- Installation
- Interfaces
- Supported dataset formats and annotations
- Command line workflow
- Command reference
- Extending
- Links
- Python (3.6+)
- Optional: OpenVINO, TensforFlow, PyTorch, MxNet, Caffe, Accuracy Checker
Optionally, set up a virtual environment:
python -m pip install virtualenv
python -m virtualenv venv
. venv/bin/activate
Install:
pip install 'git+https://github.com/openvinotoolkit/datumaro'
You can change the installation branch with
...@<branch_name>
Also note--force-reinstall
parameter in this case.
As a standalone tool:
datum --help
As a python module:
The directory containing Datumaro should be in the
PYTHONPATH
environment variable orcvat/datumaro/
should be the current directory.
python -m datumaro --help
python datumaro/ --help
python datum.py --help
As a python library:
import datumaro
List of supported formats:
- MS COCO (
image_info
,instances
,person_keypoints
,captions
,labels
*)- Format specification
- Dataset example
labels
are our extension - likeinstances
with onlycategory_id
- PASCAL VOC (
classification
,detection
,segmentation
(class, instances),action_classification
,person_layout
) - YOLO (
bboxes
) - TF Detection API (
bboxes
,masks
)- Format specifications: bboxes, masks
- Dataset example
- MOT sequences
- MOTS (png)
- CVAT
- LabelMe
List of supported annotation types:
- Labels
- Bounding boxes
- Polygons
- Polylines
- (Segmentation) Masks
- (Key-)Points
- Captions
The key object is a project, so most CLI commands operate on projects.
However, there are few commands operating on datasets directly.
A project is a combination of a project's own dataset, a number of
external data sources and an environment.
An empty Project can be created by project create
command,
an existing dataset can be imported with project import
command.
A typical way to obtain projects is to export tasks in CVAT UI.
If you want to interact with models, you need to add them to project first.
└── project/
├── .datumaro/
| ├── config.yml
│ ├── .git/
│ ├── models/
│ └── plugins/
│ ├── plugin1/
│ | ├── file1.py
│ | └── file2.py
│ ├── plugin2.py
│ ├── custom_extractor1.py
│ └── ...
├── dataset/
└── sources/
├── source1
└── ...
Note: command invocation syntax is subject to change, always refer to command --help output
This command allows to convert a dataset from one format into another. In fact, this
command is a combination of project import
and project export
and just provides a simpler
way to obtain the same result when no extra options is needed. A list of supported
formats can be found in the --help
output of this command.
Usage:
datum convert --help
datum convert \
-i <input path> \
-if <input format> \
-o <output path> \
-f <output format> \
-- [extra parameters for output format]
Example: convert a VOC-like dataset to a COCO-like one:
datum convert --input-format voc --input-path <path/to/voc/> \
--output-format coco
This command creates a Project from an existing dataset.
Supported formats are listed in the command help. Check extending tips for information on extra format support.
Usage:
datum project import --help
datum project import \
-i <dataset_path> \
-o <project_dir> \
-f <format>
Example: create a project from COCO-like dataset
datum project import \
-i /home/coco_dir \
-o /home/project_dir \
-f coco
An MS COCO-like dataset should have the following directory structure:
COCO/
├── annotations/
│ ├── instances_val2017.json
│ ├── instances_train2017.json
├── images/
│ ├── val2017
│ ├── train2017
Everything after the last _
is considered a subset name in the COCO format.
The command creates an empty project. Once a Project is created, there are a few options to interact with it.
Usage:
datum project create --help
datum project create \
-o <project_dir>
Example: create an empty project my_dataset
datum project create -o my_dataset/
A Project can contain a number of external Data Sources. Each Data Source
describes a way to produce dataset items. A Project combines dataset items from
all the sources and its own dataset into one composite dataset. You can manage
project sources by commands in the source
command line context.
Datasets come in a wide variety of formats. Each dataset format defines its own data structure and rules on how to interpret the data. For example, the following data structure is used in COCO format:
/dataset/
- /images/<id>.jpg
- /annotations/
Supported formats are listed in the command help. Check extending tips for information on extra format support.
Usage:
datum source add --help
datum source remove --help
datum source add \
path <path> \
-p <project dir> \
-n <name>
datum source remove \
-p <project dir> \
-n <name>
Example: create a project from a bunch of different annotations and images, and generate TFrecord for TF Detection API for model training
datum project create
# 'default' is the name of the subset below
datum source add path <path/to/coco/instances_default.json> -f coco_instances
datum source add path <path/to/cvat/default.xml> -f cvat
datum source add path <path/to/voc> -f voc_detection
datum source add path <path/to/datumaro/default.json> -f datumaro
datum source add path <path/to/images/dir> -f image_dir
datum project export -f tf_detection_api
This command allows to create a sub-Project from a Project. The new project includes only items satisfying some condition. XPath is used as a query format.
There are several filtering modes available (-m/--mode
parameter).
Supported modes:
i
,items
a
,annotations
i+a
,a+i
,items+annotations
,annotations+items
When filtering annotations, use the items+annotations
mode to point that annotation-less dataset items should be
removed. To select an annotation, write an XPath that
returns annotation
elements (see examples).
Usage:
datum project filter --help
datum project filter \
-p <project dir> \
-e '<xpath filter expression>'
Example: extract a dataset with only images which width
< height
datum project filter \
-p test_project \
-e '/item[image/width < image/height]'
Example: extract a dataset with only large annotations of class cat
and any non-persons
datum project filter \
-p test_project \
--mode annotations -e '/item/annotation[(label="cat" and area > 99.5) or label!="person"]'
Example: extract a dataset with only occluded annotations, remove empty images
datum project filter \
-p test_project \
-m i+a -e '/item/annotation[occluded="True"]'
Item representations are available with --dry-run
parameter:
<item>
<id>290768</id>
<subset>minival2014</subset>
<image>
<width>612</width>
<height>612</height>
<depth>3</depth>
</image>
<annotation>
<id>80154</id>
<type>bbox</type>
<label_id>39</label_id>
<x>264.59</x>
<y>150.25</y>
<w>11.199999999999989</w>
<h>42.31</h>
<area>473.87199999999956</area>
</annotation>
<annotation>
<id>669839</id>
<type>bbox</type>
<label_id>41</label_id>
<x>163.58</x>
<y>191.75</y>
<w>76.98999999999998</w>
<h>73.63</h>
<area>5668.773699999998</area>
</annotation>
...
</item>
This command updates items in a project from another one (check Merge Projects for complex merging).
Usage:
datum project merge --help
datum project merge \
-p <project dir> \
-o <output dir> \
<other project dir>
Example: update annotations in the first_project
with annotations
from the second_project
and save the result as merged_project
datum project merge \
-p first_project \
-o merged_project \
second_project
This command merges items from 2 or more projects and checks annotations for errors.
Spatial annotations are compared by distance and intersected, labels and attributes
are selected by voting.
Merge conflicts, missing items and annotations, other errors are saved into a .json
file.
Usage:
datum merge --help
datum merge <project dirs>
Example: merge 4 (partially-)intersecting projects,
- consider voting succeeded when there are 3+ same votes
- consider shapes intersecting when IoU >= 0.6
- check annotation groups to have
person
,hand
,head
andfoot
(?
for optional)
datum merge project1/ project2/ project3/ project4/ \
--quorum 3 \
-iou 0.6 \
--groups 'person,hand?,head,foot?'
This command exports a Project as a dataset in some format.
Supported formats are listed in the command help. Check extending tips for information on extra format support.
Usage:
datum project export --help
datum project export \
-p <project dir> \
-o <output dir> \
-f <format> \
-- [additional format parameters]
Example: save project as VOC-like dataset, include images, convert images to PNG
datum project export \
-p test_project \
-o test_project-export \
-f voc \
-- --save-images --image-ext='.png'
This command outputs project status information.
Usage:
datum project info --help
datum project info \
-p <project dir>
Example:
datum project info -p /test_project
Project:
name: test_project
location: /test_project
Sources:
source 'instances_minival2014':
format: coco_instances
url: /coco_like/annotations/instances_minival2014.json
Dataset:
length: 5000
categories: label
label:
count: 80
labels: person, bicycle, car, motorcycle (and 76 more)
subsets: minival2014
subset 'minival2014':
length: 5000
categories: label
label:
count: 80
labels: person, bicycle, car, motorcycle (and 76 more)
This command computes various project statistics, such as:
- image mean and std. dev.
- class and attribute balance
- mask pixel balance
- segment area distribution
Usage:
datum project stats --help
datum project stats \
-p <project dir>
Example:
datum project stats -p /test_project
{
"annotations": {
"labels": {
"attributes": {
"gender": {
"count": 358,
"distribution": {
"female": [
149,
0.41620111731843573
],
"male": [
209,
0.5837988826815642
]
},
"values count": 2,
"values present": [
"female",
"male"
]
},
"view": {
"count": 340,
"distribution": {
"__undefined__": [
4,
0.011764705882352941
],
"front": [
54,
0.1588235294117647
],
"left": [
14,
0.041176470588235294
],
"rear": [
235,
0.6911764705882353
],
"right": [
33,
0.09705882352941177
]
},
"values count": 5,
"values present": [
"__undefined__",
"front",
"left",
"rear",
"right"
]
}
},
"count": 2038,
"distribution": {
"car": [
340,
0.16683022571148184
],
"cyclist": [
194,
0.09519136408243375
],
"head": [
354,
0.17369970559371933
],
"ignore": [
100,
0.04906771344455348
],
"left_hand": [
238,
0.11678115799803729
],
"person": [
358,
0.17566241413150147
],
"right_hand": [
77,
0.037782139352306184
],
"road_arrows": [
326,
0.15996074582924436
],
"traffic_sign": [
51,
0.025024533856722278
]
}
},
"segments": {
"area distribution": [
{
"count": 1318,
"max": 11425.1,
"min": 0.0,
"percent": 0.9627465303140978
},
{
"count": 1,
"max": 22850.2,
"min": 11425.1,
"percent": 0.0007304601899196494
},
{
"count": 0,
"max": 34275.3,
"min": 22850.2,
"percent": 0.0
},
{
"count": 0,
"max": 45700.4,
"min": 34275.3,
"percent": 0.0
},
{
"count": 0,
"max": 57125.5,
"min": 45700.4,
"percent": 0.0
},
{
"count": 0,
"max": 68550.6,
"min": 57125.5,
"percent": 0.0
},
{
"count": 0,
"max": 79975.7,
"min": 68550.6,
"percent": 0.0
},
{
"count": 0,
"max": 91400.8,
"min": 79975.7,
"percent": 0.0
},
{
"count": 0,
"max": 102825.90000000001,
"min": 91400.8,
"percent": 0.0
},
{
"count": 50,
"max": 114251.0,
"min": 102825.90000000001,
"percent": 0.036523009495982466
}
],
"avg. area": 5411.624543462382,
"pixel distribution": {
"car": [
13655,
0.0018431496518735067
],
"cyclist": [
939005,
0.12674674030446592
],
"head": [
0,
0.0
],
"ignore": [
5501200,
0.7425510702956085
],
"left_hand": [
0,
0.0
],
"person": [
954654,
0.12885903974805205
],
"right_hand": [
0,
0.0
],
"road_arrows": [
0,
0.0
],
"traffic_sign": [
0,
0.0
]
}
}
},
"annotations by type": {
"bbox": {
"count": 548
},
"caption": {
"count": 0
},
"label": {
"count": 0
},
"mask": {
"count": 0
},
"points": {
"count": 669
},
"polygon": {
"count": 821
},
"polyline": {
"count": 0
}
},
"annotations count": 2038,
"dataset": {
"image mean": [
107.06903686941979,
79.12831698580979,
52.95829558185416
],
"image std": [
49.40237673503467,
43.29600731496902,
35.47373007603151
],
"images count": 100
},
"images count": 100,
"subsets": {},
"unannotated images": [
"img00051",
"img00052",
"img00053",
"img00054",
"img00055",
],
"unannotated images count": 5
}
Supported models:
- OpenVINO
- Custom models via custom
launchers
Usage:
datum model add --help
Example: register an OpenVINO model
A model consists of a graph description and weights. There is also a script used to convert model outputs to internal data structures.
datum project create
datum model add \
-n <model_name> openvino \
-d <path_to_xml> -w <path_to_bin> -i <path_to_interpretation_script>
Interpretation script for an OpenVINO detection model (convert.py
):
from datumaro.components.extractor import *
max_det = 10
conf_thresh = 0.1
def process_outputs(inputs, outputs):
# inputs = model input, array or images, shape = (N, C, H, W)
# outputs = model output, shape = (N, 1, K, 7)
# results = conversion result, [ [ Annotation, ... ], ... ]
results = []
for input, output in zip(inputs, outputs):
input_height, input_width = input.shape[:2]
detections = output[0]
image_results = []
for i, det in enumerate(detections):
label = int(det[1])
conf = det[2]
if conf <= conf_thresh:
continue
x = max(int(det[3] * input_width), 0)
y = max(int(det[4] * input_height), 0)
w = min(int(det[5] * input_width - x), input_width)
h = min(int(det[6] * input_height - y), input_height)
image_results.append(Bbox(x, y, w, h,
label=label, attributes={'score': conf} ))
results.append(image_results[:max_det])
return results
def get_categories():
# Optionally, provide output categories - label map etc.
# Example:
label_categories = LabelCategories()
label_categories.add('person')
label_categories.add('car')
return { AnnotationType.label: label_categories }
This command applies model to dataset images and produces a new project.
Usage:
datum model run --help
datum model run \
-p <project dir> \
-m <model_name> \
-o <save_dir>
Example: launch inference on a dataset
datum project import <...>
datum model add mymodel <...>
datum model run -m mymodel -o inference
The command compares two datasets and saves the results in the specified directory. The current project is considered to be "ground truth".
datum project diff --help
datum project diff <other_project_dir> -o <save_dir>
Example: compare a dataset with model inference
datum project import <...>
datum model add mymodel <...>
datum project transform <...> -o inference
datum project diff inference -o diff
Usage:
datum explain --help
datum explain \
-m <model_name> \
-o <save_dir> \
-t <target> \
<method> \
<method_params>
Example: run inference explanation on a single image with visualization
datum project create <...>
datum model add mymodel <...>
datum explain \
-m mymodel \
-t 'image.png' \
rise \
-s 1000 --progressive
This command allows to modify images or annotations in a project all at once.
datum project transform --help
datum project transform \
-p <project_dir> \
-o <output_dir> \
-t <transform_name> \
-- [extra transform options]
Example: split a dataset randomly to train
and test
subsets, ratio is 2:1
datum project transform -t random_split -- --subset train:.67 --subset test:.33
Example: convert polygons to masks, masks to boxes etc.:
datum project transform -t boxes_to_masks
datum project transform -t masks_to_polygons
datum project transform -t polygons_to_masks
datum project transform -t shapes_to_boxes
Example: remap dataset labels, person
to car
and cat
to dog
, keep bus
, remove others
datum project transform -t remap_labels -- \
-l person:car -l bus:bus -l cat:dog \
--default delete
Example: rename dataset items by a regular expression
- Replace
pattern
withreplacement
- Remove
frame_
from item ids
datum project transform -t rename -- -e '|pattern|replacement|'
datum project transform -t rename -- -e '|frame_(\d+)|\\1|'
There are few ways to extend and customize Datumaro behaviour, which is supported by plugins. Check our contribution guide for details on plugin implementation. In general, a plugin is a Python code file. It must be put into a plugin directory:
<project_dir>/.datumaro/plugins
for project-specific plugins<datumaro_dir>/plugins
for global plugins
Dataset reading is supported by Extractors and Importers. An Extractor produces a list of dataset items corresponding to the dataset. An Importer creates a project from the data source location. It is possible to add custom Extractors and Importers. To do this, you need to put an Extractor and Importer implementation scripts to a plugin directory.
Dataset writing is supported by Converters. A Converter produces a dataset of a specific format from dataset items. It is possible to add custom Converters. To do this, you need to put a Converter implementation script to a plugin directory.
A Transform is a function for altering a dataset and producing a new one. It can update dataset items, annotations, classes, and other properties. A list of available transforms for dataset conversions can be extended by adding a Transform implementation script into a plugin directory.
A list of available launchers for model execution can be extended by adding a Launcher implementation script into a plugin directory.