-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathdetection_helpers.py
141 lines (108 loc) · 5.71 KB
/
detection_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import cv2
import torch
from numpy import random
from models.experimental import attempt_load
from utils.datasets import letterbox, np
from utils.general import check_img_size, non_max_suppression, apply_classifier,scale_coords, xyxy2xywh
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier,TracedModel
class Detector:
def __init__(self, conf_thres:float = 0.25, iou_thresh:float = 0.45, agnostic_nms:bool = False, save_conf:bool = False, classes:list = None):
'''
args:
conf_thres: Thresholf for Classification
iou_thres: Thresholf for IOU box to consider
agnostic_nms: whether to use Class-Agnostic NMS
save_conf: whether to save confidences in 'save_txt' labels afters inference
classes: Filter by class from COCO. can be in the format [0] or [0,1,2] etc
'''
self.device = select_device("0" if torch.cuda.is_available() else 'cpu')
self.conf_thres = conf_thres
self.iou_thres = iou_thresh
self.classes = classes
self.agnostic_nms = agnostic_nms
self.save_conf = save_conf
def load_model(self, weights:str, img_size:int = 640, trace:bool = True, classify:bool = False):
'''
weights: Path to the model
img_size: Input image size of the model
trace: Whether to trace the model or not
classify: whether to load the second stage classifier model or not
'''
self.half = self.device.type != 'cpu' # half precision only supported on CUDA
self.model = attempt_load(weights, map_location=self.device) # load FP32 model
self.stride = int(self.model.stride.max()) # model stride
self.imgsz = check_img_size(img_size, s=self.stride) # check img_size
if trace:
self.model = TracedModel(self.model, self.device, img_size)
if self.half:
self.model.half() # to FP1
# Run inference for CUDA just once
if self.device.type != 'cpu':
self.model(torch.zeros(1, 3, self.imgsz, self.imgsz).to(self.device).type_as(next(self.model.parameters()))) # run once
# Second-stage classifier
self.classify = classify
if classify:
self.modelc = load_classifier(name='resnet101', n=2) # initialize
self.modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=self.device)['model']).to(self.device).eval()
# Get names and colors of Colors for BB creation
self.names = self.model.module.names if hasattr(self.model, 'module') else self.model.names
self.colors = [[random.randint(0, 255) for _ in range(3)] for _ in self.names]
@torch.no_grad()
def detect(self, source, plot_bb:bool =True):
'''
source: Path to image file, video file, link or text etc
plot_bb: whether to plot the bounding box around image or return the prediction
'''
img, im0 = self.load_image(source)
img = torch.from_numpy(img).to(self.device)
img = img.half() if self.half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3: # Single batch -> single image
img = img.unsqueeze(0)
# Inference
pred = self.model(img, augment=False)[0] # We don not need any augment during inference time
# Apply NMS
pred = non_max_suppression(pred, self.conf_thres, self.iou_thres, classes=self.classes, agnostic=self.agnostic_nms)
# Apply Classifier
if self.classify:
pred = apply_classifier(pred, self.modelc, img, im0) # I thnk we need to add a new axis to im0
# Post - Process detections
det = pred[0]# detections per image but as we have just 1 image, it is the 0th index
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Write results
for *xyxy, conf, cls in reversed(det):
if plot_bb: # Add bbox to image # save_img
label = f'{self.names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, im0, label=label, color=self.colors[int(cls)], line_thickness=1)
return im0 if plot_bb else det.detach().cpu().numpy()
return im0 if plot_bb else None # just in case there's no detection, return the original image. For tracking purpose plot_bb has to be False always
def load_image(self, img0):
'''
Load and pre process the image
args: img0: Path of image or numpy image in 'BGR" format
'''
if isinstance(img0, str): img0 = cv2.imread(img0) # BGR
assert img0 is not None, 'Image Not Found '
# Padded resize
img = letterbox(img0, self.imgsz, stride=self.stride)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
return img, img0
def save_txt(self, det, im0_shape, txt_path):
'''
Save the results of an image in a .txt file
args:
det: detecttions from the model
im0_shape: Shape of Original image
txt_path: File of the text path
'''
gn = torch.tensor(im0_shape)[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in reversed(det):
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if self.save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')