forked from tensorflow/tflite-micro
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtranspose_conv.cc
386 lines (340 loc) · 16.4 KB
/
transpose_conv.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/transpose_conv.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/integer_ops/transpose_conv.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/padding.h"
#include "tensorflow/lite/micro/kernels/kernel_util.h"
#include "tensorflow/lite/micro/kernels/xtensa/xtensa.h"
namespace tflite {
namespace {
// For the TfLite transpose_conv implementation, input tensor 0 corresponds to
// the OutputShapeTensor. However, since TFLM does not support dynamic tensors,
// the TFLM implementation ignores input tensor 0 and the only inputs we care
// about are kFilterTensor, kInputTensor and kBiasTensor.
constexpr int kFilterTensor = 1;
constexpr int kInputTensor = 2;
constexpr int kBiasTensor = 3;
constexpr int kOutputTensor = 0;
// Conv is quantized along dimension 0:
// https://www.tensorflow.org/lite/performance/quantization_spec
constexpr int kConvQuantizedDimension = 0;
struct OpData {
ConvParams params;
// A scratch buffer is required for quantized implementations.
int scratch_buffer_index;
// TODO(b/192090531): Remove this once all 8x16 transpose conv models use
// 64-bit biases.
int bias_converted_buffer_index;
// Multiplier and shift arrays are required for the int8 implementation.
int32_t* per_channel_output_multiplier;
int32_t* per_channel_output_shift;
};
inline PaddingType RuntimePaddingType(TfLitePadding padding) {
switch (padding) {
case TfLitePadding::kTfLitePaddingSame:
return PaddingType::kSame;
case TfLitePadding::kTfLitePaddingValid:
return PaddingType::kValid;
case TfLitePadding::kTfLitePaddingUnknown:
default:
return PaddingType::kNone;
}
}
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
const TfLiteTransposeConvParams* params, int width,
int height, int filter_width, int filter_height,
const TfLiteType data_type, OpData* data) {
bool has_bias = node->inputs->size == 4;
// Check number of inputs/outputs
TF_LITE_ENSURE(context, has_bias || node->inputs->size == 3);
TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
// Matching GetWindowedOutputSize in TensorFlow.
auto padding = params->padding;
int unused_output_width;
int unused_output_height;
TfLitePaddingValues padding_values = ComputePaddingHeightWidth(
params->stride_height, params->stride_width, 1,
1, // Dilation height and width are always 1 for transpose_conv.
height, width, filter_height, filter_width, padding,
&unused_output_height, &unused_output_width);
data->params.padding_type = RuntimePaddingType(padding);
data->params.padding_values.width = padding_values.width;
data->params.padding_values.height = padding_values.height;
// Note that quantized inference requires that all tensors have their
// parameters set. This is usually done during quantized training.
if (data_type != kTfLiteFloat32) {
MicroContext* micro_context = GetMicroContext(context);
TfLiteTensor* input =
micro_context->AllocateTempInputTensor(node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* filter =
micro_context->AllocateTempInputTensor(node, kFilterTensor);
TF_LITE_ENSURE(context, filter != nullptr);
TfLiteTensor* bias =
micro_context->AllocateTempInputTensor(node, kBiasTensor);
TfLiteTensor* output =
micro_context->AllocateTempOutputTensor(node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
int output_channels = filter->dims->data[kConvQuantizedDimension];
TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams(
context, input, filter, bias, output, kTfLiteActNone,
&data->params.output_multiplier, &data->params.output_shift,
&data->params.quantized_activation_min,
&data->params.quantized_activation_max,
data->per_channel_output_multiplier, data->per_channel_output_shift,
output_channels));
// TODO(b/192090531): Remove this once all 8x16 transpose conv models use
// 64-bit biases.
if (input->type == kTfLiteInt16) {
TFLITE_DCHECK(filter->type == kTfLiteInt8);
TFLITE_DCHECK(output->type == kTfLiteInt16);
if (bias->type == kTfLiteInt16) {
TFLITE_DCHECK(
context->RequestScratchBufferInArena(
context, GetTensorShape(bias).FlatSize() * sizeof(std::int64_t),
&(data->bias_converted_buffer_index)) == kTfLiteOk);
}
}
micro_context->DeallocateTempTfLiteTensor(input);
micro_context->DeallocateTempTfLiteTensor(output);
micro_context->DeallocateTempTfLiteTensor(filter);
if (bias != nullptr) {
micro_context->DeallocateTempTfLiteTensor(bias);
}
}
return kTfLiteOk;
}
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
return context->AllocatePersistentBuffer(context, sizeof(OpData));
}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
TFLITE_DCHECK(node->user_data != nullptr);
TFLITE_DCHECK(node->builtin_data != nullptr);
OpData* data = static_cast<OpData*>(node->user_data);
const auto params =
static_cast<const TfLiteTransposeConvParams*>(node->builtin_data);
MicroContext* micro_context = GetMicroContext(context);
TfLiteTensor* output =
micro_context->AllocateTempOutputTensor(node, kOutputTensor);
TF_LITE_ENSURE(context, output != nullptr);
TfLiteTensor* input =
micro_context->AllocateTempInputTensor(node, kInputTensor);
TF_LITE_ENSURE(context, input != nullptr);
TfLiteTensor* filter =
micro_context->AllocateTempInputTensor(node, kFilterTensor);
TF_LITE_ENSURE(context, filter != nullptr);
// Get height and width of the output.
const int width = SizeOfDimension(output, 2);
const int height = SizeOfDimension(output, 1);
const int filter_width = SizeOfDimension(filter, 2);
const int filter_height = SizeOfDimension(filter, 1);
// Dynamically allocate per-channel quantization parameters.
const int num_channels = filter->dims->data[kConvQuantizedDimension];
data->per_channel_output_multiplier =
static_cast<int32_t*>(context->AllocatePersistentBuffer(
context, num_channels * sizeof(int32_t)));
data->per_channel_output_shift =
static_cast<int32_t*>(context->AllocatePersistentBuffer(
context, num_channels * sizeof(int32_t)));
// Quantized kernels use an int32 scratch buffer.
if (input->type == kTfLiteInt8) {
TFLITE_DCHECK(context->RequestScratchBufferInArena != nullptr);
TFLITE_DCHECK(context->RequestScratchBufferInArena(
context,
GetTensorShape(output).FlatSize() * sizeof(int32_t),
&(data->scratch_buffer_index)) == kTfLiteOk);
}
// Quantized 16x8 kernels use an int64 scratch buffer.
if (input->type == kTfLiteInt16) {
TFLITE_DCHECK(context->RequestScratchBufferInArena != nullptr);
TFLITE_DCHECK(context->RequestScratchBufferInArena(
context,
GetTensorShape(output).FlatSize() * sizeof(std::int64_t),
&(data->scratch_buffer_index)) == kTfLiteOk);
}
// All per-channel quantized tensors need valid zero point and scale arrays.
if (input->type == kTfLiteInt8 || input->type == kTfLiteInt16) {
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
kTfLiteAffineQuantization);
const auto* affine_quantization =
static_cast<TfLiteAffineQuantization*>(filter->quantization.params);
TF_LITE_ENSURE(context, affine_quantization);
TF_LITE_ENSURE(context, affine_quantization->scale);
TF_LITE_ENSURE(context, affine_quantization->zero_point);
TF_LITE_ENSURE(context,
affine_quantization->scale->size == 1 ||
affine_quantization->scale->size ==
filter->dims->data[kConvQuantizedDimension]);
TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
affine_quantization->zero_point->size);
}
TF_LITE_ENSURE_STATUS(CalculateOpData(context, node, params, width, height,
filter_width, filter_height,
input->type, data));
// Offsets (zero points)
data->params.input_offset = -input->params.zero_point;
data->params.weights_offset = -filter->params.zero_point;
data->params.output_offset = output->params.zero_point;
// Stride
data->params.stride_width = params->stride_width;
data->params.stride_height = params->stride_height;
micro_context->DeallocateTempTfLiteTensor(output);
micro_context->DeallocateTempTfLiteTensor(input);
micro_context->DeallocateTempTfLiteTensor(filter);
return kTfLiteOk;
}
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteEvalTensor* input =
tflite::micro::GetEvalInput(context, node, kInputTensor);
const TfLiteEvalTensor* filter =
tflite::micro::GetEvalInput(context, node, kFilterTensor);
const TfLiteEvalTensor* bias =
(NumInputs(node) == 4)
? tflite::micro::GetEvalInput(context, node, kBiasTensor)
: nullptr;
TfLiteEvalTensor* output =
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
TFLITE_DCHECK(node->user_data != nullptr);
const OpData& data = *(static_cast<const OpData*>(node->user_data));
TF_LITE_ENSURE_EQ(context, input->type, output->type);
TF_LITE_ENSURE_MSG(
context,
input->type == filter->type ||
(input->type == kTfLiteInt16 && filter->type == kTfLiteInt8),
"Hybrid models are not supported on TFLite Micro.");
switch (input->type) { // Already know in/out types are same.
case kTfLiteFloat32: {
reference_ops::TransposeConv(
data.params, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<float>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<float>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<float>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<float>(output),
tflite::micro::GetTensorShape(nullptr), nullptr);
break;
}
case kTfLiteInt8: {
int32_t* scratch_buffer = static_cast<int32_t*>(
context->GetScratchBuffer(context, data.scratch_buffer_index));
reference_integer_ops::TransposeConv(
data.params, data.per_channel_output_multiplier,
data.per_channel_output_shift, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int8_t>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<int8_t>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<int32_t>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int8_t>(output),
tflite::micro::GetTensorShape(nullptr), nullptr, scratch_buffer);
break;
}
case kTfLiteInt16: {
std::int64_t* scratch_buffer = static_cast<int64_t*>(
context->GetScratchBuffer(context, data.scratch_buffer_index));
// TODO(b/192090531): Remove this once all 8x16 transpose conv models use
// 64-bit biases.
if (bias->type == kTfLiteInt16) {
std::int64_t* bias_converted_buffer =
static_cast<int64_t*>(context->GetScratchBuffer(
context, data.bias_converted_buffer_index));
for (int i = 0; i < tflite::micro::GetTensorShape(bias).FlatSize();
i++) {
bias_converted_buffer[i] = bias->data.i16[i];
}
reference_integer_ops::TransposeConv(
data.params, data.per_channel_output_multiplier,
data.per_channel_output_shift, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int16_t>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<int8_t>(filter),
tflite::micro::GetTensorShape(bias), bias_converted_buffer,
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int16_t>(output),
tflite::micro::GetTensorShape(nullptr), nullptr, scratch_buffer);
} else {
#if defined(HIFI4_INTERNAL)
const RuntimeShape& input_shape = tflite::micro::GetTensorShape(input);
const RuntimeShape& filter_shape =
tflite::micro::GetTensorShape(filter);
const RuntimeShape& output_shape =
tflite::micro::GetTensorShape(output);
const int stride_width = data.params.stride_width;
const int stride_height = data.params.stride_height;
const int pad_width = data.params.padding_values.width;
const int pad_height = data.params.padding_values.height;
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
const int input_height = input_shape.Dims(1);
const int input_width = input_shape.Dims(2);
const int filter_height = filter_shape.Dims(1);
const int filter_width = filter_shape.Dims(2);
const int output_height = output_shape.Dims(1);
const int output_width = output_shape.Dims(2);
const int16_t* input_data =
tflite::micro::GetTensorData<int16_t>(input);
const int8_t* filter_data =
tflite::micro::GetTensorData<int8_t>(filter);
const int64_t* bias_data = tflite::micro::GetTensorData<int64_t>(bias);
int16_t* output_data = tflite::micro::GetTensorData<int16_t>(output);
const int num_elements = output_shape.FlatSize();
for (int b = 0; b < batches; b++) {
xa_nn_transpose_conv(
&output_data[b * output_height * output_width * output_depth],
const_cast<WORD16*>(
&input_data[b * input_height * input_width * input_depth]),
const_cast<WORD8*>(filter_data), const_cast<WORD64*>(bias_data),
stride_width, stride_height, pad_width, pad_height, input_depth,
output_depth, input_height, input_width, filter_height,
filter_width, output_height, output_width, num_elements / batches,
data.per_channel_output_shift, data.per_channel_output_multiplier,
&scratch_buffer[b * output_height * output_width * output_depth]);
}
#else
reference_integer_ops::TransposeConv(
data.params, data.per_channel_output_multiplier,
data.per_channel_output_shift, tflite::micro::GetTensorShape(input),
tflite::micro::GetTensorData<int16_t>(input),
tflite::micro::GetTensorShape(filter),
tflite::micro::GetTensorData<int8_t>(filter),
tflite::micro::GetTensorShape(bias),
tflite::micro::GetTensorData<std::int64_t>(bias),
tflite::micro::GetTensorShape(output),
tflite::micro::GetTensorData<int16_t>(output),
tflite::micro::GetTensorShape(nullptr), nullptr, scratch_buffer);
#endif
}
break;
}
default:
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
TfLiteTypeGetName(input->type), input->type);
return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace
TfLiteRegistration Register_TRANSPOSE_CONV() {
return tflite::micro::RegisterOp(Init, Prepare, Eval);
}
} // namespace tflite