-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualisations.py
67 lines (60 loc) · 2.09 KB
/
visualisations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.colors
from mpl_toolkits.mplot3d import Axes3D
from tqdm import tqdm
import cv2
import os
import imageio
import numpy as np
from utils import *
def plotclusters3D(data, labels, peaks):
"""
Plots the modes of the given image data in 3D by coloring each pixel
according to its corresponding peak.
Args:
data: image data in the format [number of pixels]x[feature vector].
labels: a list of labels, one for each pixel.
peaks: a list of vectors, whose first three components can
be interpreted as BGR values.
"""
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
bgr_peaks = np.array(peaks[:, 0:3], dtype=float)
rgb_peaks = bgr_peaks[...,::-1]
rgb_peaks /= 255.0
for idx, peak in enumerate(rgb_peaks):
color = np.random.uniform(0, 1, 3)
#TODO: instead of random color, you can use peaks when you work on actual images
# color = peak
cluster = data[np.where(labels == idx)[0]].T
ax.scatter(cluster[0], cluster[1], cluster[2], c=[color], s=.5)
fig.show()
plt.show()
def make_label_colormap():
"""Create a color map for visualizing the labels themselves,
such that the segment boundaries become more visible, unlike
in the visualization using the cluster peak colors.
"""
rangeCol = np.random.RandomState(2)
vals = np.linspace(0, 1, 20)
colors = plt.cm.get_cmap('hsv')(vals)
rangeCol.shuffle(colors)
return matplotlib.colors.ListedColormap(colors)
def show_image(title, image):
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(2, 3, 4)
ax.set_title(title)
ax.imshow(image)
fig.tight_layout()
plt.show()
def show_labels(title, image):
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(2, 3, 5)
ax.set_title(title)
ax.imshow(labels.reshape(image.shape[:2]), cmap=make_label_colormap())
fig.tight_layout()
plt.show()
def save_image(filename, image):
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
cv2.imwrite(filename, image)