-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfigure_masking_threshold.py
76 lines (55 loc) · 3.17 KB
/
figure_masking_threshold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import dataclasses
from itertools import product
import pathlib
import matplotlib.pyplot as plt
from benchmarking.distance_benchmark import run_image_vs_image_experiment, ImageVsImageCase, log_git_versions, plot_saliency_map_on_image, run_image_captioning_experiment, ImageCaptioningCase
from benchmarking.Config import original_config_options, Config
imagenet_case = ImageVsImageCase(name='bee_vs_fly',
input_image_file_name='bee.jpg',
reference_image_file_name='fly.jpg')
image_size = 224
half_image_size = image_size / 2
fancy_figure_kwargs = {
# much fun with DPI, column width and font size (and font type of course!)
# ... once we know these things
'alpha': 0.7
}
base_output_folder = pathlib.Path('paper_figures')
mask_threshold_configs = [dataclasses.replace(original_config_options,
experiment_name=f'mask_selection_thresholds_neg{neg_min}-{neg_max}_pos{pos_min}-{pos_max}',
mask_selection_range_max=pos_max,
mask_selection_range_min=pos_min,
mask_selection_negative_range_max=neg_max,
mask_selection_negative_range_min=neg_min,
) for pos_min, pos_max, neg_min, neg_max in
[
(0.0, 0.05, 0.95, 1.0),
(0.0, 0.1, 0.9, 1.0),
(0.0, 0.15, 0.85, 1.0),
(0.0, 0.2, 0.8, 1.0),
(0.0, 0.4, 0.6, 1.0),
]]
def make_figure():
fig, ax = plt.subplots(1, 5, figsize=(12, 2), layout="constrained")
for ix, config in enumerate(mask_threshold_configs):
output_folder = base_output_folder / f'{config.experiment_name}'
output_folder.mkdir(exist_ok=True, parents=True)
config.to_yaml_file(output_folder / 'config.yml')
log_git_versions(output_folder)
case_folder = output_folder / f'image_vs_image_{imagenet_case.name}'
case_folder.mkdir(exist_ok=True, parents=True)
saliency, central_value, input_image = run_image_vs_image_experiment(imagenet_case, config, case_folder, analyse=False)
ax_ix = ax.flatten()[ix]
plot_saliency_map_on_image(input_image, saliency[0], ax=ax_ix,
title="", add_value_limits_to_title=False,
vmin=saliency[0].min(), vmax=saliency[0].max(),
central_value=central_value, **fancy_figure_kwargs)
prepend = ""
selected = round((config.mask_selection_negative_range_max - config.mask_selection_negative_range_min) * 100)
if ix == 0:
prepend = "masks selected (each side): "
ax_ix.text(half_image_size, image_size + 20, f'{prepend}{selected}%',
horizontalalignment='center', verticalalignment='center')
fig.savefig(base_output_folder / 'masking_threshold.pdf')
if __name__ == '__main__':
make_figure()