dataloader) / n_epochs / len_dataloader
if al == 1:
alpha = 4./ (1. + np.exp(-10 * p)) - 1
elif al == 2:
alpha = 2./ (1. + np.exp(-10 * p)) - 1
model.train()
optimizer.zero_grad()
indices = permutation[i:i+batch_size]
x_s1, x_s2, y_s, x_t1, x_t2 = X_s1[indices], X_s2[indices], Y_s[indices], X_t1[indices], X_t2[indices]
y_s_domain = torch.zeros(batch_size).long()
y_t_domain = torch.ones(batch_size).long()
if use_cuda:
y_s_domain = y_s_domain.cuda()
y_t_domain = y_t_domain.cuda()
recon_s2, y_s_pred, y_s_domain_pred = model(x_s1, x_s2, alpha)
recon_t2, _, y_t_domain_pred = model(x_t1, x_t2, alpha)
loss_class_s = loss_class(y_s_pred, y_s)
loss_domain_s = loss_domain(y_s_domain_pred, y_s_domain)
loss_domain_t = loss_domain(y_t_domain_pred, y_t_domain)
loss_recon_s = loss_ae(recon_s2, x_s2)
loss_recon_t = loss_ae(recon_t2, x_t2)
loss = loss_class_s + loss_recon_s + loss_recon_t + loss_domain_s + loss_domain_t
loss.backward()
optimizer.step()
preds1.append(torch.argmax(y_s_pred, 1).data.cpu().numpy())
preds2.append(torch.argmax(y_s_domain_pred, 1).data.cpu().numpy())
preds3.append(torch.argmax(y_t_domain_pred, 1).data.cpu().numpy())
labels1.append(y_s.data.cpu().numpy())
labels2.append(y_s_domain.data.cpu().numpy())
labels3.append(y_t_domain.data.cpu().numpy())
loss1.append(loss_class_s.item())
loss2.append(loss_domain_s.item())
loss3.append(loss_domain_t.item())
loss4.append(loss_recon_s.item())
loss5.append(loss_recon_t.item())
preds1, preds2, preds3 = np.concatenate(preds1), np.concatenate(preds2), np.concatenate(preds3)
labels1, labels2, labels3 = np.concatenate(labels1), np.concatenate(labels2), np.concatenate(labels3)
avg_acc1 = round(accuracy_score(labels1, preds1)*100, 2)
avg_acc2 = round(accuracy_score(labels2, preds2)*100, 2)
avg_acc3 = round(accuracy_score(labels3, preds3)*100, 2)
avg_loss1 = round(np.mean(np.array(loss1)), 4)
avg_loss2 = round(np.mean(np.array(loss2)), 4)
avg_loss3 = round(np.mean(np.array(loss3)), 4)
avg_loss4 = round(np.mean(np.array(loss4)), 4)
avg_loss5 = round(np.mean(np.array(loss5)), 4)
# print ('Source sentiment loss: {a}, domain loss: {b}, recons loss: {c}, sentiment acc: {d}, domain acc: {e}'.format(
# a = avg_loss1, b = avg_loss2, c = avg_loss4, d = avg_acc1, e = avg_acc2))
# print ('Target domain loss: {a}, recons loss: {b}, domain acc: {c}'.format(
# a = avg_loss3, b = avg_loss5, c = avg_acc3))
def eval_model(model, loss_class, loss_domain, X_t1, X_t2, Y_t):
model.eval()
Y_t_domain = torch.ones(len(Y_t)).long()
if use_cuda:
Y_t_domain = Y_t_domain.cuda()
recon_t2, Y_t_pred, Y_t_domain_pred = model(X_t1, X_t2, 0)
loss1 = round(loss_class(Y_t_pred, Y_t).item(), 4)
loss2 = round(loss_domain(Y_t_domain_pred, Y_t_domain).item(), 4)
loss3 = round(loss_ae(recon_t2, X_t2).item(), 4)
preds1 = torch.argmax(Y_t_pred, 1).data.cpu().numpy()
preds2 = torch.argmax(Y_t_domain_pred, 1).data.cpu().numpy()
labels1 = Y_t.data.cpu().numpy()
labels2 = Y_t_domain.data.cpu().numpy()
avg_acc1 = round(accuracy_score(labels1, preds1)*100, 2)
avg_acc2 = round(accuracy_score(labels2, preds2)*100, 2)
# print ('Target sentiment loss: {a}, domain loss: {b}, recons loss: {c}, sentiment acc: {d}, domain acc: {e}'.format(
# a = loss1, b = loss2, c = loss3, d = avg_acc1, e = avg_acc2))
return avg_acc1, loss1
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False, help='does not use GPU')
parser.add_argument('--batch-size', type=int, default=40, metavar='BS', help='batch size')
parser.add_argument('--epochs', type=int, default=100, metavar='E', help='number of epochs')
parser.add_argument('--lr', type=float, default=1e-4, metavar='LR', help='learning rate')
args = parser.parse_args()
print(args)
n_epochs = args.epochs
batch_size = args.batch_size
len_dataloader = 2000/batch_size
lr = args.lr
dropouts = [0.25, 0.5]
alphas = [1, 2]
bow_size = 5000
graph_size = 100
transform = True
global use_cuda
if torch.cuda.is_available() and not args.no_cuda:
use_cuda = True
else:
use_cuda = False
loss_class = torch.nn.CrossEntropyLoss()
loss_domain = torch.nn.CrossEntropyLoss()
if use_cuda:
loss_class = loss_class.cuda()
loss_domain = loss_domain.cuda()
domains = ['books', 'dvd', 'electronics', 'kitchen']
for d1 in domains:
for d2 in domains:
if d1 == d2:
continue
# BOW features and sentiment labels
X_s, Y_s, X_t1, Y_t1, X_t2, Y_t2, _ = get_dataset(d1, d2, max_words=bow_size)
Y_s = torch.LongTensor(Y_s)
Y_t1 = torch.LongTensor(Y_t1)
Y_t2 = torch.LongTensor(Y_t2)
# Graph features
X_s_ = np.load(open('graph_features/sf_' + d1 +'_small_5000.np', 'rb'), allow_pickle=True)
X_t1_ = np.load(open('graph_features/sf_' + d2 + '_small_5000.np', 'rb'), allow_pickle=True)
X_t2_ = np.load(open('graph_features/sf_'+ d2 + '_test_5000.np', 'rb'), allow_pickle=True)
if transform:
c = norm[d1+d2]
X_s = torch.tensor(np.log(1 + np.array(X_s.todense()).astype('float32'))/c)
X_t1 = torch.tensor(np.log(1 + np.array(X_t1.todense()).astype('float32'))/c)
X_t2 = torch.tensor(np.log(1 + np.array(X_t2.todense()).astype('float32'))/c)
X_s_ = torch.sigmoid(torch.tensor(X_s_)).type(torch.FloatTensor)
X_t1_ = torch.sigmoid(torch.tensor(X_t1_)).type(torch.FloatTensor)
X_t2_ = torch.sigmoid(torch.tensor(X_t2_)).type(torch.FloatTensor)
else:
X_s = torch.tensor(np.array(X_s.todense()).astype('float32'))
X_t1 = torch.tensor(np.array(X_t1.todense()).astype('float32'))
X_t2 = torch.tensor(np.array(X_t2.todense()).astype('float32'))
X_s_ = torch.tensor(X_s_).type(torch.FloatTensor)
X_t1_ = torch.tensor(X_t1_).type(torch.FloatTensor)
X_t2_ = torch.tensor(X_t2_).type(torch.FloatTensor)
if use_cuda:
X_s, X_t1, X_t2, = X_s.cuda(), X_t1.cuda(), X_t2.cuda()
Y_s, Y_t1, Y_t2, = Y_s.cuda(), Y_t1.cuda(), Y_t2.cuda()
X_s_, X_t1_, X_t2_ = X_s_.cuda(), X_t1_.cuda(), X_t2_.cuda()
all_accs = []
maxa = 0
for _ in range(2):
for dr in dropouts:
for al in alphas:
model = LinearModel(bow_size, graph_size, dr)
if use_cuda:
model = model.cuda()
optimizer = optim.Adam(model.parameters(), lr=lr)
for p in model.parameters():
p.requires_grad = True
accs, loss = [], []
for epoch in range(n_epochs):
train_model(model, optimizer, loss_class, loss_domain, X_s, X_s_, Y_s, X_t1, X_t1_, al)
acc, l = eval_model(model, loss_class, loss_domain, X_t2, X_t2_, Y_t2)
accs.append(acc)
loss.append(l)
max_acc = max(accs)
all_accs.append(max_acc)
del model, optimizer
gc.collect()
if max_acc > maxa:
params = {'lr': lr, 'dr': dr, 'alpha': al}
maxa = max_acc
print ('Results: Acc: {a}, Loss: {b}, LR: {c}, Dropout: {d}, alpha: {e}'
.format(a = max_acc, b = loss[accs.index(max_acc)], c = lr, d = dr, e = al))
print (d1, d2, str(max(all_accs)))
print ('Best results at:', params)
print ('-'*70)