diff --git a/_modules/dicee/models/adopt.html b/_modules/dicee/models/adopt.html new file mode 100644 index 00000000..750b5392 --- /dev/null +++ b/_modules/dicee/models/adopt.html @@ -0,0 +1,668 @@ + + + + + + + + dicee.models.adopt — DICE Embeddings 0.1.3.2 documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for dicee.models.adopt

+# CD: copy pasted from https://raw.githubusercontent.com/iShohei220/adopt/refs/heads/main/adopt.py
+# mypy: allow-untyped-decorators
+# mypy: allow-untyped-defs
+from typing import cast, Callable, List, Optional, Tuple, Union
+
+import torch
+from torch import Tensor
+
+from torch.optim.optimizer import (
+    _capturable_doc, # noqa: F401
+    _default_to_fused_or_foreach,
+    _device_dtype_check_for_fused,
+    _differentiable_doc, # noqa: F401
+    _disable_dynamo_if_unsupported,
+    _foreach_doc, # noqa: F401
+    _fused_doc, # noqa: F401
+    _get_capturable_supported_devices,
+    _get_scalar_dtype,
+    _get_value, # noqa: F401
+    _maximize_doc, # noqa: F401
+    _stack_if_compiling, # noqa: F401
+    _use_grad_for_differentiable,
+    _view_as_real,
+    DeviceDict, # noqa: F401
+    Optimizer,
+    ParamsT,
+)
+
+
+__all__ = ["ADOPT", "adopt"]
+
+
+
+[docs] +class ADOPT(Optimizer): + def __init__( + self, + params: ParamsT, + lr: Union[float, Tensor] = 1e-3, + betas: Tuple[float, float] = (0.9, 0.9999), + eps: float = 1e-6, + clip_lambda: Optional[Callable[[int], float]] = lambda step: step**0.25, + weight_decay: float = 0.0, + decouple: bool = False, + *, + foreach: Optional[bool] = None, + maximize: bool = False, + capturable: bool = False, + differentiable: bool = False, + fused: Optional[bool] = None, + ): + if isinstance(lr, Tensor): + if foreach and not capturable: + raise ValueError( + "lr as a Tensor is not supported for capturable=False and foreach=True" + ) + if lr.numel() != 1: + raise ValueError("Tensor lr must be 1-element") + if not 0.0 <= lr: + raise ValueError(f"Invalid learning rate: {lr}") + if not 0.0 <= eps: + raise ValueError(f"Invalid epsilon value: {eps}") + if not 0.0 <= betas[0] < 1.0: + raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") + if not 0.0 <= betas[1] < 1.0: + raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") + if not 0.0 <= weight_decay: + raise ValueError(f"Invalid weight_decay value: {weight_decay}") + + self.clip_lambda = clip_lambda + + defaults = dict( + lr=lr, + betas=betas, + eps=eps, + weight_decay=weight_decay, + decouple=decouple, + maximize=maximize, + foreach=foreach, + capturable=capturable, + differentiable=differentiable, + fused=fused, + ) + super().__init__(params, defaults) + + if fused: + # TODO: support fused + raise RuntimeError("`fused` is not currently supported") + + if differentiable: + raise RuntimeError("`fused` does not support `differentiable`") + self._step_supports_amp_scaling = True + # TODO(crcrpar): [low prec params & their higher prec copy] + # Support AMP with FP16/BF16 model params which would need + # higher prec copy of params to do update math in higher prec to + # alleviate the loss of information. + if foreach: + raise RuntimeError("`fused` and `foreach` cannot be `True` together.") + +
+[docs] + def __setstate__(self, state): + super().__setstate__(state) + for group in self.param_groups: + group.setdefault("maximize", False) + group.setdefault("foreach", None) + group.setdefault("capturable", False) + group.setdefault("differentiable", False) + fused = group.setdefault("fused", None) + for p in group["params"]: + p_state = self.state.get(p, []) + if len(p_state) != 0 and not torch.is_tensor(p_state["step"]): + step_val = float(p_state["step"]) + p_state["step"] = ( + torch.tensor( + step_val, + dtype=_get_scalar_dtype(is_fused=fused), + device=p.device, + ) + if group["capturable"] or group["fused"] + else torch.tensor(step_val, dtype=_get_scalar_dtype()) + )
+ + + def _init_group( + self, + group, + params_with_grad, + grads, + exp_avgs, + exp_avg_sqs, + state_steps, + ): + has_complex = False + for p in group["params"]: + if p.grad is not None: + has_complex |= torch.is_complex(p) + params_with_grad.append(p) + if p.grad.is_sparse: + raise RuntimeError( + "ADOPT does not support sparse gradients" + ) + grads.append(p.grad) + + state = self.state[p] + # Lazy state initialization + if len(state) == 0: + if group["fused"]: + _device_dtype_check_for_fused(p) + # note(crcrpar): [special device hosting for step] + # Deliberately host `step` on CPU if both capturable and fused are off. + # This is because kernel launches are costly on CUDA and XLA. + state["step"] = ( + torch.zeros( + (), + dtype=_get_scalar_dtype(is_fused=group["fused"]), + device=p.device, + ) + if group["capturable"] or group["fused"] + else torch.tensor(0.0, dtype=_get_scalar_dtype()) + ) + # Exponential moving average of gradient values + state["exp_avg"] = torch.zeros_like( + p, memory_format=torch.preserve_format + ) + # Exponential moving average of squared gradient values + state["exp_avg_sq"] = torch.zeros_like( + p, memory_format=torch.preserve_format + ) + + exp_avgs.append(state["exp_avg"]) + exp_avg_sqs.append(state["exp_avg_sq"]) + + if group["differentiable"] and state["step"].requires_grad: + raise RuntimeError( + "`requires_grad` is not supported for `step` in differentiable mode" + ) + + # Foreach without capturable does not support a tensor lr + if ( + group["foreach"] + and torch.is_tensor(group["lr"]) + and not group["capturable"] + ): + raise RuntimeError( + "lr as a Tensor is not supported for capturable=False and foreach=True" + ) + + state_steps.append(state["step"]) + return has_complex + +
+[docs] + @_use_grad_for_differentiable + def step(self, closure=None): + """Perform a single optimization step. + + Args: + closure (Callable, optional): A closure that reevaluates the model + and returns the loss. + """ + self._cuda_graph_capture_health_check() + + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + params_with_grad: List[Tensor] = [] + grads: List[Tensor] = [] + exp_avgs: List[Tensor] = [] + exp_avg_sqs: List[Tensor] = [] + state_steps: List[Tensor] = [] + beta1, beta2 = group["betas"] + + has_complex = self._init_group( + group, + params_with_grad, + grads, + exp_avgs, + exp_avg_sqs, + state_steps, + ) + + adopt( + params_with_grad, + grads, + exp_avgs, + exp_avg_sqs, + state_steps, + has_complex=has_complex, + beta1=beta1, + beta2=beta2, + lr=group["lr"], + clip_lambda=self.clip_lambda, + weight_decay=group["weight_decay"], + decouple=group["decouple"], + eps=group["eps"], + maximize=group["maximize"], + foreach=group["foreach"], + capturable=group["capturable"], + differentiable=group["differentiable"], + fused=group["fused"], + grad_scale=getattr(self, "grad_scale", None), + found_inf=getattr(self, "found_inf", None), + ) + + return loss
+
+ + + +def _single_tensor_adopt( + params: List[Tensor], + grads: List[Tensor], + exp_avgs: List[Tensor], + exp_avg_sqs: List[Tensor], + state_steps: List[Tensor], + grad_scale: Optional[Tensor], + found_inf: Optional[Tensor], + *, + has_complex: bool, + beta1: float, + beta2: float, + lr: Union[float, Tensor], + clip_lambda: Optional[Callable[[int], float]], + weight_decay: float, + decouple: bool, + eps: float, + maximize: bool, + capturable: bool, + differentiable: bool, +): + assert grad_scale is None and found_inf is None + + if torch.jit.is_scripting(): + # this assert is due to JIT being dumb and not realizing that the ops below + # have overloads to handle both float and Tensor lrs, so we just assert it's + # a float since most people using JIT are using floats + assert isinstance(lr, float) + + for i, param in enumerate(params): + grad = grads[i] if not maximize else -grads[i] + exp_avg = exp_avgs[i] + exp_avg_sq = exp_avg_sqs[i] + step_t = state_steps[i] + + # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] + if not torch._utils.is_compiling() and capturable: + capturable_supported_devices = _get_capturable_supported_devices() + assert ( + param.device.type == step_t.device.type + and param.device.type in capturable_supported_devices + ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." + + step = step_t if capturable or differentiable else _get_value(step_t) + + if weight_decay != 0 and not decouple: + grad = grad.add(param, alpha=weight_decay) + + if torch.is_complex(param): + grad = torch.view_as_real(grad) + if exp_avg is not None: + exp_avg = torch.view_as_real(exp_avg) + if exp_avg_sq is not None: + exp_avg_sq = torch.view_as_real(exp_avg_sq) + param = torch.view_as_real(param) + + if step == 0: + exp_avg_sq.addcmul_(grad, grad.conj()) + # update step + step_t += 1 + continue + + if weight_decay != 0 and decouple: + param.add_(param, alpha=-lr*weight_decay) + + denom = torch.clamp(exp_avg_sq.sqrt(), eps) + normed_grad = grad.div(denom) + if clip_lambda is not None: + clip = clip_lambda(step) + normed_grad.clamp_(-clip, clip) + + exp_avg.lerp_(normed_grad, 1 - beta1) + + param.add_(exp_avg, alpha=-lr) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2) + + # update step + step_t += 1 + + +def _multi_tensor_adopt( + params: List[Tensor], + grads: List[Tensor], + exp_avgs: List[Tensor], + exp_avg_sqs: List[Tensor], + state_steps: List[Tensor], + grad_scale: Optional[Tensor], + found_inf: Optional[Tensor], + *, + has_complex: bool, + beta1: float, + beta2: float, + lr: Union[float, Tensor], + clip_lambda: Optional[Callable[[int], float]], + weight_decay: float, + decouple: bool, + eps: float, + maximize: bool, + capturable: bool, + differentiable: bool, +): + if len(params) == 0: + return + + if isinstance(lr, Tensor) and not capturable: + raise RuntimeError( + "lr as a Tensor is not supported for capturable=False and foreach=True" + ) + + # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] + if not torch._utils.is_compiling() and capturable: + capturable_supported_devices = _get_capturable_supported_devices( + supports_xla=False + ) + assert all( + p.device.type == step.device.type + and p.device.type in capturable_supported_devices + for p, step in zip(params, state_steps) + ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." + + assert grad_scale is None and found_inf is None + + assert not differentiable, "_foreach ops don't support autograd" + + grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( + [params, grads, exp_avgs, exp_avg_sqs, state_steps] # type: ignore[list-item] + ) + for ( + device_params_, + device_grads_, + device_exp_avgs_, + device_exp_avg_sqs_, + device_state_steps_, + ), _ in grouped_tensors.values(): + device_params = cast(List[Tensor], device_params_) + device_grads = cast(List[Tensor], device_grads_) + device_exp_avgs = cast(List[Tensor], device_exp_avgs_) + device_exp_avg_sqs = cast(List[Tensor], device_exp_avg_sqs_) + device_state_steps = cast(List[Tensor], device_state_steps_) + + # Handle complex parameters + if has_complex: + _view_as_real( + device_params, device_grads, device_exp_avgs, device_exp_avg_sqs + ) + + if maximize: + device_grads = torch._foreach_neg(device_grads) # type: ignore[assignment] + + if weight_decay != 0 and not decouple: + # Re-use the intermediate memory (device_grads) already allocated for maximize + if maximize: + torch._foreach_add_(device_grads, device_params, alpha=weight_decay) + else: + device_grads = torch._foreach_add( # type: ignore[assignment] + device_grads, device_params, alpha=weight_decay + ) + + if device_state_steps[0] == 0: + torch._foreach_addcmul_(device_exp_avg_sqs, device_grads, device_grads) + + # Update steps + # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over + # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just + # wrapped it once now. The alpha is required to assure we go to the right overload. + if not torch._utils.is_compiling() and device_state_steps[0].is_cpu: + torch._foreach_add_( + device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0 + ) + else: + torch._foreach_add_(device_state_steps, 1) + + continue + + if weight_decay != 0 and decouple: + torch._foreach_add_(device_params, device_params, alpha=-lr*weight_decay) + + exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs) + torch._foreach_maximum_(exp_avg_sq_sqrt, eps) + + normed_grad = torch._foreach_div(device_grads, exp_avg_sq_sqrt) + if clip_lambda is not None: + clip = clip_lambda(device_state_steps[0]) + torch._foreach_maximum_(normed_grad, -clip) + torch._foreach_minimum_(normed_grad, clip) + + torch._foreach_lerp_(device_exp_avgs, normed_grad, 1 - beta1) + + torch._foreach_add_(device_params, device_exp_avgs, alpha=-lr) + torch._foreach_mul_(device_exp_avg_sqs, beta2) + torch._foreach_addcmul_( + device_exp_avg_sqs, device_grads, device_grads, value=1 - beta2 + ) + + # Update steps + # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over + # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just + # wrapped it once now. The alpha is required to assure we go to the right overload. + if not torch._utils.is_compiling() and device_state_steps[0].is_cpu: + torch._foreach_add_( + device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0 + ) + else: + torch._foreach_add_(device_state_steps, 1) + + +
+[docs] +@_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_adopt) +def adopt( + params: List[Tensor], + grads: List[Tensor], + exp_avgs: List[Tensor], + exp_avg_sqs: List[Tensor], + state_steps: List[Tensor], + # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 + # setting this as kwarg for now as functional API is compiled by torch/distributed/optim + foreach: Optional[bool] = None, + capturable: bool = False, + differentiable: bool = False, + fused: Optional[bool] = None, + grad_scale: Optional[Tensor] = None, + found_inf: Optional[Tensor] = None, + has_complex: bool = False, + *, + beta1: float, + beta2: float, + lr: Union[float, Tensor], + clip_lambda: Optional[Callable[[int], float]], + weight_decay: float, + decouple: bool, + eps: float, + maximize: bool, +): + r"""Functional API that performs ADOPT algorithm computation. + + """ + # Respect when the user inputs False/True for foreach or fused. We only want to change + # the default when neither have been user-specified. Note that we default to foreach + # and pass False to use_fused. This is not a mistake--we want to give the fused impl + # bake-in time before making it the default, even if it is typically faster. + if fused is None and foreach is None: + _, foreach = _default_to_fused_or_foreach( + params, differentiable, use_fused=False + ) + # Do not flip on foreach for the unsupported case where lr is a Tensor and capturable=False. + if foreach and isinstance(lr, Tensor) and not capturable: + foreach = False + if fused is None: + fused = False + if foreach is None: + foreach = False + + # this check is slow during compilation, so we skip it + # if it's strictly needed we can add this check back in dynamo + if not torch._utils.is_compiling() and not all( + isinstance(t, torch.Tensor) for t in state_steps + ): + raise RuntimeError( + "API has changed, `state_steps` argument must contain a list of singleton tensors" + ) + + if foreach and torch.jit.is_scripting(): + raise RuntimeError("torch.jit.script not supported with foreach optimizers") + if fused and torch.jit.is_scripting(): + raise RuntimeError("torch.jit.script not supported with fused optimizers") + + if fused and not torch.jit.is_scripting(): + func = _fused_adopt # noqa: F821 + elif foreach and not torch.jit.is_scripting(): + func = _multi_tensor_adopt + else: + func = _single_tensor_adopt + + func( + params, + grads, + exp_avgs, + exp_avg_sqs, + state_steps, + has_complex=has_complex, + beta1=beta1, + beta2=beta2, + lr=lr, + clip_lambda=clip_lambda, + weight_decay=weight_decay, + decouple=decouple, + eps=eps, + maximize=maximize, + capturable=capturable, + differentiable=differentiable, + grad_scale=grad_scale, + found_inf=found_inf, + )
+ +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/dicee/models/base_model.html b/_modules/dicee/models/base_model.html index 163da5ee..3d39cd84 100644 --- a/_modules/dicee/models/base_model.html +++ b/_modules/dicee/models/base_model.html @@ -94,6 +94,7 @@

Source code for dicee.models.base_model

 import torch
 from torch import nn
 from torch.nn import functional as F
+from .adopt import ADOPT
 
 
[docs] @@ -212,9 +213,12 @@

Source code for dicee.models.base_model

             self.selected_optimizer = torch.optim.SGD(params=parameters, lr=self.learning_rate,
                                                       momentum=0, dampening=0, weight_decay=self.weight_decay,
                                                       nesterov=False)
+
         elif self.optimizer_name == 'Adam':
             self.selected_optimizer = torch.optim.Adam(parameters, lr=self.learning_rate,
                                                        weight_decay=self.weight_decay)
+        elif self.optimizer_name == 'Adopt':
+            self.selected_optimizer = ADOPT(parameters, lr=self.learning_rate)
         elif self.optimizer_name == 'AdamW':
             self.selected_optimizer = torch.optim.AdamW(parameters, lr=self.learning_rate,
                                                        weight_decay=self.weight_decay)
@@ -230,7 +234,7 @@ 

Source code for dicee.models.base_model

                                                        lr=self.learning_rate, lambd=0.0001, alpha=0.75,
                                                        weight_decay=self.weight_decay)
         else:
-            raise KeyError()
+            raise KeyError(f"{self.optimizer_name} is not found!")
         print(self.selected_optimizer)
         return self.selected_optimizer
@@ -425,10 +429,8 @@

Source code for dicee.models.base_model

             self.normalizer_class = IdentityClass
         else:
             raise NotImplementedError()
-        if self.args.get("optim") in ['AdamW', 'Adam', 'SGD']:
-            self.optimizer_name = self.args['optim']
-        else:
-            self.optimizer_name = 'Adam'
+
+        self.optimizer_name = self.args['optim']
 
         if self.args.get("init_param") is None:
             self.param_init = IdentityClass
diff --git a/_modules/dicee/models/ensemble.html b/_modules/dicee/models/ensemble.html
new file mode 100644
index 00000000..6a77376f
--- /dev/null
+++ b/_modules/dicee/models/ensemble.html
@@ -0,0 +1,264 @@
+
+
+
+
+
+  
+  
+  dicee.models.ensemble — DICE Embeddings 0.1.3.2 documentation
+      
+      
+      
+      
+      
+      
+
+  
+    
+      
+      
+      
+      
+      
+    
+    
+     
+
+
+ 
+  
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for dicee.models.ensemble

+import torch
+import copy
+
+import torch._dynamo
+
+torch._dynamo.config.suppress_errors = True
+
+
+
+[docs] +class EnsembleKGE: + def __init__(self, seed_model): + self.models = [] + self.optimizers = [] + self.loss_history = [] + for i in range(torch.cuda.device_count()): + i_model=copy.deepcopy(seed_model) + i_model.to(torch.device(f"cuda:{i}")) + # TODO: Why we cant send the compile model to cpu ? + # i_model = torch.compile(i_model) + self.optimizers.append(i_model.configure_optimizers()) + self.models.append(i_model) + # Maybe use the original model's name ? + self.name="TP_"+self.models[0].name + self.train_mode=True + +
+[docs] + def named_children(self): + return self.models[0].named_children()
+ + @property + def example_input_array(self): + return self.models[0].example_input_array + @property + def _trainer(self): + return self.models[0]._trainer + +
+[docs] + def parameters(self): + return [ x for i in self.models for x in i.parameters()]
+ + # return self.models[0].parameters() +
+[docs] + def modules(self): + return [x for i in self.models for x in i.modules()]
+ + +
+[docs] + def __iter__(self): + return (i for i in self.models)
+ + +
+[docs] + def __len__(self): + return len(self.models)
+ + +
+[docs] + def eval(self): + for model in self.models: + model.eval() + self.train_mode=False
+ +
+[docs] + def to(self,device): + for i in range(len(self.models)): + if device == "cpu": + self.models[i].cpu() + else: + raise NotImplementedError
+ + + +
+[docs] + def mem_of_model(self): + mem_of_ensemble={'EstimatedSizeMB': 0, 'NumParam': 0} + for i in self.models: + for k,v in i.mem_of_model().items(): + mem_of_ensemble[k] += v + return mem_of_ensemble
+ +
+[docs] + def __call__(self,x_batch): + + if self.train_mode is False: + yhat=0 + for gpu_id, model in enumerate(self.models): + yhat += model(x_batch) + return yhat / len(self.models) + else: + for opt in self.optimizers: + opt.zero_grad() + yhat=None + for gpu_id, model in enumerate(self.models): + # Move batch into the GPU where the i.th model resides + if isinstance(x_batch, tuple): + x_batch=(x_batch[0].to(f"cuda:{gpu_id}"),x_batch[1].to(f"cuda:{gpu_id}")) + else: + x_batch=x_batch.to(f"cuda:{gpu_id}") + if yhat is None: + yhat=model(x_batch) + else: + yhat+=model(x_batch).to("cuda:0") + return yhat/len(self.models)
+ + +
+[docs] + def step(self): + for opt in self.optimizers: + opt.step()
+ + + """ + def __getattr__(self, name): + # Create a function that will call the same attribute/method on each model + def method(*args, **kwargs): + results = [] + for model in self.models: + attr = getattr(model, name) + if callable(attr): + # If it's a method, call it with provided arguments + results.append(attr(*args, **kwargs)) + else: + # If it's an attribute, just get its value + results.append(attr) + return results + return method + """ +
+[docs] + def __str__(self): + return f"EnsembleKGE of {len(self.models)} {self.models[0]}"
+
+ +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/dicee/scripts/run.html b/_modules/dicee/scripts/run.html index 89800321..d9165617 100644 --- a/_modules/dicee/scripts/run.html +++ b/_modules/dicee/scripts/run.html @@ -134,9 +134,9 @@

Source code for dicee.scripts.run

                         help="Available knowledge graph embedding models. "
                              "To use other knowledge graph embedding models available in python, e.g.,"
                              "**Pykeen_BoxE** and add this into choices")
-    parser.add_argument('--optim', type=str, default='Adam',
+    parser.add_argument('--optim', type=str, default='Adopt',
                         help='An optimizer',
-                        choices=['Adam', 'AdamW', 'SGD',"NAdam", "Adagrad", "ASGD"])
+                        choices=['Adam', 'AdamW', 'SGD',"NAdam", "Adagrad", "ASGD", "Adopt"])
     parser.add_argument('--embedding_dim', type=int, default=32,
                         help='Number of dimensions for an embedding vector. ')
     parser.add_argument("--num_epochs", type=int, default=10, help='Number of epochs for training. ')
@@ -147,8 +147,8 @@ 

Source code for dicee.scripts.run

                         default={},
                         help='{"PPE":{ "last_percent_to_consider": 10}}'
                              '"Perturb": {"level": "out", "ratio": 0.2, "method": "RN", "scaler": 0.3}')
-    parser.add_argument("--trainer", type=str, default='MP',
-                        choices=['torchCPUTrainer', 'PL', 'torchDDP', "MP"],
+    parser.add_argument("--trainer", type=str, default='TP',
+                        choices=['torchCPUTrainer', 'PL', 'torchDDP', "TP"],
                         help='PL (pytorch lightning trainer), torchDDP (custom ddp), torchCPUTrainer (custom cpu only), MP (Model Paralelisim)')
     parser.add_argument('--scoring_technique', default="KvsSample",
                         help="Training technique for knowledge graph embedding model",
diff --git a/_modules/dicee/static_funcs.html b/_modules/dicee/static_funcs.html
index 705af759..a38c7ef1 100644
--- a/_modules/dicee/static_funcs.html
+++ b/_modules/dicee/static_funcs.html
@@ -109,6 +109,7 @@ 

Source code for dicee.static_funcs

 import polars as pl
 import requests
 import csv
+from .models.ensemble import EnsembleKGE
 
 
[docs] @@ -415,6 +416,10 @@

Source code for dicee.static_funcs

             print(e)
             print(model.name)
             print('Could not save the model correctly')
+    elif isinstance(model, EnsembleKGE):
+        for i, partial_model in enumerate(model):
+            new_path=path.replace("model.pt",f"model_partial_{i}.pt")
+            torch.save(partial_model.state_dict(), new_path)
     else:
         torch.save(model.model.state_dict(), path)
@@ -437,13 +442,7 @@

Source code for dicee.static_funcs

     assert full_storage_path is not None
     assert isinstance(model_name, str)
     assert len(model_name) > 1
-
-    # (1) Save pytorch model in trained_model .
-    if hasattr(trained_model,"is_ensemble"):
-        for i,kge in enumerate(trained_model):
-            torch.save(kge.state_dict(), full_storage_path + f'/{model_name}_{i}.pt')
-    else:
-        save_checkpoint_model(model=trained_model, path=full_storage_path + f'/{model_name}.pt')
+    save_checkpoint_model(model=trained_model, path=full_storage_path + f'/{model_name}.pt')
 
     if save_embeddings_as_csv:
         entity_emb, relation_ebm = trained_model.get_embeddings()
diff --git a/_modules/dicee/static_funcs_training.html b/_modules/dicee/static_funcs_training.html
index bb045541..76907c94 100644
--- a/_modules/dicee/static_funcs_training.html
+++ b/_modules/dicee/static_funcs_training.html
@@ -138,13 +138,13 @@ 

Source code for dicee.static_funcs_training

                          torch.tensor(r).repeat(num_entities, ),
                          all_entities), dim=1)
 
-        predictions_tails = model.forward_triples(x)
+        predictions_tails = model(x)
         x = torch.stack((all_entities,
                          torch.tensor(r).repeat(num_entities, ),
                          torch.tensor(t).repeat(num_entities)
                          ), dim=1)
 
-        predictions_heads = model.forward_triples(x)
+        predictions_heads = model(x)
         del x
 
         # 3. Computed filtered ranks for missing tail entities.
diff --git a/_modules/dicee/static_preprocess_funcs.html b/_modules/dicee/static_preprocess_funcs.html
index c0dbae34..592d5e76 100644
--- a/_modules/dicee/static_preprocess_funcs.html
+++ b/_modules/dicee/static_preprocess_funcs.html
@@ -156,7 +156,7 @@ 

Source code for dicee.static_preprocess_funcs

sanity_checking_with_arguments(args) if args.model == 'Shallom': args.scoring_technique = 'KvsAll' - # TODO: we need need to define as "NONE ? + if args.normalization == 'None': args.normalization = None assert args.normalization in [None, 'LayerNorm', 'BatchNorm1d'] diff --git a/_modules/dicee/trainer/dice_trainer.html b/_modules/dicee/trainer/dice_trainer.html index 226742e5..08cd4be9 100644 --- a/_modules/dicee/trainer/dice_trainer.html +++ b/_modules/dicee/trainer/dice_trainer.html @@ -97,7 +97,8 @@

Source code for dicee.trainer.dice_trainer

 from dicee.dataset_classes import construct_dataset
 from .torch_trainer import TorchTrainer
 from .torch_trainer_ddp import TorchDDPTrainer
-from .model_parallelism import MP
+from .model_parallelism import TensorParallel
+from ..models.ensemble import EnsembleKGE
 from ..static_funcs import timeit
 import os
 import torch
@@ -107,74 +108,6 @@ 

Source code for dicee.trainer.dice_trainer

 from ..knowledge_graph import KG
 import numpy as np
 
-
-
-[docs] -class EnsembleKGE: - """ - - """ - def __init__(self, model): - self.models = [] - self.optimizers=[] - - for i in range(torch.cuda.device_count()): - i_model=copy.deepcopy(model) - i_model.to(torch.device(f"cuda:{i}")) - i_model = torch.compile(i_model) - self.optimizers.append(i_model.configure_optimizers()) - self.models.append(i_model) - -
-[docs] - def __iter__(self): - return (i for i in self.models)
- - -
-[docs] - def __len__(self): - return len(self.models)
- - -
-[docs] - def __call__(self, *args, **kwargs): - # Forward - results = None - for model in self.models: - if results is None: - results=model(*args, **kwargs) - else: - results += model(*args, **kwargs) - return results/len(self.models)
- - -
-[docs] - def __getattr__(self, name): - # Create a function that will call the same attribute/method on each model - def method(*args, **kwargs): - results = [] - for model in self.models: - attr = getattr(model, name) - if callable(attr): - # If it's a method, call it with provided arguments - results.append(attr(*args, **kwargs)) - else: - # If it's an attribute, just get its value - results.append(attr) - return results - return method
- - -
-[docs] - def __str__(self): - return f"EnsembleKGE of {len(self.models)} {self.models[0]}"
-
- -
[docs] def load_term_mapping(file_path=str): @@ -184,13 +117,13 @@

Source code for dicee.trainer.dice_trainer

 
 
[docs] -def initialize_trainer(args, callbacks)->TorchTrainer | MP | TorchDDPTrainer | pl.Trainer: +def initialize_trainer(args, callbacks)->TorchTrainer | TensorParallel | TorchDDPTrainer | pl.Trainer: if args.trainer == 'torchCPUTrainer': print('Initializing TorchTrainer CPU Trainer...', end='\t') trainer = TorchTrainer(args, callbacks=callbacks) - elif args.trainer == 'MP': - print('Initializing MPTrainer...', end='\t') - trainer= MP(args, callbacks=callbacks) + elif args.trainer == 'TP': + print('Initializing TensorParallel...', end='\t') + trainer= TensorParallel(args, callbacks=callbacks) elif args.trainer == 'torchDDP': assert torch.cuda.is_available() print('Initializing TorchDDPTrainer GPU', end='\t') @@ -351,7 +284,7 @@

Source code for dicee.trainer.dice_trainer

 
[docs] @timeit - def initialize_trainer(self, callbacks: List) -> pl.Trainer | MP | TorchTrainer | TorchDDPTrainer: + def initialize_trainer(self, callbacks: List) -> pl.Trainer | TensorParallel | TorchTrainer | TorchDDPTrainer: """ Initialize Trainer from input arguments """ return initialize_trainer(self.args, callbacks)
@@ -452,16 +385,19 @@

Source code for dicee.trainer.dice_trainer

         assert isinstance(knowledge_graph, np.memmap) or isinstance(knowledge_graph, KG), \
             f"knowledge_graph must be an instance of KG or np.memmap. Currently {type(knowledge_graph)}"
         if self.args.num_folds_for_cv == 0:
-            self.trainer: Union[MP, TorchTrainer, TorchDDPTrainer, pl.Trainer]
+            self.trainer: Union[TensorParallel, TorchTrainer, TorchDDPTrainer, pl.Trainer]
             self.trainer = self.initialize_trainer(callbacks=get_callbacks(self.args))
-
             model, form_of_labelling = self.initialize_or_load_model()
             self.trainer.evaluator = self.evaluator
             self.trainer.dataset = knowledge_graph
             self.trainer.form_of_labelling = form_of_labelling
-            if isinstance(self.trainer, MP):
-                model=EnsembleKGE(model)
-            self.trainer.fit(model, train_dataloaders=self.init_dataloader(self.init_dataset()))
+            # TODO: Later, maybe we should write a callback to save the models in disk
+
+            if isinstance(self.trainer, TensorParallel):
+                model = self.trainer.fit(model, train_dataloaders=self.init_dataloader(self.init_dataset()))
+                assert isinstance(model,EnsembleKGE)
+            else:
+                self.trainer.fit(model, train_dataloaders=self.init_dataloader(self.init_dataset()))
 
 
             return model, form_of_labelling
diff --git a/_modules/dicee/trainer/model_parallelism.html b/_modules/dicee/trainer/model_parallelism.html
index 4afffb35..f55b3749 100644
--- a/_modules/dicee/trainer/model_parallelism.html
+++ b/_modules/dicee/trainer/model_parallelism.html
@@ -91,78 +91,256 @@ 

Source code for dicee.trainer.model_parallelism

< import torch from ..abstracts import AbstractTrainer from ..static_funcs_training import make_iterable_verbose +from ..models.ensemble import EnsembleKGE +from typing import Tuple -
-[docs] -class MP(AbstractTrainer): +
+[docs] +def extract_input_outputs(z: list, device=None): + # pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True) + if len(z) == 2: + x_batch, y_batch = z + # pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True) + if device: + x_batch, y_batch = x_batch.to(device, non_blocking=True), y_batch.pin_memory().to(device, + non_blocking=True) + return x_batch, y_batch + elif len(z) == 3: + x_batch, y_idx_batch, y_batch, = z + if device: + x_batch, y_batch, y_idx_batch = x_batch.pin_memory().to(device, + non_blocking=True), y_batch.pin_memory().to( + device, non_blocking=True), y_idx_batch.pin_memory().to(device, non_blocking=True) + return (x_batch, y_idx_batch), y_batch + else: + raise ValueError('Unexpected batch shape..')
+ + +
+[docs] +def find_good_batch_size(train_loader,ensemble_model,max_available_gpu_memory:float=0.05): + # () Initial batch size + batch_size=train_loader.batch_size + print("Automatic batch size finding") + for n in range(200): + # () Initialize a dataloader with a current batch_size + train_dataloaders = torch.utils.data.DataLoader(train_loader.dataset, + batch_size=batch_size, + shuffle=True, + sampler=None, + batch_sampler=None, + num_workers=0, + collate_fn=train_loader.dataset.collate_fn, + pin_memory=False, drop_last=False, + timeout=0, + worker_init_fn=None, + persistent_workers=False) + loss=None + for i, z in enumerate(train_dataloaders): + loss = forward_backward_update_loss(z,ensemble_model) + break + global_free_memory, total_memory = torch.cuda.mem_get_info() + available_gpu_memory = global_free_memory / total_memory + print(f"Random Batch Loss: {loss}\tFree/Total GPU Memory: {available_gpu_memory}\tBatch Size:{batch_size}") + # () Stepping criterion + if available_gpu_memory > max_available_gpu_memory and batch_size < len(train_loader.dataset) : + # Increment the current batch size + batch_size+=batch_size + else: + if batch_size >= len(train_loader.dataset): + print("Batch size equals to the training dataset size") + else: + print(f"Max GPU memory used\tFree/Total GPU Memory:{available_gpu_memory}") + + return batch_size + raise RuntimeError("The computation should be here!")
+ + +
+[docs] +def forward_backward_update_loss(z:Tuple, ensemble_model): + # () Get the i-th batch of data points. + x_batch, y_batch = extract_input_outputs(z) + # () Move the batch of labels into the master GPU : GPU-0 + y_batch = y_batch.to("cuda:0") + # () Forward Pass on the batch. Yhat located on the master GPU. + yhat = ensemble_model(x_batch) + # () Compute the loss + loss = torch.nn.functional.binary_cross_entropy_with_logits(yhat, y_batch) + # () Compute the gradient of the loss w.r.t. parameters. + loss.backward() + # () Parameter update. + ensemble_model.step() + # () Report the batch and epoch losses. + batch_loss = loss.item() + # () Accumulate batch loss + return batch_loss
+ + +
+[docs] +class TensorParallel(AbstractTrainer): def __init__(self, args, callbacks): super().__init__(args, callbacks) - -
-[docs] + self.models=[] +
+[docs] def get_ensemble(self): return self.models
-
-[docs] + +
+[docs] def fit(self, *args, **kwargs): """ Train model """ assert len(args) == 1 - models, = args - for i in models: - self.on_fit_start(self, i) - + seed_model, = args + # () Init. ensemble model. + ensemble_model = EnsembleKGE(seed_model) + # () Run on_fit_start callbacks. + self.on_fit_start(self, ensemble_model) + # () Sanity checking + assert torch.cuda.device_count()== len(ensemble_model) + # () + train_dataloader = kwargs['train_dataloaders'] + # () + train_dataloader = torch.utils.data.DataLoader(train_dataloader.dataset, + batch_size=find_good_batch_size(train_dataloader, ensemble_model), + shuffle=True, + sampler=None, + batch_sampler=None, + num_workers=self.attributes.num_core, + collate_fn=train_dataloader.dataset.collate_fn, + pin_memory=False, + drop_last=False, + timeout=0, + worker_init_fn=None, + persistent_workers=False) + num_of_batches = len(train_dataloader) + # () Start training. for epoch in (tqdm_bar := make_iterable_verbose(range(self.attributes.num_epochs), verbose=True, position=0, leave=True)): epoch_loss = 0 - num_of_batches = len(kwargs['train_dataloaders']) - for i, z in enumerate(kwargs['train_dataloaders']): - source, targets = self.extract_input_outputs(z) - yhat = 0 - # Perform forward for each model - for kge_model in models: - source = tuple(_.to(kge_model.device) for _ in source) if isinstance(source, tuple) else source.to(kge_model.device) - yhat+= kge_model(source).to("cpu") - # Normalize - yhat /=len(models) - loss = torch.nn.functional.binary_cross_entropy_with_logits(yhat, targets) - - loss.backward() - for opt in models.optimizers: - opt.step() - opt.zero_grad(set_to_none=True) - batch_loss = loss.item() + # () Iterate over batches. + for i, z in enumerate(train_dataloader): + batch_loss = forward_backward_update_loss(z,ensemble_model) epoch_loss += batch_loss + if hasattr(tqdm_bar, 'set_description_str'): tqdm_bar.set_description_str(f"Epoch:{epoch + 1}") if i > 0: - tqdm_bar.set_postfix_str(f"batch={i} | {num_of_batches}, loss_step={batch_loss:.5f}, loss_epoch={epoch_loss / i:.5f}") + tqdm_bar.set_postfix_str( + f"batch={i} | {num_of_batches}, loss_step={batch_loss:.5f}, loss_epoch={epoch_loss / i:.5f}") else: tqdm_bar.set_postfix_str(f"loss_step={batch_loss:.5f}, loss_epoch={batch_loss:.5f}") + ensemble_model.loss_history.append(epoch_loss) - for kge_model in models: - self.on_fit_end(self, kge_model)
+ self.on_fit_end(self, ensemble_model) + # TODO: Later, maybe we should write a callback to save the models in disk + return ensemble_model
+ """ + + def batchwisefit(self, *args, **kwargs): + assert len(args) == 1 + model, = args + # (1) Run the fit the start callback. + self.on_fit_start(self, model) + # (2) Setup DDP. + optimizer = model.configure_optimizers() + num_gpus = torch.cuda.device_count() + for epoch in (tqdm_bar := make_iterable_verbose(range(self.attributes.num_epochs), + verbose=True, position=0, leave=True)): + epoch_loss = 0 + num_of_batches = len(kwargs['train_dataloaders']) + for i, (x_batch, y_batch) in enumerate(kwargs['train_dataloaders']): + # Define a large batch into small batches + x_splits = torch.chunk(x_batch, num_gpus) + y_splits = torch.chunk(y_batch, num_gpus) + # Forward pass. We need to paralelize it + gpu_losses = [] + for gpu_id, (x_split, y_split) in enumerate(zip(x_splits, y_splits)): + y_split = y_split.to(f"cuda:{gpu_id}") + h_emb, r_emb, t_emb = model.get_triple_representation(x_split) + h_emb, r_emb, t_emb = h_emb.pin_memory().to(f"cuda:{gpu_id}", + non_blocking=True), r_emb.pin_memory().to(f"cuda:{gpu_id}", non_blocking=True), t_emb.pin_memory().to(f"cuda:{gpu_id}", non_blocking=True) + yhat = model.score(h_emb, r_emb, t_emb) + gpu_losses.append(torch.nn.functional.binary_cross_entropy_with_logits(yhat, y_split).to("cuda:0")) -
-[docs] - def extract_input_outputs(self, z: list): - # pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True) - if len(z) == 2: - x_batch, y_batch = z - # pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True) - # x_batch, y_batch = x_batch.pin_memory().to(self.local_rank, non_blocking=True), y_batch.pin_memory().to(self.local_rank, non_blocking=True) - return x_batch, y_batch - elif len(z) == 3: - x_batch, y_idx_batch, y_batch, = z - # x_batch, y_batch,y_idx_batch = x_batch.pin_memory().to(self.local_rank, non_blocking=True), y_batch.pin_memory().to(self.local_rank, non_blocking=True),y_idx_batch.pin_memory().to(self.local_rank, non_blocking=True) - return (x_batch, y_idx_batch), y_batch - else: - raise ValueError('Unexpected batch shape..')
-
+ loss = sum(gpu_losses) / len(gpu_losses) + + loss.backward() + batch_loss = loss.item() + optimizer.step() + optimizer.zero_grad(set_to_none=True) + + epoch_loss += batch_loss + + if hasattr(tqdm_bar, 'set_description_str'): + tqdm_bar.set_description_str(f"Epoch:{epoch + 1}") + if i > 0: + tqdm_bar.set_postfix_str( + f"batch={i} | {num_of_batches}, loss_step={batch_loss:.5f}, loss_epoch={epoch_loss / i:.5f}") + else: + tqdm_bar.set_postfix_str(f"loss_step={batch_loss:.5f}, loss_epoch={batch_loss:.5f}") + def torch_buggy_fit(self, *args, **kwargs): + assert len(args) == 1 + model, = args + # () Run the fit the start callback. + self.on_fit_start(self, model) + # () Init Process Group with NCCL. + torch.distributed.init_process_group(backend="nccl") + # () Get Rank and World Size. + rank = dist.get_rank() + world_size = dist.get_world_size() + # () Reinitialize Rank based on manuel seed rank. + torch.manual_seed(rank) + model.param_init(model.entity_embeddings.weight.data) + model.param_init(model.relation_embeddings.weight.data) + # () . + device = torch.device(f'cuda:{rank}') + model.to(device) + # () . + optimizer = model.configure_optimizers() + # () . + for epoch in (tqdm_bar := make_iterable_verbose(range(self.attributes.num_epochs), + verbose=True, position=0, leave=True)): + epoch_loss = 0 + num_of_batches = len(kwargs['train_dataloaders']) + # () . + for i, z in enumerate(kwargs['train_dataloaders']): + optimizer.zero_grad() + # () Get batch and move it on GPUs . + inputs,targets = extract_input_outputs(z,device) + # () Predict . + yhats = model(inputs) + # () TODO: Pytorch Bug https://github.com/pytorch/pytorch/issues/58005 . + dist.all_reduce(yhats,op=dist.ReduceOp.SUM) + # () Compute loss . + loss = torch.nn.functional.binary_cross_entropy_with_logits(yhats, targets) + # () Backward . + loss.backward() + # () . + batch_loss = loss.item() + # () . + optimizer.step() + # () . + epoch_loss +=batch_loss + # () . + if rank==0 and hasattr(tqdm_bar, 'set_description_str'): + tqdm_bar.set_description_str(f"Epoch:{epoch + 1}") + if i > 0: + tqdm_bar.set_postfix_str(f"batch={i} | {num_of_batches}, loss_step={batch_loss:.5f}, loss_epoch={epoch_loss / i:.5f}") + else: + tqdm_bar.set_postfix_str(f"loss_step={batch_loss:.5f}, loss_epoch={batch_loss:.5f}") + # () . + torch.distributed.destroy_process_group() + # () . + self.on_fit_end(self, model) + """
diff --git a/_modules/dicee/trainer/torch_trainer.html b/_modules/dicee/trainer/torch_trainer.html index 19739a60..570c278a 100644 --- a/_modules/dicee/trainer/torch_trainer.html +++ b/_modules/dicee/trainer/torch_trainer.html @@ -96,176 +96,6 @@

Source code for dicee.trainer.torch_trainer

 import psutil
 from tqdm import tqdm
 
-
-[docs] -class xMP(AbstractTrainer): - def __init__(self, args, callbacks): - super().__init__(args, callbacks) - self.loss_function = None - self.optimizer = None - self.model = None - self.train_dataloaders = None - self.training_step = None - torch.manual_seed(self.attributes.random_seed) - torch.cuda.manual_seed_all(self.attributes.random_seed) - assert torch.cuda.is_available(), "CUDA not available" - self.available_gpus = torch.cuda.device_count() - self.process = psutil.Process(os.getpid()) - - def _run_batch(self, i: int, x_batch, y_batch) -> float: - """ - Forward anc Backward according to a mini-batch - - Arguments - ---------- - i : index of a batch - x_batch: torch.Tensor on selected device - y_batch: torch.Tensor on selected device - Returns - ------- - batch loss (float) - """ - if self.attributes.gradient_accumulation_steps > 1: - # (1) Update parameters every gradient_accumulation_steps mini-batch. - if i % self.attributes.gradient_accumulation_steps == 0: - self.optimizer.zero_grad(set_to_none=True) - else: - # (2) Do not accumulate gradient, zero the gradients per batch. - self.optimizer.zero_grad(set_to_none=True) - # (3) Loss Forward and Backward w.r.t the batch. - return self.forward_backward_update(x_batch, y_batch) - -
-[docs] - def fit(self, *args, train_dataloaders, **kwargs) -> None: - """ - Training starts - - Arguments - ---------- - args:tuple - (BASEKGE,) - kwargs:Tuple - empty dictionary - Returns - ------- - batch loss (float) - """ - assert len(args) == 1 - model, = args - - import torch - import copy - - self.models=[] - self.optimizers=[] - for i in range(0, self.available_gpus): - i_model=copy.deepcopy(model) - self.optimizers.append(model.configure_optimizers()) - device = torch.device(f"cuda:{i}") - self.models.append(i_model.to(device)) - - - del device - del i_model - # Create a copy of models - self.model = model - self.model.to(self.device) - self.train_dataloaders = train_dataloaders - self.loss_function = model.loss_function - # self.optimizer = self.model.configure_optimizers() - # self.training_step = self.model.training_step - # (1) Start running callbacks - # self.on_fit_start(self, self.model) - - print(f'NumOfDataPoints:{len(self.train_dataloaders.dataset)} ' - f'| NumOfEpochs:{self.attributes.max_epochs} ' - f'| LearningRate:{self.model.learning_rate} ' - f'| BatchSize:{self.train_dataloaders.batch_size} ' - f'| EpochBatchsize:{len(train_dataloaders)}') - - for epoch in (tqdm_bar := tqdm(range(self.attributes.max_epochs))): - epoch_loss = 0 - i = 0 - construct_mini_batch_time = None - batch: list - for i, batch in enumerate(self.train_dataloaders): - # (1) Extract Input and Outputs and set them on the dice - x_batch, y_batch = self.extract_input_outputs_set_device(batch) - start_time = time.time() - if construct_mini_batch_time: - construct_mini_batch_time = start_time - construct_mini_batch_time - # (2) Forward-Backward-Update. - batch_loss = self._run_batch(i, x_batch, y_batch) - epoch_loss += batch_loss - tqdm_bar.set_description_str(f"Epoch:{epoch + 1}") - if i > 0: - tqdm_bar.set_postfix_str(f"loss_step={batch_loss:.5f}, loss_epoch={epoch_loss / i:.5f}") - else: - tqdm_bar.set_postfix_str(f"loss_step={batch_loss:.5f}, loss_epoch={batch_loss:.5f}") - avg_epoch_loss = epoch_loss / len(self.train_dataloaders) - self.model.loss_history.append(avg_epoch_loss) - self.on_train_epoch_end(self, self.model) - self.on_fit_end(self, self.model)
- - -
-[docs] - def forward_backward_update(self, x_batch: torch.Tensor, y_batch: torch.Tensor) -> torch.Tensor: - """ - Compute forward, loss, backward, and parameter update - - Arguments - ---------- - x_batch:(torch.Tensor) mini-batch inputs - y_batch:(torch.Tensor) mini-batch outputs - - Returns - ------- - batch loss (float) - """ - batch_loss = self.training_step(batch=(x_batch, y_batch)) - batch_loss.backward() - self.optimizer.step() - return batch_loss.item()
- - -
-[docs] - def extract_input_outputs_set_device(self, batch: list) -> Tuple: - """ - Construct inputs and outputs from a batch of inputs with outputs From a batch of inputs and put - - Arguments - ---------- - batch: (list) mini-batch inputs on CPU - - Returns - ------- - (tuple) mini-batch on select device - """ - if len(batch) == 2: - x_batch, y_batch = batch - - if isinstance(x_batch, tuple): - # Triple and Byte - return x_batch, y_batch - else: - # (1) NegSample: x is a triple, y is a float - x_batch, y_batch = batch - return x_batch.to(self.device), y_batch.to(self.device) - elif len(batch) == 3: - x_batch, y_idx_batch, y_batch, = batch - x_batch, y_idx_batch, y_batch = x_batch.to(self.device), y_idx_batch.to(self.device), y_batch.to( - self.device) - return (x_batch, y_idx_batch), y_batch - else: - print(len(batch)) - print("Unexpected batch shape..") - raise RuntimeError
-
- -
[docs] class TorchTrainer(AbstractTrainer): diff --git a/_modules/index.html b/_modules/index.html index 1aff070c..35da74a7 100644 --- a/_modules/index.html +++ b/_modules/index.html @@ -97,10 +97,12 @@

All modules for which code is available

  • dicee.executer
  • dicee.knowledge_graph
  • dicee.knowledge_graph_embeddings
  • +
  • dicee.models.adopt
  • dicee.models.base_model
  • dicee.models.clifford
  • dicee.models.complex
  • dicee.models.dualE
  • +
  • dicee.models.ensemble
  • dicee.models.function_space
  • dicee.models.octonion
  • dicee.models.pykeen_models
  • diff --git a/_sources/autoapi/dicee/index.rst.txt b/_sources/autoapi/dicee/index.rst.txt index 10d1f0bd..bf31fa70 100644 --- a/_sources/autoapi/dicee/index.rst.txt +++ b/_sources/autoapi/dicee/index.rst.txt @@ -66,6 +66,7 @@ Classes dicee.PykeenKGE dicee.BytE dicee.BaseKGE + dicee.EnsembleKGE dicee.DICE_Trainer dicee.KGE dicee.Execute @@ -1988,6 +1989,67 @@ Package Contents .. py:method:: get_embeddings() -> Tuple[numpy.ndarray, numpy.ndarray] +.. py:class:: EnsembleKGE(seed_model) + + .. py:attribute:: models + :value: [] + + + + .. py:attribute:: optimizers + :value: [] + + + + .. py:attribute:: loss_history + :value: [] + + + + .. py:attribute:: name + + + .. py:attribute:: train_mode + :value: True + + + + .. py:method:: named_children() + + + .. py:property:: example_input_array + + + .. py:method:: parameters() + + + .. py:method:: modules() + + + .. py:method:: __iter__() + + + .. py:method:: __len__() + + + .. py:method:: eval() + + + .. py:method:: to(device) + + + .. py:method:: mem_of_model() + + + .. py:method:: __call__(x_batch) + + + .. py:method:: step() + + + .. py:method:: __str__() + + .. py:function:: create_recipriocal_triples(x) Add inverse triples into dask dataframe @@ -2183,7 +2245,7 @@ Package Contents - .. py:method:: initialize_trainer(callbacks: List) -> lightning.Trainer | dicee.trainer.model_parallelism.MP | dicee.trainer.torch_trainer.TorchTrainer | dicee.trainer.torch_trainer_ddp.TorchDDPTrainer + .. py:method:: initialize_trainer(callbacks: List) -> lightning.Trainer | dicee.trainer.model_parallelism.TensorParallel | dicee.trainer.torch_trainer.TorchTrainer | dicee.trainer.torch_trainer_ddp.TorchDDPTrainer Initialize Trainer from input arguments diff --git a/_sources/autoapi/dicee/models/adopt/index.rst.txt b/_sources/autoapi/dicee/models/adopt/index.rst.txt new file mode 100644 index 00000000..c791cc54 --- /dev/null +++ b/_sources/autoapi/dicee/models/adopt/index.rst.txt @@ -0,0 +1,67 @@ +dicee.models.adopt +================== + +.. py:module:: dicee.models.adopt + + +Classes +------- + +.. autoapisummary:: + + dicee.models.adopt.ADOPT + + +Functions +--------- + +.. autoapisummary:: + + dicee.models.adopt.adopt + + +Module Contents +--------------- + +.. py:class:: ADOPT(params: torch.optim.optimizer.ParamsT, lr: Union[float, torch.Tensor] = 0.001, betas: Tuple[float, float] = (0.9, 0.9999), eps: float = 1e-06, clip_lambda: Optional[Callable[[int], float]] = lambda step: step**0.25, weight_decay: float = 0.0, decouple: bool = False, *, foreach: Optional[bool] = None, maximize: bool = False, capturable: bool = False, differentiable: bool = False, fused: Optional[bool] = None) + + Bases: :py:obj:`torch.optim.optimizer.Optimizer` + + + Base class for all optimizers. + + .. warning:: + Parameters need to be specified as collections that have a deterministic + ordering that is consistent between runs. Examples of objects that don't + satisfy those properties are sets and iterators over values of dictionaries. + + :param params: an iterable of :class:`torch.Tensor` s or + :class:`dict` s. Specifies what Tensors should be optimized. + :type params: iterable + :param defaults: (dict): a dict containing default values of optimization + options (used when a parameter group doesn't specify them). + + + .. py:attribute:: clip_lambda + + + .. py:method:: __setstate__(state) + + + .. py:method:: step(closure=None) + + Perform a single optimization step. + + :param closure: A closure that reevaluates the model + and returns the loss. + :type closure: Callable, optional + + + +.. py:function:: adopt(params: List[torch.Tensor], grads: List[torch.Tensor], exp_avgs: List[torch.Tensor], exp_avg_sqs: List[torch.Tensor], state_steps: List[torch.Tensor], foreach: Optional[bool] = None, capturable: bool = False, differentiable: bool = False, fused: Optional[bool] = None, grad_scale: Optional[torch.Tensor] = None, found_inf: Optional[torch.Tensor] = None, has_complex: bool = False, *, beta1: float, beta2: float, lr: Union[float, torch.Tensor], clip_lambda: Optional[Callable[[int], float]], weight_decay: float, decouple: bool, eps: float, maximize: bool) + + Functional API that performs ADOPT algorithm computation. + + + + diff --git a/_sources/autoapi/dicee/models/ensemble/index.rst.txt b/_sources/autoapi/dicee/models/ensemble/index.rst.txt new file mode 100644 index 00000000..7eb8b9b6 --- /dev/null +++ b/_sources/autoapi/dicee/models/ensemble/index.rst.txt @@ -0,0 +1,78 @@ +dicee.models.ensemble +===================== + +.. py:module:: dicee.models.ensemble + + +Classes +------- + +.. autoapisummary:: + + dicee.models.ensemble.EnsembleKGE + + +Module Contents +--------------- + +.. py:class:: EnsembleKGE(seed_model) + + .. py:attribute:: models + :value: [] + + + + .. py:attribute:: optimizers + :value: [] + + + + .. py:attribute:: loss_history + :value: [] + + + + .. py:attribute:: name + + + .. py:attribute:: train_mode + :value: True + + + + .. py:method:: named_children() + + + .. py:property:: example_input_array + + + .. py:method:: parameters() + + + .. py:method:: modules() + + + .. py:method:: __iter__() + + + .. py:method:: __len__() + + + .. py:method:: eval() + + + .. py:method:: to(device) + + + .. py:method:: mem_of_model() + + + .. py:method:: __call__(x_batch) + + + .. py:method:: step() + + + .. py:method:: __str__() + + diff --git a/_sources/autoapi/dicee/models/index.rst.txt b/_sources/autoapi/dicee/models/index.rst.txt index b405b773..9fe9a09c 100644 --- a/_sources/autoapi/dicee/models/index.rst.txt +++ b/_sources/autoapi/dicee/models/index.rst.txt @@ -10,10 +10,12 @@ Submodules .. toctree:: :maxdepth: 1 + /autoapi/dicee/models/adopt/index /autoapi/dicee/models/base_model/index /autoapi/dicee/models/clifford/index /autoapi/dicee/models/complex/index /autoapi/dicee/models/dualE/index + /autoapi/dicee/models/ensemble/index /autoapi/dicee/models/function_space/index /autoapi/dicee/models/octonion/index /autoapi/dicee/models/pykeen_models/index @@ -28,6 +30,7 @@ Classes .. autoapisummary:: + dicee.models.ADOPT dicee.models.BaseKGELightning dicee.models.BaseKGE dicee.models.IdentityClass @@ -78,6 +81,41 @@ Functions Package Contents ---------------- +.. py:class:: ADOPT(params: torch.optim.optimizer.ParamsT, lr: Union[float, torch.Tensor] = 0.001, betas: Tuple[float, float] = (0.9, 0.9999), eps: float = 1e-06, clip_lambda: Optional[Callable[[int], float]] = lambda step: step**0.25, weight_decay: float = 0.0, decouple: bool = False, *, foreach: Optional[bool] = None, maximize: bool = False, capturable: bool = False, differentiable: bool = False, fused: Optional[bool] = None) + + Bases: :py:obj:`torch.optim.optimizer.Optimizer` + + + Base class for all optimizers. + + .. warning:: + Parameters need to be specified as collections that have a deterministic + ordering that is consistent between runs. Examples of objects that don't + satisfy those properties are sets and iterators over values of dictionaries. + + :param params: an iterable of :class:`torch.Tensor` s or + :class:`dict` s. Specifies what Tensors should be optimized. + :type params: iterable + :param defaults: (dict): a dict containing default values of optimization + options (used when a parameter group doesn't specify them). + + + .. py:attribute:: clip_lambda + + + .. py:method:: __setstate__(state) + + + .. py:method:: step(closure=None) + + Perform a single optimization step. + + :param closure: A closure that reevaluates the model + and returns the loss. + :type closure: Callable, optional + + + .. py:class:: BaseKGELightning(*args, **kwargs) Bases: :py:obj:`lightning.LightningModule` diff --git a/_sources/autoapi/dicee/trainer/dice_trainer/index.rst.txt b/_sources/autoapi/dicee/trainer/dice_trainer/index.rst.txt index 1ea68ec1..0082ca01 100644 --- a/_sources/autoapi/dicee/trainer/dice_trainer/index.rst.txt +++ b/_sources/autoapi/dicee/trainer/dice_trainer/index.rst.txt @@ -9,7 +9,6 @@ Classes .. autoapisummary:: - dicee.trainer.dice_trainer.EnsembleKGE dicee.trainer.dice_trainer.DICE_Trainer @@ -26,39 +25,9 @@ Functions Module Contents --------------- -.. py:class:: EnsembleKGE(model) - - - - - .. py:attribute:: models - :value: [] - - - - .. py:attribute:: optimizers - :value: [] - - - - .. py:method:: __iter__() - - - .. py:method:: __len__() - - - .. py:method:: __call__(*args, **kwargs) - - - .. py:method:: __getattr__(name) - - - .. py:method:: __str__() - - .. py:function:: load_term_mapping(file_path=str) -.. py:function:: initialize_trainer(args, callbacks) -> dicee.trainer.torch_trainer.TorchTrainer | dicee.trainer.model_parallelism.MP | dicee.trainer.torch_trainer_ddp.TorchDDPTrainer | lightning.Trainer +.. py:function:: initialize_trainer(args, callbacks) -> dicee.trainer.torch_trainer.TorchTrainer | dicee.trainer.model_parallelism.TensorParallel | dicee.trainer.torch_trainer_ddp.TorchDDPTrainer | lightning.Trainer .. py:function:: get_callbacks(args) @@ -125,7 +94,7 @@ Module Contents - .. py:method:: initialize_trainer(callbacks: List) -> lightning.Trainer | dicee.trainer.model_parallelism.MP | dicee.trainer.torch_trainer.TorchTrainer | dicee.trainer.torch_trainer_ddp.TorchDDPTrainer + .. py:method:: initialize_trainer(callbacks: List) -> lightning.Trainer | dicee.trainer.model_parallelism.TensorParallel | dicee.trainer.torch_trainer.TorchTrainer | dicee.trainer.torch_trainer_ddp.TorchDDPTrainer Initialize Trainer from input arguments diff --git a/_sources/autoapi/dicee/trainer/index.rst.txt b/_sources/autoapi/dicee/trainer/index.rst.txt index 712f3832..b7361576 100644 --- a/_sources/autoapi/dicee/trainer/index.rst.txt +++ b/_sources/autoapi/dicee/trainer/index.rst.txt @@ -90,7 +90,7 @@ Package Contents - .. py:method:: initialize_trainer(callbacks: List) -> lightning.Trainer | dicee.trainer.model_parallelism.MP | dicee.trainer.torch_trainer.TorchTrainer | dicee.trainer.torch_trainer_ddp.TorchDDPTrainer + .. py:method:: initialize_trainer(callbacks: List) -> lightning.Trainer | dicee.trainer.model_parallelism.TensorParallel | dicee.trainer.torch_trainer.TorchTrainer | dicee.trainer.torch_trainer_ddp.TorchDDPTrainer Initialize Trainer from input arguments diff --git a/_sources/autoapi/dicee/trainer/model_parallelism/index.rst.txt b/_sources/autoapi/dicee/trainer/model_parallelism/index.rst.txt index 3ba28a7e..dbad67c3 100644 --- a/_sources/autoapi/dicee/trainer/model_parallelism/index.rst.txt +++ b/_sources/autoapi/dicee/trainer/model_parallelism/index.rst.txt @@ -9,13 +9,29 @@ Classes .. autoapisummary:: - dicee.trainer.model_parallelism.MP + dicee.trainer.model_parallelism.TensorParallel + + +Functions +--------- + +.. autoapisummary:: + + dicee.trainer.model_parallelism.extract_input_outputs + dicee.trainer.model_parallelism.find_good_batch_size + dicee.trainer.model_parallelism.forward_backward_update_loss Module Contents --------------- -.. py:class:: MP(args, callbacks) +.. py:function:: extract_input_outputs(z: list, device=None) + +.. py:function:: find_good_batch_size(train_loader, ensemble_model, max_available_gpu_memory: float = 0.05) + +.. py:function:: forward_backward_update_loss(z: Tuple, ensemble_model) + +.. py:class:: TensorParallel(args, callbacks) Bases: :py:obj:`dicee.abstracts.AbstractTrainer` @@ -32,6 +48,11 @@ Module Contents ? + .. py:attribute:: models + :value: [] + + + .. py:method:: get_ensemble() @@ -41,6 +62,3 @@ Module Contents - .. py:method:: extract_input_outputs(z: list) - - diff --git a/_sources/autoapi/dicee/trainer/torch_trainer/index.rst.txt b/_sources/autoapi/dicee/trainer/torch_trainer/index.rst.txt index 6340f1ae..7cf1e3f3 100644 --- a/_sources/autoapi/dicee/trainer/torch_trainer/index.rst.txt +++ b/_sources/autoapi/dicee/trainer/torch_trainer/index.rst.txt @@ -9,100 +9,12 @@ Classes .. autoapisummary:: - dicee.trainer.torch_trainer.xMP dicee.trainer.torch_trainer.TorchTrainer Module Contents --------------- -.. py:class:: xMP(args, callbacks) - - Bases: :py:obj:`dicee.abstracts.AbstractTrainer` - - - Abstract class for Trainer class for knowledge graph embedding models - - - Parameter - --------- - args : str - ? - - callbacks: list - ? - - - .. py:attribute:: loss_function - :value: None - - - - .. py:attribute:: optimizer - :value: None - - - - .. py:attribute:: model - :value: None - - - - .. py:attribute:: train_dataloaders - :value: None - - - - .. py:attribute:: training_step - :value: None - - - - .. py:attribute:: available_gpus - - - .. py:attribute:: process - - - .. py:method:: fit(*args, train_dataloaders, **kwargs) -> None - - Training starts - - Arguments - ---------- - args:tuple - (BASEKGE,) - kwargs:Tuple - empty dictionary - :rtype: batch loss (float) - - - - .. py:method:: forward_backward_update(x_batch: torch.Tensor, y_batch: torch.Tensor) -> torch.Tensor - - Compute forward, loss, backward, and parameter update - - Arguments - ---------- - x_batch:(torch.Tensor) mini-batch inputs - y_batch:(torch.Tensor) mini-batch outputs - - :rtype: batch loss (float) - - - - .. py:method:: extract_input_outputs_set_device(batch: list) -> Tuple - - Construct inputs and outputs from a batch of inputs with outputs From a batch of inputs and put - - Arguments - ---------- - batch: (list) mini-batch inputs on CPU - - :rtype: (tuple) mini-batch on select device - - - .. py:class:: TorchTrainer(args, callbacks) Bases: :py:obj:`dicee.abstracts.AbstractTrainer` diff --git a/autoapi/dicee/index.html b/autoapi/dicee/index.html index 7775ecb8..2b0c3efd 100644 --- a/autoapi/dicee/index.html +++ b/autoapi/dicee/index.html @@ -384,6 +384,26 @@
  • BaseKGE.get_embeddings()
  • +
  • EnsembleKGE +
  • create_recipriocal_triples()
  • get_er_vocab()
  • get_re_vocab()
  • @@ -777,49 +797,52 @@

    Classes

    BaseKGE

    Base class for all neural network modules.

    -

    DICE_Trainer

    +

    EnsembleKGE

    +

    + +

    DICE_Trainer

    DICE_Trainer implement

    -

    KGE

    +

    KGE

    Knowledge Graph Embedding Class for interactive usage of pre-trained models

    -

    Execute

    +

    Execute

    A class for Training, Retraining and Evaluation a model.

    -

    BPE_NegativeSamplingDataset

    +

    BPE_NegativeSamplingDataset

    An abstract class representing a Dataset.

    -

    MultiLabelDataset

    +

    MultiLabelDataset

    An abstract class representing a Dataset.

    -

    MultiClassClassificationDataset

    +

    MultiClassClassificationDataset

    Dataset for the 1vsALL training strategy

    -

    OnevsAllDataset

    +

    OnevsAllDataset

    Dataset for the 1vsALL training strategy

    -

    KvsAll

    +

    KvsAll

    Creates a dataset for KvsAll training by inheriting from torch.utils.data.Dataset.

    -

    AllvsAll

    +

    AllvsAll

    Creates a dataset for AllvsAll training by inheriting from torch.utils.data.Dataset.

    -

    OnevsSample

    +

    OnevsSample

    A custom PyTorch Dataset class for knowledge graph embeddings, which includes

    -

    KvsSampleDataset

    +

    KvsSampleDataset

    KvsSample a Dataset:

    -

    NegSampleDataset

    +

    NegSampleDataset

    An abstract class representing a Dataset.

    -

    TriplePredictionDataset

    +

    TriplePredictionDataset

    Triple Dataset

    -

    CVDataModule

    +

    CVDataModule

    Create a Dataset for cross validation

    -

    QueryGenerator

    +

    QueryGenerator

    @@ -3153,6 +3176,96 @@

    Output +
    +
    +class dicee.EnsembleKGE(seed_model)[source]
    +
    +
    +models = []
    +
    + +
    +
    +optimizers = []
    +
    + +
    +
    +loss_history = []
    +
    + +
    +
    +name
    +
    + +
    +
    +train_mode = True
    +
    + +
    +
    +named_children()[source]
    +
    + +
    +
    +property example_input_array
    +
    + +
    +
    +parameters()[source]
    +
    + +
    +
    +modules()[source]
    +
    + +
    +
    +__iter__()[source]
    +
    + +
    +
    +__len__()[source]
    +
    + +
    +
    +eval()[source]
    +
    + +
    +
    +to(device)[source]
    +
    + +
    +
    +mem_of_model()[source]
    +
    + +
    +
    +__call__(x_batch)[source]
    +
    + +
    +
    +step()[source]
    +
    + +
    +
    +__str__()[source]
    +
    + +
    +
    dicee.create_recipriocal_triples(x)[source]
    @@ -3449,7 +3562,7 @@

    Parameter
    -initialize_trainer(callbacks: List) lightning.Trainer | dicee.trainer.model_parallelism.MP | dicee.trainer.torch_trainer.TorchTrainer | dicee.trainer.torch_trainer_ddp.TorchDDPTrainer[source]
    +initialize_trainer(callbacks: List) lightning.Trainer | dicee.trainer.model_parallelism.TensorParallel | dicee.trainer.torch_trainer.TorchTrainer | dicee.trainer.torch_trainer_ddp.TorchDDPTrainer[source]

    Initialize Trainer from input arguments

    diff --git a/autoapi/dicee/models/adopt/index.html b/autoapi/dicee/models/adopt/index.html new file mode 100644 index 00000000..4d40b83d --- /dev/null +++ b/autoapi/dicee/models/adopt/index.html @@ -0,0 +1,259 @@ + + + + + + + + + dicee.models.adopt — DICE Embeddings 0.1.3.2 documentation + + + + + + + + + + + + + + + + + + + + + + +
    + + +
    + +
    +
    +
    + +
    +
    +
    +
    + +
    +

    dicee.models.adopt

    +
    +

    Classes

    + + + + + + +

    ADOPT

    Base class for all optimizers.

    +
    +
    +

    Functions

    + + + + + + +

    adopt(params, grads, exp_avgs, exp_avg_sqs, state_steps)

    Functional API that performs ADOPT algorithm computation.

    +
    +
    +

    Module Contents

    +
    +
    +class dicee.models.adopt.ADOPT(params: torch.optim.optimizer.ParamsT, lr: float | torch.Tensor = 0.001, betas: Tuple[float, float] = (0.9, 0.9999), eps: float = 1e-06, clip_lambda: Callable[[int], float] | None = lambda step: ..., weight_decay: float = 0.0, decouple: bool = False, *, foreach: bool | None = None, maximize: bool = False, capturable: bool = False, differentiable: bool = False, fused: bool | None = None)[source]
    +

    Bases: torch.optim.optimizer.Optimizer

    +

    Base class for all optimizers.

    +
    +

    Warning

    +

    Parameters need to be specified as collections that have a deterministic +ordering that is consistent between runs. Examples of objects that don’t +satisfy those properties are sets and iterators over values of dictionaries.

    +
    +
    +
    Parameters:
    +
      +
    • params (iterable) – an iterable of torch.Tensor s or +dict s. Specifies what Tensors should be optimized.

    • +
    • defaults – (dict): a dict containing default values of optimization +options (used when a parameter group doesn’t specify them).

    • +
    +
    +
    +
    +
    +clip_lambda
    +
    + +
    +
    +__setstate__(state)[source]
    +
    + +
    +
    +step(closure=None)[source]
    +

    Perform a single optimization step.

    +
    +
    Parameters:
    +

    closure (Callable, optional) – A closure that reevaluates the model +and returns the loss.

    +
    +
    +
    + +
    + +
    +
    +dicee.models.adopt.adopt(params: List[torch.Tensor], grads: List[torch.Tensor], exp_avgs: List[torch.Tensor], exp_avg_sqs: List[torch.Tensor], state_steps: List[torch.Tensor], foreach: bool | None = None, capturable: bool = False, differentiable: bool = False, fused: bool | None = None, grad_scale: torch.Tensor | None = None, found_inf: torch.Tensor | None = None, has_complex: bool = False, *, beta1: float, beta2: float, lr: float | torch.Tensor, clip_lambda: Callable[[int], float] | None, weight_decay: float, decouple: bool, eps: float, maximize: bool)[source]
    +

    Functional API that performs ADOPT algorithm computation.

    +
    + +
    +
    + + +
    +
    + +
    +
    +
    +
    + + + + \ No newline at end of file diff --git a/autoapi/dicee/models/base_model/index.html b/autoapi/dicee/models/base_model/index.html index 92080bdf..57437b9d 100644 --- a/autoapi/dicee/models/base_model/index.html +++ b/autoapi/dicee/models/base_model/index.html @@ -25,7 +25,7 @@ - + @@ -78,6 +78,7 @@
  • dicee.knowledge_graph_embeddings
  • dicee.models
  • diff --git a/autoapi/dicee/models/clifford/index.html b/autoapi/dicee/models/clifford/index.html index 2ffbdb96..b46cf28c 100644 --- a/autoapi/dicee/models/clifford/index.html +++ b/autoapi/dicee/models/clifford/index.html @@ -79,6 +79,7 @@
  • dicee.knowledge_graph_embeddings
  • dicee.models
  • diff --git a/autoapi/dicee/models/index.html b/autoapi/dicee/models/index.html index d583a295..6b05ff31 100644 --- a/autoapi/dicee/models/index.html +++ b/autoapi/dicee/models/index.html @@ -25,7 +25,7 @@ - + @@ -79,10 +79,12 @@
  • dicee.knowledge_graph_embeddings
  • dicee.models
  • +
  • find_good_batch_size() (in module dicee.trainer.model_parallelism) +
  • find_missing_triples() (dicee.KGE method)
  • -
  • fit() (dicee.trainer.model_parallelism.MP method) +
  • fit() (dicee.trainer.model_parallelism.TensorParallel method)
  • forward_backward_update() (dicee.trainer.torch_trainer.TorchTrainer method) - -
  • +
  • forward_backward_update_loss() (in module dicee.trainer.model_parallelism) +
  • forward_byte_pair_encoded_k_vs_all() (dicee.BaseKGE method)
  • -
  • get_ensemble() (dicee.trainer.model_parallelism.MP method) +
  • get_ensemble() (dicee.trainer.model_parallelism.TensorParallel method)
  • get_entity_embeddings() (dicee.abstracts.BaseInteractiveKGE method)
  • @@ -2823,11 +2871,7 @@

    L

  • loss_func (dicee.trainer.torch_trainer_ddp.NodeTrainer attribute)
  • loss_function (dicee.trainer.torch_trainer.TorchTrainer attribute) - -
  • loss_function() (dicee.BytE method)
  • model_name (dicee.analyse_experiments.Experiment attribute)
  • -
  • models (dicee.trainer.dice_trainer.EnsembleKGE attribute) +
  • models (dicee.EnsembleKGE attribute) + +
  • module @@ -3009,6 +3065,8 @@

    M

  • dicee.knowledge_graph_embeddings
  • dicee.models +
  • +
  • dicee.models.adopt
  • dicee.models.base_model
  • @@ -3017,6 +3075,8 @@

    M

  • dicee.models.complex
  • dicee.models.dualE +
  • +
  • dicee.models.ensemble
  • dicee.models.function_space
  • @@ -3073,8 +3133,12 @@

    M

    + + - -
  • optimizers (dicee.trainer.dice_trainer.EnsembleKGE attribute) +
  • optimizers (dicee.EnsembleKGE attribute) + +
  • ordered_bpe_entities (dicee.BPE_NegativeSamplingDataset attribute)
      @@ -3728,7 +3804,13 @@

      P

  • parameters() (dicee.abstracts.BaseInteractiveKGE method) + +
  • path (dicee.abstracts.AbstractPPECallback attribute)
  • -
  • pq (dicee.analyse_experiments.Experiment attribute) -
  • - + +
  • step() (dicee.EnsembleKGE method) + +
  • storage_path (dicee.config.Namespace attribute) @@ -4531,6 +4619,8 @@

    T

  • (dicee.knowledge_graph_embeddings.KGE method)
  • +
  • TensorParallel (class in dicee.trainer.model_parallelism) +
  • test_dataloader() (dicee.models.base_model.BaseKGELightning method)
  • -
  • to() (dicee.KGE method) +
  • to() (dicee.EnsembleKGE method)
  • to_df() (dicee.analyse_experiments.Experiment method) @@ -4636,21 +4730,17 @@

    T

  • train_dataloaders (dicee.trainer.torch_trainer.TorchTrainer attribute) - -
  • train_dataset_loader (dicee.trainer.torch_trainer_ddp.NodeTrainer attribute)
  • train_h1 (dicee.analyse_experiments.Experiment attribute)
  • train_h10 (dicee.analyse_experiments.Experiment attribute) -
  • -
  • train_h3 (dicee.analyse_experiments.Experiment attribute)
  • - diff --git a/objects.inv b/objects.inv index b355c5c8..d7d186d9 100644 Binary files a/objects.inv and b/objects.inv differ diff --git a/py-modindex.html b/py-modindex.html index 4325cdcb..a5fbcc37 100644 --- a/py-modindex.html +++ b/py-modindex.html @@ -166,6 +166,11 @@

    Python Module Index

        dicee.models + + +     + dicee.models.adopt +     @@ -186,6 +191,11 @@

    Python Module Index

        dicee.models.dualE + + +     + dicee.models.ensemble +     diff --git a/searchindex.js b/searchindex.js index 301b92c1..ad6dfab2 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"10FOLD CV results on California housing dataset (regression).": [[1, "fold-cv-results-on-california-housing-dataset-regression"]], "10FOLD CV results on TODO (binary classification).": [[1, "fold-cv-results-on-todo-binary-classification"]], "1vsAll Training Technique": [[46, null]], "Answering Complex Queries": [[49, "answering-complex-queries"]], "Attributes": [[11, "attributes"], [36, "attributes"], [39, "attributes"]], "Available KGE Models": [[50, "available-kge-models"]], "Benchmarking": [[1, "benchmarking"]], "Classes": [[3, "classes"], [4, "classes"], [5, "classes"], [6, "classes"], [7, "classes"], [9, "classes"], [10, "classes"], [11, "classes"], [12, "classes"], [13, "classes"], [14, "classes"], [15, "classes"], [16, "classes"], [17, "classes"], [18, "classes"], [19, "classes"], [20, "classes"], [21, "classes"], [22, "classes"], [23, "classes"], [25, "classes"], [26, "classes"], [27, "classes"], [28, "classes"], [29, "classes"], [30, "classes"], [36, "classes"], [40, "classes"], [41, "classes"], [42, "classes"], [43, "classes"], [44, "classes"]], "Contents:": [[45, null]], "Coverage Report": [[49, "coverage-report"]], "Creating an Embedding Vector Database": [[49, "creating-an-embedding-vector-database"]], "Dicee Manual": [[49, null]], "Docker": [[49, "docker"]], "Download Knowledge Graphs": [[49, "download-knowledge-graphs"]], "Download files": [[0, "download-files"]], "Downloading Pretrained Models": [[49, "downloading-pretrained-models"]], "Downloading and Preprocessing DBpedia 2022-03 for Knowledge Graph Embeddings": [[0, null]], "Example Usage:": [[31, "example-usage"]], "Examples": [[50, "examples"]], "Examples for Sharded Training": [[50, "examples-for-sharded-training"]], "Filtering Triples": [[0, "filtering-triples"]], "Functions": [[4, "functions"], [5, "functions"], [7, "functions"], [8, "functions"], [11, "functions"], [19, "functions"], [20, "functions"], [22, "functions"], [24, "functions"], [31, "functions"], [32, "functions"], [34, "functions"], [35, "functions"], [36, "functions"], [37, "functions"], [38, "functions"], [39, "functions"], [40, "functions"], [44, "functions"]], "How to Deploy": [[49, "how-to-deploy"]], "How to Train": [[49, "how-to-train"]], "How to cite": [[49, "how-to-cite"]], "Input": [[11, "input"], [11, "id6"], [11, "id8"], [17, "input"], [17, "id1"], [17, "id3"], [19, "input"], [19, "id269"], [19, "id271"]], "Input KG Format": [[50, "input-kg-format"]], "Installation": [[1, "installation"], [49, "installation"]], "Installation from Source": [[49, "installation-from-source"]], "KGE 10Fold Detailed": [[1, "kge-10fold-detailed"]], "Knowledge Graph Embedding Boost on Tabular Data": [[1, null]], "Knowledge Graph Embedding Models": [[49, "knowledge-graph-embedding-models"]], "KvsAll Training Technique": [[47, null]], "Launching Webservice": [[49, "launching-webservice"]], "Learning Embeddings": [[49, "learning-embeddings"]], "Loading Embeddings into Qdrant Vector Database": [[49, "loading-embeddings-into-qdrant-vector-database"]], "Module Contents": [[3, "module-contents"], [4, "module-contents"], [5, "module-contents"], [6, "module-contents"], [7, "module-contents"], [8, "module-contents"], [9, "module-contents"], [10, "module-contents"], [12, "module-contents"], [13, "module-contents"], [14, "module-contents"], [15, "module-contents"], [16, "module-contents"], [17, "module-contents"], [18, "module-contents"], [20, "module-contents"], [21, "module-contents"], [22, "module-contents"], [23, "module-contents"], [24, "module-contents"], [25, "module-contents"], [26, "module-contents"], [28, "module-contents"], [29, "module-contents"], [30, "module-contents"], [31, "module-contents"], [32, "module-contents"], [34, "module-contents"], [35, "module-contents"], [36, "module-contents"], [37, "module-contents"], [38, "module-contents"], [39, "module-contents"], [40, "module-contents"], [42, "module-contents"], [43, "module-contents"], [44, "module-contents"]], "Negative Sampling Technique": [[48, null]], "Output": [[11, "output"], [11, "id7"], [11, "id9"], [17, "output"], [17, "id2"], [17, "id4"], [19, "output"], [19, "id270"], [19, "id272"]], "Package Contents": [[11, "package-contents"], [19, "package-contents"], [27, "package-contents"], [41, "package-contents"]], "Parameter": [[3, "parameter"], [3, "id1"], [3, "id2"], [3, "id3"], [3, "id4"], [3, "id5"], [3, "id6"], [3, "id7"], [3, "id8"], [3, "id9"], [3, "id10"], [3, "id11"], [3, "id12"], [3, "id13"], [3, "id14"], [3, "id15"], [3, "id16"], [3, "id17"], [3, "id18"], [3, "id19"], [3, "id20"], [3, "id21"], [5, "parameter"], [5, "id1"], [5, "id2"], [5, "id3"], [5, "id4"], [5, "id5"], [5, "id6"], [5, "id7"], [5, "id8"], [5, "id9"], [5, "id10"], [5, "id11"], [5, "id12"], [5, "id13"], [5, "id14"], [5, "id15"], [5, "id16"], [5, "id17"], [5, "id18"], [5, "id19"], [5, "id20"], [5, "id21"], [10, "parameter"], [10, "id1"], [10, "id2"], [10, "id3"], [10, "id4"], [11, "parameter"], [11, "id1"], [11, "id2"], [11, "id3"], [11, "id4"], [11, "id5"], [11, "id10"], [11, "id11"], [11, "id12"], [11, "id14"], [11, "id16"], [11, "id18"], [11, "id20"], [11, "id21"], [11, "id22"], [11, "id23"], [11, "id24"], [13, "parameter"], [13, "id1"], [13, "id3"], [13, "id5"], [13, "id7"], [13, "id9"], [15, "parameter"], [15, "id1"], [15, "id2"], [15, "id3"], [15, "id4"], [15, "id5"], [19, "parameter"], [19, "id180"], [19, "id181"], [19, "id182"], [19, "id183"], [19, "id184"], [27, "parameter"], [27, "id1"], [27, "id2"], [28, "parameter"], [28, "id1"], [29, "parameter"], [40, "parameter"], [41, "parameter"], [42, "parameter"], [43, "parameter"]], "Parameters:": [[31, "parameters"], [31, "id1"]], "Predicting Missing Links": [[49, "predicting-missing-links"]], "Remove Wikipage Uese Template": [[0, "remove-wikipage-uese-template"]], "Remove all literals": [[0, "remove-all-literals"]], "Remove triples having a relation starting with http://dbpedia.org/ontology/wiki": [[0, "remove-triples-having-a-relation-starting-with-http-dbpedia-org-ontology-wiki"]], "Remove triples having a relation starting with http://dbpedia.org/property/wiki": [[0, "remove-triples-having-a-relation-starting-with-http-dbpedia-org-property-wiki"]], "Remove xmlns": [[0, "remove-xmlns"]], "Retrieve and Search": [[49, "retrieve-and-search"]], "Returns:": [[31, "returns"], [31, "id2"]], "Returns: Tuple": [[3, "returns-tuple"], [11, "returns-tuple"], [11, "id13"], [11, "id15"], [11, "id17"], [11, "id19"], [13, "returns-tuple"], [13, "id2"], [13, "id4"], [13, "id6"], [13, "id8"]], "Steps:": [[31, "steps"]], "Submodules": [[11, "submodules"], [19, "submodules"], [27, "submodules"], [33, "submodules"], [41, "submodules"]], "TABULAR & KGE 10Fold Detailed": [[1, "tabular-kge-10fold-detailed"]], "Tabular 10Fold Detailed": [[1, "tabular-10fold-detailed"]], "Training": [[50, null], [50, "id1"]], "Training Features:": [[50, "training-features"]], "Usage": [[1, "usage"]], "Welcome to DICE Embeddings!": [[45, null]], "dicee": [[11, null]], "dicee.__main__": [[2, null]], "dicee.abstracts": [[3, null]], "dicee.analyse_experiments": [[4, null]], "dicee.callbacks": [[5, null]], "dicee.config": [[6, null]], "dicee.dataset_classes": [[7, null]], "dicee.eval_static_funcs": [[8, null]], "dicee.evaluator": [[9, null]], "dicee.executer": [[10, null]], "dicee.knowledge_graph": [[12, null]], "dicee.knowledge_graph_embeddings": [[13, null]], "dicee.models": [[19, null]], "dicee.models.base_model": [[14, null]], "dicee.models.clifford": [[15, null]], "dicee.models.complex": [[16, null]], "dicee.models.dualE": [[17, null]], "dicee.models.function_space": [[18, null]], "dicee.models.octonion": [[20, null]], "dicee.models.pykeen_models": [[21, null]], "dicee.models.quaternion": [[22, null]], "dicee.models.real": [[23, null]], "dicee.models.static_funcs": [[24, null]], "dicee.models.transformers": [[25, null]], "dicee.query_generator": [[26, null]], "dicee.read_preprocess_save_load_kg": [[27, null]], "dicee.read_preprocess_save_load_kg.preprocess": [[28, null]], "dicee.read_preprocess_save_load_kg.read_from_disk": [[29, null]], "dicee.read_preprocess_save_load_kg.save_load_disk": [[30, null]], "dicee.read_preprocess_save_load_kg.util": [[31, null]], "dicee.sanity_checkers": [[32, null]], "dicee.scripts": [[33, null]], "dicee.scripts.index": [[34, null]], "dicee.scripts.run": [[35, null]], "dicee.scripts.serve": [[36, null]], "dicee.static_funcs": [[37, null]], "dicee.static_funcs_training": [[38, null]], "dicee.static_preprocess_funcs": [[39, null]], "dicee.trainer": [[41, null]], "dicee.trainer.dice_trainer": [[40, null]], "dicee.trainer.model_parallelism": [[42, null]], "dicee.trainer.torch_trainer": [[43, null]], "dicee.trainer.torch_trainer_ddp": [[44, null]]}, "docnames": ["DBpedia_experiments/ReadMe", "KGEonTabular/README", "autoapi/dicee/__main__/index", "autoapi/dicee/abstracts/index", "autoapi/dicee/analyse_experiments/index", "autoapi/dicee/callbacks/index", "autoapi/dicee/config/index", "autoapi/dicee/dataset_classes/index", "autoapi/dicee/eval_static_funcs/index", "autoapi/dicee/evaluator/index", "autoapi/dicee/executer/index", "autoapi/dicee/index", "autoapi/dicee/knowledge_graph/index", "autoapi/dicee/knowledge_graph_embeddings/index", "autoapi/dicee/models/base_model/index", "autoapi/dicee/models/clifford/index", "autoapi/dicee/models/complex/index", "autoapi/dicee/models/dualE/index", "autoapi/dicee/models/function_space/index", "autoapi/dicee/models/index", "autoapi/dicee/models/octonion/index", "autoapi/dicee/models/pykeen_models/index", "autoapi/dicee/models/quaternion/index", "autoapi/dicee/models/real/index", "autoapi/dicee/models/static_funcs/index", "autoapi/dicee/models/transformers/index", "autoapi/dicee/query_generator/index", "autoapi/dicee/read_preprocess_save_load_kg/index", "autoapi/dicee/read_preprocess_save_load_kg/preprocess/index", "autoapi/dicee/read_preprocess_save_load_kg/read_from_disk/index", "autoapi/dicee/read_preprocess_save_load_kg/save_load_disk/index", "autoapi/dicee/read_preprocess_save_load_kg/util/index", "autoapi/dicee/sanity_checkers/index", "autoapi/dicee/scripts/index", "autoapi/dicee/scripts/index/index", "autoapi/dicee/scripts/run/index", "autoapi/dicee/scripts/serve/index", "autoapi/dicee/static_funcs/index", "autoapi/dicee/static_funcs_training/index", "autoapi/dicee/static_preprocess_funcs/index", "autoapi/dicee/trainer/dice_trainer/index", "autoapi/dicee/trainer/index", "autoapi/dicee/trainer/model_parallelism/index", "autoapi/dicee/trainer/torch_trainer/index", "autoapi/dicee/trainer/torch_trainer_ddp/index", "index", "training_techniques/1vsall", "training_techniques/kvsall", "training_techniques/negative_sampling", "usage/main", "usage/training"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["DBpedia_experiments/ReadMe.md", "KGEonTabular/README.md", "autoapi/dicee/__main__/index.rst", "autoapi/dicee/abstracts/index.rst", "autoapi/dicee/analyse_experiments/index.rst", "autoapi/dicee/callbacks/index.rst", "autoapi/dicee/config/index.rst", "autoapi/dicee/dataset_classes/index.rst", "autoapi/dicee/eval_static_funcs/index.rst", "autoapi/dicee/evaluator/index.rst", "autoapi/dicee/executer/index.rst", "autoapi/dicee/index.rst", "autoapi/dicee/knowledge_graph/index.rst", "autoapi/dicee/knowledge_graph_embeddings/index.rst", "autoapi/dicee/models/base_model/index.rst", "autoapi/dicee/models/clifford/index.rst", "autoapi/dicee/models/complex/index.rst", "autoapi/dicee/models/dualE/index.rst", "autoapi/dicee/models/function_space/index.rst", "autoapi/dicee/models/index.rst", "autoapi/dicee/models/octonion/index.rst", "autoapi/dicee/models/pykeen_models/index.rst", "autoapi/dicee/models/quaternion/index.rst", "autoapi/dicee/models/real/index.rst", "autoapi/dicee/models/static_funcs/index.rst", "autoapi/dicee/models/transformers/index.rst", "autoapi/dicee/query_generator/index.rst", "autoapi/dicee/read_preprocess_save_load_kg/index.rst", "autoapi/dicee/read_preprocess_save_load_kg/preprocess/index.rst", "autoapi/dicee/read_preprocess_save_load_kg/read_from_disk/index.rst", "autoapi/dicee/read_preprocess_save_load_kg/save_load_disk/index.rst", "autoapi/dicee/read_preprocess_save_load_kg/util/index.rst", "autoapi/dicee/sanity_checkers/index.rst", "autoapi/dicee/scripts/index.rst", "autoapi/dicee/scripts/index/index.rst", "autoapi/dicee/scripts/run/index.rst", "autoapi/dicee/scripts/serve/index.rst", "autoapi/dicee/static_funcs/index.rst", "autoapi/dicee/static_funcs_training/index.rst", "autoapi/dicee/static_preprocess_funcs/index.rst", "autoapi/dicee/trainer/dice_trainer/index.rst", "autoapi/dicee/trainer/index.rst", "autoapi/dicee/trainer/model_parallelism/index.rst", "autoapi/dicee/trainer/torch_trainer/index.rst", "autoapi/dicee/trainer/torch_trainer_ddp/index.rst", "index.rst", "training_techniques/1vsall.md", "training_techniques/kvsall.md", "training_techniques/negative_sampling.md", "usage/main.md", "usage/training.md"], "indexentries": {"__call__() (dicee.models.base_model.identityclass method)": [[14, "dicee.models.base_model.IdentityClass.__call__", false]], "__call__() (dicee.models.identityclass method)": [[19, "dicee.models.IdentityClass.__call__", false], [19, "id132", false], [19, "id178", false]], "__call__() (dicee.trainer.dice_trainer.ensemblekge method)": [[40, "dicee.trainer.dice_trainer.EnsembleKGE.__call__", false]], "__getattr__() (dicee.trainer.dice_trainer.ensemblekge method)": [[40, "dicee.trainer.dice_trainer.EnsembleKGE.__getattr__", false]], "__getitem__() (dicee.allvsall method)": [[11, "dicee.AllvsAll.__getitem__", false]], "__getitem__() (dicee.bpe_negativesamplingdataset method)": [[11, "dicee.BPE_NegativeSamplingDataset.__getitem__", false]], "__getitem__() (dicee.dataset_classes.allvsall method)": [[7, "dicee.dataset_classes.AllvsAll.__getitem__", false]], "__getitem__() (dicee.dataset_classes.bpe_negativesamplingdataset method)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset.__getitem__", false]], "__getitem__() (dicee.dataset_classes.kvsall method)": [[7, "dicee.dataset_classes.KvsAll.__getitem__", false]], "__getitem__() (dicee.dataset_classes.kvssampledataset method)": [[7, "dicee.dataset_classes.KvsSampleDataset.__getitem__", false]], "__getitem__() (dicee.dataset_classes.multiclassclassificationdataset method)": [[7, "dicee.dataset_classes.MultiClassClassificationDataset.__getitem__", false]], "__getitem__() (dicee.dataset_classes.multilabeldataset method)": [[7, "dicee.dataset_classes.MultiLabelDataset.__getitem__", false]], "__getitem__() (dicee.dataset_classes.negsampledataset method)": [[7, "dicee.dataset_classes.NegSampleDataset.__getitem__", false]], "__getitem__() (dicee.dataset_classes.onevsalldataset method)": [[7, "dicee.dataset_classes.OnevsAllDataset.__getitem__", false]], "__getitem__() (dicee.dataset_classes.onevssample method)": [[7, "dicee.dataset_classes.OnevsSample.__getitem__", false]], "__getitem__() (dicee.dataset_classes.triplepredictiondataset method)": [[7, "dicee.dataset_classes.TriplePredictionDataset.__getitem__", false]], "__getitem__() (dicee.kvsall method)": [[11, "dicee.KvsAll.__getitem__", false]], "__getitem__() (dicee.kvssampledataset method)": [[11, "dicee.KvsSampleDataset.__getitem__", false]], "__getitem__() (dicee.multiclassclassificationdataset method)": [[11, "dicee.MultiClassClassificationDataset.__getitem__", false]], "__getitem__() (dicee.multilabeldataset method)": [[11, "dicee.MultiLabelDataset.__getitem__", false]], "__getitem__() (dicee.negsampledataset method)": [[11, "dicee.NegSampleDataset.__getitem__", false]], "__getitem__() (dicee.onevsalldataset method)": [[11, "dicee.OnevsAllDataset.__getitem__", false]], "__getitem__() (dicee.onevssample method)": [[11, "dicee.OnevsSample.__getitem__", false]], "__getitem__() (dicee.triplepredictiondataset method)": [[11, "dicee.TriplePredictionDataset.__getitem__", false]], "__iter__() (dicee.config.namespace method)": [[6, "dicee.config.Namespace.__iter__", false]], "__iter__() (dicee.knowledge_graph.kg method)": [[12, "dicee.knowledge_graph.KG.__iter__", false]], "__iter__() (dicee.trainer.dice_trainer.ensemblekge method)": [[40, "dicee.trainer.dice_trainer.EnsembleKGE.__iter__", false]], "__len__() (dicee.allvsall method)": [[11, "dicee.AllvsAll.__len__", false]], "__len__() (dicee.bpe_negativesamplingdataset method)": [[11, "dicee.BPE_NegativeSamplingDataset.__len__", false]], "__len__() (dicee.dataset_classes.allvsall method)": [[7, "dicee.dataset_classes.AllvsAll.__len__", false]], "__len__() (dicee.dataset_classes.bpe_negativesamplingdataset method)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset.__len__", false]], "__len__() (dicee.dataset_classes.kvsall method)": [[7, "dicee.dataset_classes.KvsAll.__len__", false]], "__len__() (dicee.dataset_classes.kvssampledataset method)": [[7, "dicee.dataset_classes.KvsSampleDataset.__len__", false]], "__len__() (dicee.dataset_classes.multiclassclassificationdataset method)": [[7, "dicee.dataset_classes.MultiClassClassificationDataset.__len__", false]], "__len__() (dicee.dataset_classes.multilabeldataset method)": [[7, "dicee.dataset_classes.MultiLabelDataset.__len__", false]], "__len__() (dicee.dataset_classes.negsampledataset method)": [[7, "dicee.dataset_classes.NegSampleDataset.__len__", false]], "__len__() (dicee.dataset_classes.onevsalldataset method)": [[7, "dicee.dataset_classes.OnevsAllDataset.__len__", false]], "__len__() (dicee.dataset_classes.onevssample method)": [[7, "dicee.dataset_classes.OnevsSample.__len__", false]], "__len__() (dicee.dataset_classes.triplepredictiondataset method)": [[7, "dicee.dataset_classes.TriplePredictionDataset.__len__", false]], "__len__() (dicee.knowledge_graph.kg method)": [[12, "dicee.knowledge_graph.KG.__len__", false]], "__len__() (dicee.kvsall method)": [[11, "dicee.KvsAll.__len__", false]], "__len__() (dicee.kvssampledataset method)": [[11, "dicee.KvsSampleDataset.__len__", false]], "__len__() (dicee.multiclassclassificationdataset method)": [[11, "dicee.MultiClassClassificationDataset.__len__", false]], "__len__() (dicee.multilabeldataset method)": [[11, "dicee.MultiLabelDataset.__len__", false]], "__len__() (dicee.negsampledataset method)": [[11, "dicee.NegSampleDataset.__len__", false]], "__len__() (dicee.onevsalldataset method)": [[11, "dicee.OnevsAllDataset.__len__", false]], "__len__() (dicee.onevssample method)": [[11, "dicee.OnevsSample.__len__", false]], "__len__() (dicee.trainer.dice_trainer.ensemblekge method)": [[40, "dicee.trainer.dice_trainer.EnsembleKGE.__len__", false]], "__len__() (dicee.triplepredictiondataset method)": [[11, "dicee.TriplePredictionDataset.__len__", false]], "__str__() (dicee.kge method)": [[11, "dicee.KGE.__str__", false]], "__str__() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.__str__", false]], "__str__() (dicee.trainer.dice_trainer.ensemblekge method)": [[40, "dicee.trainer.dice_trainer.EnsembleKGE.__str__", false]], "__version__ (in module dicee)": [[11, "dicee.__version__", false]], "abstractcallback (class in dicee.abstracts)": [[3, "dicee.abstracts.AbstractCallback", false]], "abstractppecallback (class in dicee.abstracts)": [[3, "dicee.abstracts.AbstractPPECallback", false]], "abstracttrainer (class in dicee.abstracts)": [[3, "dicee.abstracts.AbstractTrainer", false]], "accumulateepochlosscallback (class in dicee.callbacks)": [[5, "dicee.callbacks.AccumulateEpochLossCallback", false]], "achieve_answer() (dicee.query_generator.querygenerator method)": [[26, "dicee.query_generator.QueryGenerator.achieve_answer", false]], "achieve_answer() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.achieve_answer", false]], "aconex (class in dicee)": [[11, "dicee.AConEx", false]], "aconex (class in dicee.models)": [[19, "dicee.models.AConEx", false]], "aconex (class in dicee.models.complex)": [[16, "dicee.models.complex.AConEx", false]], "aconvo (class in dicee)": [[11, "dicee.AConvO", false]], "aconvo (class in dicee.models)": [[19, "dicee.models.AConvO", false]], "aconvo (class in dicee.models.octonion)": [[20, "dicee.models.octonion.AConvO", false]], "aconvq (class in dicee)": [[11, "dicee.AConvQ", false]], "aconvq (class in dicee.models)": [[19, "dicee.models.AConvQ", false]], "aconvq (class in dicee.models.quaternion)": [[22, "dicee.models.quaternion.AConvQ", false]], "adaptive_swa (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.adaptive_swa", false]], "add_new_entity_embeddings() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.add_new_entity_embeddings", false]], "add_noise_rate (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.add_noise_rate", false]], "add_noise_rate (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.add_noise_rate", false]], "add_noisy_triples() (in module dicee)": [[11, "dicee.add_noisy_triples", false]], "add_noisy_triples() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.add_noisy_triples", false]], "add_noisy_triples_into_training() (dicee.read_preprocess_save_load_kg.read_from_disk.readfromdisk method)": [[29, "dicee.read_preprocess_save_load_kg.read_from_disk.ReadFromDisk.add_noisy_triples_into_training", false]], "add_noisy_triples_into_training() (dicee.read_preprocess_save_load_kg.readfromdisk method)": [[27, "dicee.read_preprocess_save_load_kg.ReadFromDisk.add_noisy_triples_into_training", false]], "add_reciprocal (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.add_reciprocal", false]], "allvsall (class in dicee)": [[11, "dicee.AllvsAll", false]], "allvsall (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.AllvsAll", false]], "alphas (dicee.abstracts.abstractppecallback attribute)": [[3, "dicee.abstracts.AbstractPPECallback.alphas", false]], "alphas (dicee.callbacks.aswa attribute)": [[5, "dicee.callbacks.ASWA.alphas", false]], "analyse() (in module dicee.analyse_experiments)": [[4, "dicee.analyse_experiments.analyse", false]], "answer_multi_hop_query() (dicee.kge method)": [[11, "dicee.KGE.answer_multi_hop_query", false]], "answer_multi_hop_query() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.answer_multi_hop_query", false]], "app (in module dicee.scripts.serve)": [[36, "dicee.scripts.serve.app", false]], "apply_coefficients() (dicee.decal method)": [[11, "dicee.DeCaL.apply_coefficients", false]], "apply_coefficients() (dicee.keci method)": [[11, "dicee.Keci.apply_coefficients", false]], "apply_coefficients() (dicee.models.clifford.decal method)": [[15, "dicee.models.clifford.DeCaL.apply_coefficients", false]], "apply_coefficients() (dicee.models.clifford.keci method)": [[15, "dicee.models.clifford.Keci.apply_coefficients", false]], "apply_coefficients() (dicee.models.decal method)": [[19, "dicee.models.DeCaL.apply_coefficients", false]], "apply_coefficients() (dicee.models.keci method)": [[19, "dicee.models.Keci.apply_coefficients", false]], "apply_reciprical_or_noise() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.apply_reciprical_or_noise", false]], "apply_semantic_constraint (dicee.abstracts.baseinteractivekge attribute)": [[3, "dicee.abstracts.BaseInteractiveKGE.apply_semantic_constraint", false]], "apply_unit_norm (dicee.basekge attribute)": [[11, "dicee.BaseKGE.apply_unit_norm", false]], "apply_unit_norm (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.apply_unit_norm", false]], "apply_unit_norm (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.apply_unit_norm", false], [19, "id11", false], [19, "id141", false], [19, "id192", false], [19, "id234", false], [19, "id53", false], [19, "id95", false]], "args (dicee.basekge attribute)": [[11, "dicee.BaseKGE.args", false]], "args (dicee.dice_trainer attribute)": [[11, "dicee.DICE_Trainer.args", false]], "args (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.args", false]], "args (dicee.execute attribute)": [[11, "dicee.Execute.args", false]], "args (dicee.executer.execute attribute)": [[10, "dicee.executer.Execute.args", false]], "args (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.args", false]], "args (dicee.models.base_model.identityclass attribute)": [[14, "dicee.models.base_model.IdentityClass.args", false]], "args (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.args", false], [19, "id135", false], [19, "id186", false], [19, "id228", false], [19, "id47", false], [19, "id5", false], [19, "id89", false]], "args (dicee.models.identityclass attribute)": [[19, "dicee.models.IdentityClass.args", false], [19, "id131", false], [19, "id177", false]], "args (dicee.models.pykeen_models.pykeenkge attribute)": [[21, "dicee.models.pykeen_models.PykeenKGE.args", false]], "args (dicee.models.pykeenkge attribute)": [[19, "dicee.models.PykeenKGE.args", false]], "args (dicee.pykeenkge attribute)": [[11, "dicee.PykeenKGE.args", false]], "args (dicee.trainer.dice_trainer attribute)": [[41, "dicee.trainer.DICE_Trainer.args", false]], "args (dicee.trainer.dice_trainer.dice_trainer attribute)": [[40, "dicee.trainer.dice_trainer.DICE_Trainer.args", false]], "aswa (class in dicee.callbacks)": [[5, "dicee.callbacks.ASWA", false]], "aswa (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.aswa", false]], "attn (dicee.models.transformers.block attribute)": [[25, "dicee.models.transformers.Block.attn", false]], "attn_dropout (dicee.models.transformers.causalselfattention attribute)": [[25, "dicee.models.transformers.CausalSelfAttention.attn_dropout", false]], "attributes (dicee.abstracts.abstracttrainer attribute)": [[3, "dicee.abstracts.AbstractTrainer.attributes", false]], "available_gpus (dicee.trainer.torch_trainer.xmp attribute)": [[43, "dicee.trainer.torch_trainer.xMP.available_gpus", false]], "backend (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.backend", false]], "backend (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.backend", false]], "baseinteractivekge (class in dicee.abstracts)": [[3, "dicee.abstracts.BaseInteractiveKGE", false]], "basekge (class in dicee)": [[11, "dicee.BaseKGE", false]], "basekge (class in dicee.models)": [[19, "dicee.models.BaseKGE", false], [19, "id0", false], [19, "id134", false], [19, "id185", false], [19, "id227", false], [19, "id46", false], [19, "id88", false]], "basekge (class in dicee.models.base_model)": [[14, "dicee.models.base_model.BaseKGE", false]], "basekgelightning (class in dicee.models)": [[19, "dicee.models.BaseKGELightning", false]], "basekgelightning (class in dicee.models.base_model)": [[14, "dicee.models.base_model.BaseKGELightning", false]], "batch_kronecker_product() (dicee.callbacks.krone static method)": [[5, "dicee.callbacks.KronE.batch_kronecker_product", false]], "batch_size (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.batch_size", false]], "batch_size (dicee.callbacks.pseudolabellingcallback attribute)": [[5, "dicee.callbacks.PseudoLabellingCallback.batch_size", false]], "batch_size (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.batch_size", false]], "batch_size (dicee.cvdatamodule attribute)": [[11, "dicee.CVDataModule.batch_size", false]], "batch_size (dicee.dataset_classes.cvdatamodule attribute)": [[7, "dicee.dataset_classes.CVDataModule.batch_size", false]], "bias (dicee.models.transformers.gptconfig attribute)": [[25, "dicee.models.transformers.GPTConfig.bias", false]], "bias (dicee.models.transformers.layernorm attribute)": [[25, "dicee.models.transformers.LayerNorm.bias", false]], "block (class in dicee.models.transformers)": [[25, "dicee.models.transformers.Block", false]], "block_size (dicee.basekge attribute)": [[11, "dicee.BaseKGE.block_size", false]], "block_size (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.block_size", false]], "block_size (dicee.dataset_classes.multiclassclassificationdataset attribute)": [[7, "dicee.dataset_classes.MultiClassClassificationDataset.block_size", false]], "block_size (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.block_size", false]], "block_size (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.block_size", false], [19, "id117", false], [19, "id163", false], [19, "id214", false], [19, "id256", false], [19, "id33", false], [19, "id75", false]], "block_size (dicee.models.transformers.gptconfig attribute)": [[25, "dicee.models.transformers.GPTConfig.block_size", false]], "block_size (dicee.multiclassclassificationdataset attribute)": [[11, "dicee.MultiClassClassificationDataset.block_size", false]], "bn_conv1 (dicee.aconvq attribute)": [[11, "dicee.AConvQ.bn_conv1", false]], "bn_conv1 (dicee.convq attribute)": [[11, "dicee.ConvQ.bn_conv1", false]], "bn_conv1 (dicee.models.aconvq attribute)": [[19, "dicee.models.AConvQ.bn_conv1", false]], "bn_conv1 (dicee.models.convq attribute)": [[19, "dicee.models.ConvQ.bn_conv1", false]], "bn_conv1 (dicee.models.quaternion.aconvq attribute)": [[22, "dicee.models.quaternion.AConvQ.bn_conv1", false]], "bn_conv1 (dicee.models.quaternion.convq attribute)": [[22, "dicee.models.quaternion.ConvQ.bn_conv1", false]], "bn_conv2 (dicee.aconvq attribute)": [[11, "dicee.AConvQ.bn_conv2", false]], "bn_conv2 (dicee.convq attribute)": [[11, "dicee.ConvQ.bn_conv2", false]], "bn_conv2 (dicee.models.aconvq attribute)": [[19, "dicee.models.AConvQ.bn_conv2", false]], "bn_conv2 (dicee.models.convq attribute)": [[19, "dicee.models.ConvQ.bn_conv2", false]], "bn_conv2 (dicee.models.quaternion.aconvq attribute)": [[22, "dicee.models.quaternion.AConvQ.bn_conv2", false]], "bn_conv2 (dicee.models.quaternion.convq attribute)": [[22, "dicee.models.quaternion.ConvQ.bn_conv2", false]], "bn_conv2d (dicee.aconex attribute)": [[11, "dicee.AConEx.bn_conv2d", false]], "bn_conv2d (dicee.aconvo attribute)": [[11, "dicee.AConvO.bn_conv2d", false]], "bn_conv2d (dicee.conex attribute)": [[11, "dicee.ConEx.bn_conv2d", false]], "bn_conv2d (dicee.convo attribute)": [[11, "dicee.ConvO.bn_conv2d", false]], "bn_conv2d (dicee.models.aconex attribute)": [[19, "dicee.models.AConEx.bn_conv2d", false]], "bn_conv2d (dicee.models.aconvo attribute)": [[19, "dicee.models.AConvO.bn_conv2d", false]], "bn_conv2d (dicee.models.complex.aconex attribute)": [[16, "dicee.models.complex.AConEx.bn_conv2d", false]], "bn_conv2d (dicee.models.complex.conex attribute)": [[16, "dicee.models.complex.ConEx.bn_conv2d", false]], "bn_conv2d (dicee.models.conex attribute)": [[19, "dicee.models.ConEx.bn_conv2d", false]], "bn_conv2d (dicee.models.convo attribute)": [[19, "dicee.models.ConvO.bn_conv2d", false]], "bn_conv2d (dicee.models.octonion.aconvo attribute)": [[20, "dicee.models.octonion.AConvO.bn_conv2d", false]], "bn_conv2d (dicee.models.octonion.convo attribute)": [[20, "dicee.models.octonion.ConvO.bn_conv2d", false]], "bpe_negativesamplingdataset (class in dicee)": [[11, "dicee.BPE_NegativeSamplingDataset", false]], "bpe_negativesamplingdataset (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset", false]], "build_chain_funcs() (dicee.models.fmult2 method)": [[19, "dicee.models.FMult2.build_chain_funcs", false]], "build_chain_funcs() (dicee.models.function_space.fmult2 method)": [[18, "dicee.models.function_space.FMult2.build_chain_funcs", false]], "build_func() (dicee.models.fmult2 method)": [[19, "dicee.models.FMult2.build_func", false]], "build_func() (dicee.models.function_space.fmult2 method)": [[18, "dicee.models.function_space.FMult2.build_func", false]], "byte (class in dicee)": [[11, "dicee.BytE", false]], "byte (class in dicee.models.transformers)": [[25, "dicee.models.transformers.BytE", false]], "byte_pair_encoding (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.byte_pair_encoding", false]], "byte_pair_encoding (dicee.basekge attribute)": [[11, "dicee.BaseKGE.byte_pair_encoding", false]], "byte_pair_encoding (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.byte_pair_encoding", false]], "byte_pair_encoding (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.byte_pair_encoding", false]], "byte_pair_encoding (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.byte_pair_encoding", false]], "byte_pair_encoding (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.byte_pair_encoding", false], [19, "id115", false], [19, "id161", false], [19, "id212", false], [19, "id254", false], [19, "id31", false], [19, "id73", false]], "c_attn (dicee.models.transformers.causalselfattention attribute)": [[25, "dicee.models.transformers.CausalSelfAttention.c_attn", false]], "c_fc (dicee.models.transformers.mlp attribute)": [[25, "dicee.models.transformers.MLP.c_fc", false]], "c_proj (dicee.models.transformers.causalselfattention attribute)": [[25, "dicee.models.transformers.CausalSelfAttention.c_proj", false]], "c_proj (dicee.models.transformers.mlp attribute)": [[25, "dicee.models.transformers.MLP.c_proj", false]], "callbacks (dicee.abstracts.abstracttrainer attribute)": [[3, "dicee.abstracts.AbstractTrainer.callbacks", false]], "callbacks (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.callbacks", false]], "callbacks (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.callbacks", false]], "callbacks (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[44, "dicee.trainer.torch_trainer_ddp.NodeTrainer.callbacks", false]], "causalselfattention (class in dicee.models.transformers)": [[25, "dicee.models.transformers.CausalSelfAttention", false]], "chain_func() (dicee.models.fmult method)": [[19, "dicee.models.FMult.chain_func", false]], "chain_func() (dicee.models.function_space.fmult method)": [[18, "dicee.models.function_space.FMult.chain_func", false]], "chain_func() (dicee.models.function_space.gfmult method)": [[18, "dicee.models.function_space.GFMult.chain_func", false]], "chain_func() (dicee.models.gfmult method)": [[19, "dicee.models.GFMult.chain_func", false]], "cl_pqr() (dicee.decal method)": [[11, "dicee.DeCaL.cl_pqr", false]], "cl_pqr() (dicee.models.clifford.decal method)": [[15, "dicee.models.clifford.DeCaL.cl_pqr", false]], "cl_pqr() (dicee.models.decal method)": [[19, "dicee.models.DeCaL.cl_pqr", false]], "clifford_multiplication() (dicee.keci method)": [[11, "dicee.Keci.clifford_multiplication", false]], "clifford_multiplication() (dicee.models.clifford.keci method)": [[15, "dicee.models.clifford.Keci.clifford_multiplication", false]], "clifford_multiplication() (dicee.models.keci method)": [[19, "dicee.models.Keci.clifford_multiplication", false]], "collate_fn (dicee.allvsall attribute)": [[11, "dicee.AllvsAll.collate_fn", false]], "collate_fn (dicee.dataset_classes.allvsall attribute)": [[7, "dicee.dataset_classes.AllvsAll.collate_fn", false]], "collate_fn (dicee.dataset_classes.kvsall attribute)": [[7, "dicee.dataset_classes.KvsAll.collate_fn", false]], "collate_fn (dicee.dataset_classes.kvssampledataset attribute)": [[7, "dicee.dataset_classes.KvsSampleDataset.collate_fn", false]], "collate_fn (dicee.dataset_classes.multiclassclassificationdataset attribute)": [[7, "dicee.dataset_classes.MultiClassClassificationDataset.collate_fn", false]], "collate_fn (dicee.dataset_classes.multilabeldataset attribute)": [[7, "dicee.dataset_classes.MultiLabelDataset.collate_fn", false]], "collate_fn (dicee.dataset_classes.onevsalldataset attribute)": [[7, "dicee.dataset_classes.OnevsAllDataset.collate_fn", false]], "collate_fn (dicee.dataset_classes.onevssample attribute)": [[7, "dicee.dataset_classes.OnevsSample.collate_fn", false], [7, "id5", false]], "collate_fn (dicee.kvsall attribute)": [[11, "dicee.KvsAll.collate_fn", false]], "collate_fn (dicee.kvssampledataset attribute)": [[11, "dicee.KvsSampleDataset.collate_fn", false]], "collate_fn (dicee.multiclassclassificationdataset attribute)": [[11, "dicee.MultiClassClassificationDataset.collate_fn", false]], "collate_fn (dicee.multilabeldataset attribute)": [[11, "dicee.MultiLabelDataset.collate_fn", false]], "collate_fn (dicee.onevsalldataset attribute)": [[11, "dicee.OnevsAllDataset.collate_fn", false]], "collate_fn (dicee.onevssample attribute)": [[11, "dicee.OnevsSample.collate_fn", false], [11, "id31", false]], "collate_fn() (dicee.bpe_negativesamplingdataset method)": [[11, "dicee.BPE_NegativeSamplingDataset.collate_fn", false]], "collate_fn() (dicee.dataset_classes.bpe_negativesamplingdataset method)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset.collate_fn", false]], "collate_fn() (dicee.dataset_classes.triplepredictiondataset method)": [[7, "dicee.dataset_classes.TriplePredictionDataset.collate_fn", false]], "collate_fn() (dicee.triplepredictiondataset method)": [[11, "dicee.TriplePredictionDataset.collate_fn", false]], "collection_name (dicee.scripts.serve.neuralsearcher attribute)": [[36, "dicee.scripts.serve.NeuralSearcher.collection_name", false]], "comp_func() (dicee.lfmult method)": [[11, "dicee.LFMult.comp_func", false]], "comp_func() (dicee.models.function_space.lfmult method)": [[18, "dicee.models.function_space.LFMult.comp_func", false]], "comp_func() (dicee.models.lfmult method)": [[19, "dicee.models.LFMult.comp_func", false]], "complex (class in dicee)": [[11, "dicee.ComplEx", false]], "complex (class in dicee.models)": [[19, "dicee.models.ComplEx", false]], "complex (class in dicee.models.complex)": [[16, "dicee.models.complex.ComplEx", false]], "compute_convergence() (in module dicee.callbacks)": [[5, "dicee.callbacks.compute_convergence", false]], "compute_func() (dicee.models.fmult method)": [[19, "dicee.models.FMult.compute_func", false]], "compute_func() (dicee.models.fmult2 method)": [[19, "dicee.models.FMult2.compute_func", false]], "compute_func() (dicee.models.function_space.fmult method)": [[18, "dicee.models.function_space.FMult.compute_func", false]], "compute_func() (dicee.models.function_space.fmult2 method)": [[18, "dicee.models.function_space.FMult2.compute_func", false]], "compute_func() (dicee.models.function_space.gfmult method)": [[18, "dicee.models.function_space.GFMult.compute_func", false]], "compute_func() (dicee.models.gfmult method)": [[19, "dicee.models.GFMult.compute_func", false]], "compute_mrr() (dicee.callbacks.aswa static method)": [[5, "dicee.callbacks.ASWA.compute_mrr", false]], "compute_sigma_pp() (dicee.decal method)": [[11, "dicee.DeCaL.compute_sigma_pp", false]], "compute_sigma_pp() (dicee.keci method)": [[11, "dicee.Keci.compute_sigma_pp", false]], "compute_sigma_pp() (dicee.models.clifford.decal method)": [[15, "dicee.models.clifford.DeCaL.compute_sigma_pp", false]], "compute_sigma_pp() (dicee.models.clifford.keci method)": [[15, "dicee.models.clifford.Keci.compute_sigma_pp", false]], "compute_sigma_pp() (dicee.models.decal method)": [[19, "dicee.models.DeCaL.compute_sigma_pp", false]], "compute_sigma_pp() (dicee.models.keci method)": [[19, "dicee.models.Keci.compute_sigma_pp", false]], "compute_sigma_pq() (dicee.decal method)": [[11, "dicee.DeCaL.compute_sigma_pq", false]], "compute_sigma_pq() (dicee.keci method)": [[11, "dicee.Keci.compute_sigma_pq", false]], "compute_sigma_pq() (dicee.models.clifford.decal method)": [[15, "dicee.models.clifford.DeCaL.compute_sigma_pq", false]], "compute_sigma_pq() (dicee.models.clifford.keci method)": [[15, "dicee.models.clifford.Keci.compute_sigma_pq", false]], "compute_sigma_pq() (dicee.models.decal method)": [[19, "dicee.models.DeCaL.compute_sigma_pq", false]], "compute_sigma_pq() (dicee.models.keci method)": [[19, "dicee.models.Keci.compute_sigma_pq", false]], "compute_sigma_pr() (dicee.decal method)": [[11, "dicee.DeCaL.compute_sigma_pr", false]], "compute_sigma_pr() (dicee.models.clifford.decal method)": [[15, "dicee.models.clifford.DeCaL.compute_sigma_pr", false]], "compute_sigma_pr() (dicee.models.decal method)": [[19, "dicee.models.DeCaL.compute_sigma_pr", false]], "compute_sigma_qq() (dicee.decal method)": [[11, "dicee.DeCaL.compute_sigma_qq", false]], "compute_sigma_qq() (dicee.keci method)": [[11, "dicee.Keci.compute_sigma_qq", false]], "compute_sigma_qq() (dicee.models.clifford.decal method)": [[15, "dicee.models.clifford.DeCaL.compute_sigma_qq", false]], "compute_sigma_qq() (dicee.models.clifford.keci method)": [[15, "dicee.models.clifford.Keci.compute_sigma_qq", false]], "compute_sigma_qq() (dicee.models.decal method)": [[19, "dicee.models.DeCaL.compute_sigma_qq", false]], "compute_sigma_qq() (dicee.models.keci method)": [[19, "dicee.models.Keci.compute_sigma_qq", false]], "compute_sigma_qr() (dicee.decal method)": [[11, "dicee.DeCaL.compute_sigma_qr", false]], "compute_sigma_qr() (dicee.models.clifford.decal method)": [[15, "dicee.models.clifford.DeCaL.compute_sigma_qr", false]], "compute_sigma_qr() (dicee.models.decal method)": [[19, "dicee.models.DeCaL.compute_sigma_qr", false]], "compute_sigma_rr() (dicee.decal method)": [[11, "dicee.DeCaL.compute_sigma_rr", false]], "compute_sigma_rr() (dicee.models.clifford.decal method)": [[15, "dicee.models.clifford.DeCaL.compute_sigma_rr", false]], "compute_sigma_rr() (dicee.models.decal method)": [[19, "dicee.models.DeCaL.compute_sigma_rr", false]], "compute_sigmas_multivect() (dicee.decal method)": [[11, "dicee.DeCaL.compute_sigmas_multivect", false]], "compute_sigmas_multivect() (dicee.models.clifford.decal method)": [[15, "dicee.models.clifford.DeCaL.compute_sigmas_multivect", false]], "compute_sigmas_multivect() (dicee.models.decal method)": [[19, "dicee.models.DeCaL.compute_sigmas_multivect", false]], "compute_sigmas_single() (dicee.decal method)": [[11, "dicee.DeCaL.compute_sigmas_single", false]], "compute_sigmas_single() (dicee.models.clifford.decal method)": [[15, "dicee.models.clifford.DeCaL.compute_sigmas_single", false]], "compute_sigmas_single() (dicee.models.decal method)": [[19, "dicee.models.DeCaL.compute_sigmas_single", false]], "conex (class in dicee)": [[11, "dicee.ConEx", false]], "conex (class in dicee.models)": [[19, "dicee.models.ConEx", false]], "conex (class in dicee.models.complex)": [[16, "dicee.models.complex.ConEx", false]], "config (dicee.byte attribute)": [[11, "dicee.BytE.config", false]], "config (dicee.models.transformers.byte attribute)": [[25, "dicee.models.transformers.BytE.config", false]], "config (dicee.models.transformers.gpt attribute)": [[25, "dicee.models.transformers.GPT.config", false]], "configs (dicee.abstracts.baseinteractivekge attribute)": [[3, "dicee.abstracts.BaseInteractiveKGE.configs", false]], "configure_optimizers() (dicee.models.base_model.basekgelightning method)": [[14, "dicee.models.base_model.BaseKGELightning.configure_optimizers", false]], "configure_optimizers() (dicee.models.basekgelightning method)": [[19, "dicee.models.BaseKGELightning.configure_optimizers", false]], "configure_optimizers() (dicee.models.transformers.gpt method)": [[25, "dicee.models.transformers.GPT.configure_optimizers", false]], "construct_batch_selected_cl_multivector() (dicee.keci method)": [[11, "dicee.Keci.construct_batch_selected_cl_multivector", false]], "construct_batch_selected_cl_multivector() (dicee.models.clifford.keci method)": [[15, "dicee.models.clifford.Keci.construct_batch_selected_cl_multivector", false]], "construct_batch_selected_cl_multivector() (dicee.models.keci method)": [[19, "dicee.models.Keci.construct_batch_selected_cl_multivector", false]], "construct_cl_multivector() (dicee.decal method)": [[11, "dicee.DeCaL.construct_cl_multivector", false]], "construct_cl_multivector() (dicee.keci method)": [[11, "dicee.Keci.construct_cl_multivector", false]], "construct_cl_multivector() (dicee.models.clifford.decal method)": [[15, "dicee.models.clifford.DeCaL.construct_cl_multivector", false]], "construct_cl_multivector() (dicee.models.clifford.keci method)": [[15, "dicee.models.clifford.Keci.construct_cl_multivector", false]], "construct_cl_multivector() (dicee.models.decal method)": [[19, "dicee.models.DeCaL.construct_cl_multivector", false]], "construct_cl_multivector() (dicee.models.keci method)": [[19, "dicee.models.Keci.construct_cl_multivector", false]], "construct_dataset() (in module dicee)": [[11, "dicee.construct_dataset", false]], "construct_dataset() (in module dicee.dataset_classes)": [[7, "dicee.dataset_classes.construct_dataset", false]], "construct_ensemble (dicee.abstracts.baseinteractivekge attribute)": [[3, "dicee.abstracts.BaseInteractiveKGE.construct_ensemble", false]], "construct_graph() (dicee.query_generator.querygenerator method)": [[26, "dicee.query_generator.QueryGenerator.construct_graph", false]], "construct_graph() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.construct_graph", false]], "construct_input_and_output() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.construct_input_and_output", false]], "construct_multi_coeff() (dicee.lfmult method)": [[11, "dicee.LFMult.construct_multi_coeff", false]], "construct_multi_coeff() (dicee.models.function_space.lfmult method)": [[18, "dicee.models.function_space.LFMult.construct_multi_coeff", false]], "construct_multi_coeff() (dicee.models.lfmult method)": [[19, "dicee.models.LFMult.construct_multi_coeff", false]], "continual_learning (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.continual_learning", false]], "continual_start() (dicee.dice_trainer method)": [[11, "dicee.DICE_Trainer.continual_start", false]], "continual_start() (dicee.executer.continuousexecute method)": [[10, "dicee.executer.ContinuousExecute.continual_start", false]], "continual_start() (dicee.trainer.dice_trainer method)": [[41, "dicee.trainer.DICE_Trainer.continual_start", false]], "continual_start() (dicee.trainer.dice_trainer.dice_trainer method)": [[40, "dicee.trainer.dice_trainer.DICE_Trainer.continual_start", false]], "continual_training_setup_executor() (in module dicee)": [[11, "dicee.continual_training_setup_executor", false]], "continual_training_setup_executor() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.continual_training_setup_executor", false]], "continuousexecute (class in dicee.executer)": [[10, "dicee.executer.ContinuousExecute", false]], "conv2d (dicee.aconex attribute)": [[11, "dicee.AConEx.conv2d", false]], "conv2d (dicee.aconvo attribute)": [[11, "dicee.AConvO.conv2d", false]], "conv2d (dicee.aconvq attribute)": [[11, "dicee.AConvQ.conv2d", false]], "conv2d (dicee.conex attribute)": [[11, "dicee.ConEx.conv2d", false]], "conv2d (dicee.convo attribute)": [[11, "dicee.ConvO.conv2d", false]], "conv2d (dicee.convq attribute)": [[11, "dicee.ConvQ.conv2d", false]], "conv2d (dicee.models.aconex attribute)": [[19, "dicee.models.AConEx.conv2d", false]], "conv2d (dicee.models.aconvo attribute)": [[19, "dicee.models.AConvO.conv2d", false]], "conv2d (dicee.models.aconvq attribute)": [[19, "dicee.models.AConvQ.conv2d", false]], "conv2d (dicee.models.complex.aconex attribute)": [[16, "dicee.models.complex.AConEx.conv2d", false]], "conv2d (dicee.models.complex.conex attribute)": [[16, "dicee.models.complex.ConEx.conv2d", false]], "conv2d (dicee.models.conex attribute)": [[19, "dicee.models.ConEx.conv2d", false]], "conv2d (dicee.models.convo attribute)": [[19, "dicee.models.ConvO.conv2d", false]], "conv2d (dicee.models.convq attribute)": [[19, "dicee.models.ConvQ.conv2d", false]], "conv2d (dicee.models.octonion.aconvo attribute)": [[20, "dicee.models.octonion.AConvO.conv2d", false]], "conv2d (dicee.models.octonion.convo attribute)": [[20, "dicee.models.octonion.ConvO.conv2d", false]], "conv2d (dicee.models.quaternion.aconvq attribute)": [[22, "dicee.models.quaternion.AConvQ.conv2d", false]], "conv2d (dicee.models.quaternion.convq attribute)": [[22, "dicee.models.quaternion.ConvQ.conv2d", false]], "convo (class in dicee)": [[11, "dicee.ConvO", false]], "convo (class in dicee.models)": [[19, "dicee.models.ConvO", false]], "convo (class in dicee.models.octonion)": [[20, "dicee.models.octonion.ConvO", false]], "convq (class in dicee)": [[11, "dicee.ConvQ", false]], "convq (class in dicee.models)": [[19, "dicee.models.ConvQ", false]], "convq (class in dicee.models.quaternion)": [[22, "dicee.models.quaternion.ConvQ", false]], "create_constraints() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.create_constraints", false]], "create_constraints() (in module dicee.static_preprocess_funcs)": [[39, "dicee.static_preprocess_funcs.create_constraints", false]], "create_experiment_folder() (in module dicee)": [[11, "dicee.create_experiment_folder", false]], "create_experiment_folder() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.create_experiment_folder", false]], "create_random_data() (dicee.callbacks.pseudolabellingcallback method)": [[5, "dicee.callbacks.PseudoLabellingCallback.create_random_data", false]], "create_recipriocal_triples() (in module dicee)": [[11, "dicee.create_recipriocal_triples", false]], "create_recipriocal_triples() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.create_recipriocal_triples", false]], "create_recipriocal_triples() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.create_recipriocal_triples", false]], "create_vector_database() (dicee.kge method)": [[11, "dicee.KGE.create_vector_database", false]], "create_vector_database() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.create_vector_database", false]], "crop_block_size() (dicee.models.transformers.gpt method)": [[25, "dicee.models.transformers.GPT.crop_block_size", false]], "ctx (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[44, "dicee.trainer.torch_trainer_ddp.NodeTrainer.ctx", false]], "cvdatamodule (class in dicee)": [[11, "dicee.CVDataModule", false]], "cvdatamodule (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.CVDataModule", false]], "data_module (dicee.callbacks.pseudolabellingcallback attribute)": [[5, "dicee.callbacks.PseudoLabellingCallback.data_module", false]], "dataset_dir (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.dataset_dir", false]], "dataset_dir (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.dataset_dir", false]], "dataset_sanity_checking() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.dataset_sanity_checking", false]], "decal (class in dicee)": [[11, "dicee.DeCaL", false]], "decal (class in dicee.models)": [[19, "dicee.models.DeCaL", false]], "decal (class in dicee.models.clifford)": [[15, "dicee.models.clifford.DeCaL", false]], "decide() (dicee.callbacks.aswa method)": [[5, "dicee.callbacks.ASWA.decide", false]], "degree (dicee.lfmult attribute)": [[11, "dicee.LFMult.degree", false]], "degree (dicee.models.function_space.lfmult attribute)": [[18, "dicee.models.function_space.LFMult.degree", false]], "degree (dicee.models.lfmult attribute)": [[19, "dicee.models.LFMult.degree", false]], "deploy() (dicee.kge method)": [[11, "dicee.KGE.deploy", false]], "deploy() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.deploy", false]], "deploy_head_entity_prediction() (in module dicee)": [[11, "dicee.deploy_head_entity_prediction", false]], "deploy_head_entity_prediction() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.deploy_head_entity_prediction", false]], "deploy_relation_prediction() (in module dicee)": [[11, "dicee.deploy_relation_prediction", false]], "deploy_relation_prediction() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.deploy_relation_prediction", false]], "deploy_tail_entity_prediction() (in module dicee)": [[11, "dicee.deploy_tail_entity_prediction", false]], "deploy_tail_entity_prediction() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.deploy_tail_entity_prediction", false]], "deploy_triple_prediction() (in module dicee)": [[11, "dicee.deploy_triple_prediction", false]], "deploy_triple_prediction() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.deploy_triple_prediction", false]], "dept_read_preprocess_index_serialize_data() (dicee.execute method)": [[11, "dicee.Execute.dept_read_preprocess_index_serialize_data", false]], "dept_read_preprocess_index_serialize_data() (dicee.executer.execute method)": [[10, "dicee.executer.Execute.dept_read_preprocess_index_serialize_data", false]], "describe() (dicee.knowledge_graph.kg method)": [[12, "dicee.knowledge_graph.KG.describe", false]], "description_of_input (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.description_of_input", false]], "dice_trainer (class in dicee)": [[11, "dicee.DICE_Trainer", false]], "dice_trainer (class in dicee.trainer)": [[41, "dicee.trainer.DICE_Trainer", false]], "dice_trainer (class in dicee.trainer.dice_trainer)": [[40, "dicee.trainer.dice_trainer.DICE_Trainer", false]], "dicee": [[11, "module-dicee", false]], "dicee.__main__": [[2, "module-dicee.__main__", false]], "dicee.abstracts": [[3, "module-dicee.abstracts", false]], "dicee.analyse_experiments": [[4, "module-dicee.analyse_experiments", false]], "dicee.callbacks": [[5, "module-dicee.callbacks", false]], "dicee.config": [[6, "module-dicee.config", false]], "dicee.dataset_classes": [[7, "module-dicee.dataset_classes", false]], "dicee.eval_static_funcs": [[8, "module-dicee.eval_static_funcs", false]], "dicee.evaluator": [[9, "module-dicee.evaluator", false]], "dicee.executer": [[10, "module-dicee.executer", false]], "dicee.knowledge_graph": [[12, "module-dicee.knowledge_graph", false]], "dicee.knowledge_graph_embeddings": [[13, "module-dicee.knowledge_graph_embeddings", false]], "dicee.models": [[19, "module-dicee.models", false]], "dicee.models.base_model": [[14, "module-dicee.models.base_model", false]], "dicee.models.clifford": [[15, "module-dicee.models.clifford", false]], "dicee.models.complex": [[16, "module-dicee.models.complex", false]], "dicee.models.duale": [[17, "module-dicee.models.dualE", false]], "dicee.models.function_space": [[18, "module-dicee.models.function_space", false]], "dicee.models.octonion": [[20, "module-dicee.models.octonion", false]], "dicee.models.pykeen_models": [[21, "module-dicee.models.pykeen_models", false]], "dicee.models.quaternion": [[22, "module-dicee.models.quaternion", false]], "dicee.models.real": [[23, "module-dicee.models.real", false]], "dicee.models.static_funcs": [[24, "module-dicee.models.static_funcs", false]], "dicee.models.transformers": [[25, "module-dicee.models.transformers", false]], "dicee.query_generator": [[26, "module-dicee.query_generator", false]], "dicee.read_preprocess_save_load_kg": [[27, "module-dicee.read_preprocess_save_load_kg", false]], "dicee.read_preprocess_save_load_kg.preprocess": [[28, "module-dicee.read_preprocess_save_load_kg.preprocess", false]], "dicee.read_preprocess_save_load_kg.read_from_disk": [[29, "module-dicee.read_preprocess_save_load_kg.read_from_disk", false]], "dicee.read_preprocess_save_load_kg.save_load_disk": [[30, "module-dicee.read_preprocess_save_load_kg.save_load_disk", false]], "dicee.read_preprocess_save_load_kg.util": [[31, "module-dicee.read_preprocess_save_load_kg.util", false]], "dicee.sanity_checkers": [[32, "module-dicee.sanity_checkers", false]], "dicee.scripts": [[33, "module-dicee.scripts", false]], "dicee.scripts.index": [[34, "module-dicee.scripts.index", false]], "dicee.scripts.run": [[35, "module-dicee.scripts.run", false]], "dicee.scripts.serve": [[36, "module-dicee.scripts.serve", false]], "dicee.static_funcs": [[37, "module-dicee.static_funcs", false]], "dicee.static_funcs_training": [[38, "module-dicee.static_funcs_training", false]], "dicee.static_preprocess_funcs": [[39, "module-dicee.static_preprocess_funcs", false]], "dicee.trainer": [[41, "module-dicee.trainer", false]], "dicee.trainer.dice_trainer": [[40, "module-dicee.trainer.dice_trainer", false]], "dicee.trainer.model_parallelism": [[42, "module-dicee.trainer.model_parallelism", false]], "dicee.trainer.torch_trainer": [[43, "module-dicee.trainer.torch_trainer", false]], "dicee.trainer.torch_trainer_ddp": [[44, "module-dicee.trainer.torch_trainer_ddp", false]], "discrete_points (dicee.models.fmult2 attribute)": [[19, "dicee.models.FMult2.discrete_points", false]], "discrete_points (dicee.models.function_space.fmult2 attribute)": [[18, "dicee.models.function_space.FMult2.discrete_points", false]], "dist_func (dicee.models.pyke attribute)": [[19, "dicee.models.Pyke.dist_func", false]], "dist_func (dicee.models.real.pyke attribute)": [[23, "dicee.models.real.Pyke.dist_func", false]], "dist_func (dicee.pyke attribute)": [[11, "dicee.Pyke.dist_func", false]], "distmult (class in dicee)": [[11, "dicee.DistMult", false]], "distmult (class in dicee.models)": [[19, "dicee.models.DistMult", false]], "distmult (class in dicee.models.real)": [[23, "dicee.models.real.DistMult", false]], "download_file() (in module dicee)": [[11, "dicee.download_file", false]], "download_file() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.download_file", false]], "download_files_from_url() (in module dicee)": [[11, "dicee.download_files_from_url", false]], "download_files_from_url() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.download_files_from_url", false]], "download_pretrained_model() (in module dicee)": [[11, "dicee.download_pretrained_model", false]], "download_pretrained_model() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.download_pretrained_model", false]], "dropout (dicee.models.transformers.causalselfattention attribute)": [[25, "dicee.models.transformers.CausalSelfAttention.dropout", false]], "dropout (dicee.models.transformers.gptconfig attribute)": [[25, "dicee.models.transformers.GPTConfig.dropout", false]], "dropout (dicee.models.transformers.mlp attribute)": [[25, "dicee.models.transformers.MLP.dropout", false]], "duale (class in dicee)": [[11, "dicee.DualE", false]], "duale (class in dicee.models)": [[19, "dicee.models.DualE", false]], "duale (class in dicee.models.duale)": [[17, "dicee.models.dualE.DualE", false]], "dummy_eval() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.dummy_eval", false]], "dummy_id (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.dummy_id", false]], "during_training (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.during_training", false]], "ee_vocab (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.ee_vocab", false]], "efficient_zero_grad() (in module dicee.static_funcs_training)": [[38, "dicee.static_funcs_training.efficient_zero_grad", false]], "embedding_dim (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.embedding_dim", false]], "embedding_dim (dicee.basekge attribute)": [[11, "dicee.BaseKGE.embedding_dim", false]], "embedding_dim (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.embedding_dim", false]], "embedding_dim (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.embedding_dim", false]], "embedding_dim (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.embedding_dim", false], [19, "id136", false], [19, "id187", false], [19, "id229", false], [19, "id48", false], [19, "id6", false], [19, "id90", false]], "enable_log (in module dicee.static_preprocess_funcs)": [[39, "dicee.static_preprocess_funcs.enable_log", false]], "enc (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.enc", false]], "end() (dicee.execute method)": [[11, "dicee.Execute.end", false]], "end() (dicee.executer.execute method)": [[10, "dicee.executer.Execute.end", false]], "ensemblekge (class in dicee.trainer.dice_trainer)": [[40, "dicee.trainer.dice_trainer.EnsembleKGE", false]], "ent2id (dicee.query_generator.querygenerator attribute)": [[26, "dicee.query_generator.QueryGenerator.ent2id", false]], "ent2id (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.ent2id", false]], "ent_in (dicee.query_generator.querygenerator attribute)": [[26, "dicee.query_generator.QueryGenerator.ent_in", false]], "ent_in (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.ent_in", false]], "ent_out (dicee.query_generator.querygenerator attribute)": [[26, "dicee.query_generator.QueryGenerator.ent_out", false]], "ent_out (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.ent_out", false]], "entities_str (dicee.knowledge_graph.kg property)": [[12, "dicee.knowledge_graph.KG.entities_str", false]], "entity_embeddings (dicee.aconvq attribute)": [[11, "dicee.AConvQ.entity_embeddings", false]], "entity_embeddings (dicee.convq attribute)": [[11, "dicee.ConvQ.entity_embeddings", false]], "entity_embeddings (dicee.decal attribute)": [[11, "dicee.DeCaL.entity_embeddings", false]], "entity_embeddings (dicee.duale attribute)": [[11, "dicee.DualE.entity_embeddings", false]], "entity_embeddings (dicee.lfmult attribute)": [[11, "dicee.LFMult.entity_embeddings", false]], "entity_embeddings (dicee.models.aconvq attribute)": [[19, "dicee.models.AConvQ.entity_embeddings", false]], "entity_embeddings (dicee.models.clifford.decal attribute)": [[15, "dicee.models.clifford.DeCaL.entity_embeddings", false]], "entity_embeddings (dicee.models.convq attribute)": [[19, "dicee.models.ConvQ.entity_embeddings", false]], "entity_embeddings (dicee.models.decal attribute)": [[19, "dicee.models.DeCaL.entity_embeddings", false]], "entity_embeddings (dicee.models.duale attribute)": [[19, "dicee.models.DualE.entity_embeddings", false]], "entity_embeddings (dicee.models.duale.duale attribute)": [[17, "dicee.models.dualE.DualE.entity_embeddings", false]], "entity_embeddings (dicee.models.fmult attribute)": [[19, "dicee.models.FMult.entity_embeddings", false]], "entity_embeddings (dicee.models.fmult2 attribute)": [[19, "dicee.models.FMult2.entity_embeddings", false]], "entity_embeddings (dicee.models.function_space.fmult attribute)": [[18, "dicee.models.function_space.FMult.entity_embeddings", false]], "entity_embeddings (dicee.models.function_space.fmult2 attribute)": [[18, "dicee.models.function_space.FMult2.entity_embeddings", false]], "entity_embeddings (dicee.models.function_space.gfmult attribute)": [[18, "dicee.models.function_space.GFMult.entity_embeddings", false]], "entity_embeddings (dicee.models.function_space.lfmult attribute)": [[18, "dicee.models.function_space.LFMult.entity_embeddings", false]], "entity_embeddings (dicee.models.function_space.lfmult1 attribute)": [[18, "dicee.models.function_space.LFMult1.entity_embeddings", false]], "entity_embeddings (dicee.models.gfmult attribute)": [[19, "dicee.models.GFMult.entity_embeddings", false]], "entity_embeddings (dicee.models.lfmult attribute)": [[19, "dicee.models.LFMult.entity_embeddings", false]], "entity_embeddings (dicee.models.lfmult1 attribute)": [[19, "dicee.models.LFMult1.entity_embeddings", false]], "entity_embeddings (dicee.models.pykeen_models.pykeenkge attribute)": [[21, "dicee.models.pykeen_models.PykeenKGE.entity_embeddings", false]], "entity_embeddings (dicee.models.pykeenkge attribute)": [[19, "dicee.models.PykeenKGE.entity_embeddings", false]], "entity_embeddings (dicee.models.quaternion.aconvq attribute)": [[22, "dicee.models.quaternion.AConvQ.entity_embeddings", false]], "entity_embeddings (dicee.models.quaternion.convq attribute)": [[22, "dicee.models.quaternion.ConvQ.entity_embeddings", false]], "entity_embeddings (dicee.pykeenkge attribute)": [[11, "dicee.PykeenKGE.entity_embeddings", false]], "entity_to_idx (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.entity_to_idx", false]], "epoch_count (dicee.abstracts.abstractppecallback attribute)": [[3, "dicee.abstracts.AbstractPPECallback.epoch_count", false]], "epoch_count (dicee.callbacks.aswa attribute)": [[5, "dicee.callbacks.ASWA.epoch_count", false]], "epoch_counter (dicee.callbacks.eval attribute)": [[5, "dicee.callbacks.Eval.epoch_counter", false]], "epoch_counter (dicee.callbacks.kgesavecallback attribute)": [[5, "dicee.callbacks.KGESaveCallback.epoch_counter", false]], "epoch_ratio (dicee.callbacks.eval attribute)": [[5, "dicee.callbacks.Eval.epoch_ratio", false]], "er_vocab (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.er_vocab", false]], "estimate_mfu() (dicee.models.transformers.gpt method)": [[25, "dicee.models.transformers.GPT.estimate_mfu", false]], "estimate_q() (in module dicee.callbacks)": [[5, "dicee.callbacks.estimate_q", false]], "eval (class in dicee.callbacks)": [[5, "dicee.callbacks.Eval", false]], "eval() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.eval", false]], "eval_lp_performance() (dicee.kge method)": [[11, "dicee.KGE.eval_lp_performance", false]], "eval_lp_performance() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.eval_lp_performance", false]], "eval_model (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.eval_model", false]], "eval_model (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.eval_model", false]], "eval_rank_of_head_and_tail_byte_pair_encoded_entity() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.eval_rank_of_head_and_tail_byte_pair_encoded_entity", false]], "eval_rank_of_head_and_tail_entity() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.eval_rank_of_head_and_tail_entity", false]], "eval_with_bpe_vs_all() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.eval_with_bpe_vs_all", false]], "eval_with_byte() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.eval_with_byte", false]], "eval_with_data() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.eval_with_data", false]], "eval_with_vs_all() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.eval_with_vs_all", false]], "evaluate() (in module dicee)": [[11, "dicee.evaluate", false]], "evaluate() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.evaluate", false]], "evaluate_bpe_lp() (in module dicee.static_funcs_training)": [[38, "dicee.static_funcs_training.evaluate_bpe_lp", false]], "evaluate_link_prediction_performance() (in module dicee.eval_static_funcs)": [[8, "dicee.eval_static_funcs.evaluate_link_prediction_performance", false]], "evaluate_link_prediction_performance_with_bpe() (in module dicee.eval_static_funcs)": [[8, "dicee.eval_static_funcs.evaluate_link_prediction_performance_with_bpe", false]], "evaluate_link_prediction_performance_with_bpe_reciprocals() (in module dicee.eval_static_funcs)": [[8, "dicee.eval_static_funcs.evaluate_link_prediction_performance_with_bpe_reciprocals", false]], "evaluate_link_prediction_performance_with_reciprocals() (in module dicee.eval_static_funcs)": [[8, "dicee.eval_static_funcs.evaluate_link_prediction_performance_with_reciprocals", false]], "evaluate_lp() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.evaluate_lp", false]], "evaluate_lp() (in module dicee.static_funcs_training)": [[38, "dicee.static_funcs_training.evaluate_lp", false]], "evaluate_lp_bpe_k_vs_all() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.evaluate_lp_bpe_k_vs_all", false]], "evaluate_lp_bpe_k_vs_all() (in module dicee.eval_static_funcs)": [[8, "dicee.eval_static_funcs.evaluate_lp_bpe_k_vs_all", false]], "evaluate_lp_k_vs_all() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.evaluate_lp_k_vs_all", false]], "evaluate_lp_with_byte() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.evaluate_lp_with_byte", false]], "evaluator (class in dicee.evaluator)": [[9, "dicee.evaluator.Evaluator", false]], "evaluator (dicee.dice_trainer attribute)": [[11, "dicee.DICE_Trainer.evaluator", false]], "evaluator (dicee.execute attribute)": [[11, "dicee.Execute.evaluator", false]], "evaluator (dicee.executer.execute attribute)": [[10, "dicee.executer.Execute.evaluator", false]], "evaluator (dicee.trainer.dice_trainer attribute)": [[41, "dicee.trainer.DICE_Trainer.evaluator", false]], "evaluator (dicee.trainer.dice_trainer.dice_trainer attribute)": [[40, "dicee.trainer.dice_trainer.DICE_Trainer.evaluator", false]], "every_x_epoch (dicee.callbacks.kgesavecallback attribute)": [[5, "dicee.callbacks.KGESaveCallback.every_x_epoch", false]], "execute (class in dicee)": [[11, "dicee.Execute", false]], "execute (class in dicee.executer)": [[10, "dicee.executer.Execute", false]], "exists() (dicee.knowledge_graph.kg method)": [[12, "dicee.knowledge_graph.KG.exists", false]], "experiment (class in dicee.analyse_experiments)": [[4, "dicee.analyse_experiments.Experiment", false]], "explicit (dicee.models.qmult attribute)": [[19, "dicee.models.QMult.explicit", false]], "explicit (dicee.models.quaternion.qmult attribute)": [[22, "dicee.models.quaternion.QMult.explicit", false]], "explicit (dicee.qmult attribute)": [[11, "dicee.QMult.explicit", false]], "exponential_function() (in module dicee)": [[11, "dicee.exponential_function", false]], "exponential_function() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.exponential_function", false]], "extract_input_outputs() (dicee.trainer.model_parallelism.mp method)": [[42, "dicee.trainer.model_parallelism.MP.extract_input_outputs", false]], "extract_input_outputs() (dicee.trainer.torch_trainer_ddp.nodetrainer method)": [[44, "dicee.trainer.torch_trainer_ddp.NodeTrainer.extract_input_outputs", false]], "extract_input_outputs_set_device() (dicee.trainer.torch_trainer.torchtrainer method)": [[43, "dicee.trainer.torch_trainer.TorchTrainer.extract_input_outputs_set_device", false]], "extract_input_outputs_set_device() (dicee.trainer.torch_trainer.xmp method)": [[43, "dicee.trainer.torch_trainer.xMP.extract_input_outputs_set_device", false]], "f (dicee.callbacks.krone attribute)": [[5, "dicee.callbacks.KronE.f", false]], "fc1 (dicee.aconex attribute)": [[11, "dicee.AConEx.fc1", false]], "fc1 (dicee.aconvo attribute)": [[11, "dicee.AConvO.fc1", false]], "fc1 (dicee.aconvq attribute)": [[11, "dicee.AConvQ.fc1", false]], "fc1 (dicee.conex attribute)": [[11, "dicee.ConEx.fc1", false]], "fc1 (dicee.convo attribute)": [[11, "dicee.ConvO.fc1", false]], "fc1 (dicee.convq attribute)": [[11, "dicee.ConvQ.fc1", false]], "fc1 (dicee.models.aconex attribute)": [[19, "dicee.models.AConEx.fc1", false]], "fc1 (dicee.models.aconvo attribute)": [[19, "dicee.models.AConvO.fc1", false]], "fc1 (dicee.models.aconvq attribute)": [[19, "dicee.models.AConvQ.fc1", false]], "fc1 (dicee.models.complex.aconex attribute)": [[16, "dicee.models.complex.AConEx.fc1", false]], "fc1 (dicee.models.complex.conex attribute)": [[16, "dicee.models.complex.ConEx.fc1", false]], "fc1 (dicee.models.conex attribute)": [[19, "dicee.models.ConEx.fc1", false]], "fc1 (dicee.models.convo attribute)": [[19, "dicee.models.ConvO.fc1", false]], "fc1 (dicee.models.convq attribute)": [[19, "dicee.models.ConvQ.fc1", false]], "fc1 (dicee.models.octonion.aconvo attribute)": [[20, "dicee.models.octonion.AConvO.fc1", false]], "fc1 (dicee.models.octonion.convo attribute)": [[20, "dicee.models.octonion.ConvO.fc1", false]], "fc1 (dicee.models.quaternion.aconvq attribute)": [[22, "dicee.models.quaternion.AConvQ.fc1", false]], "fc1 (dicee.models.quaternion.convq attribute)": [[22, "dicee.models.quaternion.ConvQ.fc1", false]], "fc_num_input (dicee.aconex attribute)": [[11, "dicee.AConEx.fc_num_input", false]], "fc_num_input (dicee.aconvo attribute)": [[11, "dicee.AConvO.fc_num_input", false]], "fc_num_input (dicee.aconvq attribute)": [[11, "dicee.AConvQ.fc_num_input", false]], "fc_num_input (dicee.conex attribute)": [[11, "dicee.ConEx.fc_num_input", false]], "fc_num_input (dicee.convo attribute)": [[11, "dicee.ConvO.fc_num_input", false]], "fc_num_input (dicee.convq attribute)": [[11, "dicee.ConvQ.fc_num_input", false]], "fc_num_input (dicee.models.aconex attribute)": [[19, "dicee.models.AConEx.fc_num_input", false]], "fc_num_input (dicee.models.aconvo attribute)": [[19, "dicee.models.AConvO.fc_num_input", false]], "fc_num_input (dicee.models.aconvq attribute)": [[19, "dicee.models.AConvQ.fc_num_input", false]], "fc_num_input (dicee.models.complex.aconex attribute)": [[16, "dicee.models.complex.AConEx.fc_num_input", false]], "fc_num_input (dicee.models.complex.conex attribute)": [[16, "dicee.models.complex.ConEx.fc_num_input", false]], "fc_num_input (dicee.models.conex attribute)": [[19, "dicee.models.ConEx.fc_num_input", false]], "fc_num_input (dicee.models.convo attribute)": [[19, "dicee.models.ConvO.fc_num_input", false]], "fc_num_input (dicee.models.convq attribute)": [[19, "dicee.models.ConvQ.fc_num_input", false]], "fc_num_input (dicee.models.octonion.aconvo attribute)": [[20, "dicee.models.octonion.AConvO.fc_num_input", false]], "fc_num_input (dicee.models.octonion.convo attribute)": [[20, "dicee.models.octonion.ConvO.fc_num_input", false]], "fc_num_input (dicee.models.quaternion.aconvq attribute)": [[22, "dicee.models.quaternion.AConvQ.fc_num_input", false]], "fc_num_input (dicee.models.quaternion.convq attribute)": [[22, "dicee.models.quaternion.ConvQ.fc_num_input", false]], "feature_map_dropout (dicee.aconex attribute)": [[11, "dicee.AConEx.feature_map_dropout", false]], "feature_map_dropout (dicee.aconvo attribute)": [[11, "dicee.AConvO.feature_map_dropout", false]], "feature_map_dropout (dicee.aconvq attribute)": [[11, "dicee.AConvQ.feature_map_dropout", false]], "feature_map_dropout (dicee.conex attribute)": [[11, "dicee.ConEx.feature_map_dropout", false]], "feature_map_dropout (dicee.convo attribute)": [[11, "dicee.ConvO.feature_map_dropout", false]], "feature_map_dropout (dicee.convq attribute)": [[11, "dicee.ConvQ.feature_map_dropout", false]], "feature_map_dropout (dicee.models.aconex attribute)": [[19, "dicee.models.AConEx.feature_map_dropout", false]], "feature_map_dropout (dicee.models.aconvo attribute)": [[19, "dicee.models.AConvO.feature_map_dropout", false]], "feature_map_dropout (dicee.models.aconvq attribute)": [[19, "dicee.models.AConvQ.feature_map_dropout", false]], "feature_map_dropout (dicee.models.complex.aconex attribute)": [[16, "dicee.models.complex.AConEx.feature_map_dropout", false]], "feature_map_dropout (dicee.models.complex.conex attribute)": [[16, "dicee.models.complex.ConEx.feature_map_dropout", false]], "feature_map_dropout (dicee.models.conex attribute)": [[19, "dicee.models.ConEx.feature_map_dropout", false]], "feature_map_dropout (dicee.models.convo attribute)": [[19, "dicee.models.ConvO.feature_map_dropout", false]], "feature_map_dropout (dicee.models.convq attribute)": [[19, "dicee.models.ConvQ.feature_map_dropout", false]], "feature_map_dropout (dicee.models.octonion.aconvo attribute)": [[20, "dicee.models.octonion.AConvO.feature_map_dropout", false]], "feature_map_dropout (dicee.models.octonion.convo attribute)": [[20, "dicee.models.octonion.ConvO.feature_map_dropout", false]], "feature_map_dropout (dicee.models.quaternion.aconvq attribute)": [[22, "dicee.models.quaternion.AConvQ.feature_map_dropout", false]], "feature_map_dropout (dicee.models.quaternion.convq attribute)": [[22, "dicee.models.quaternion.ConvQ.feature_map_dropout", false]], "feature_map_dropout_rate (dicee.basekge attribute)": [[11, "dicee.BaseKGE.feature_map_dropout_rate", false]], "feature_map_dropout_rate (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.feature_map_dropout_rate", false]], "feature_map_dropout_rate (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.feature_map_dropout_rate", false]], "feature_map_dropout_rate (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.feature_map_dropout_rate", false], [19, "id145", false], [19, "id15", false], [19, "id196", false], [19, "id238", false], [19, "id57", false], [19, "id99", false]], "fill_query() (dicee.query_generator.querygenerator method)": [[26, "dicee.query_generator.QueryGenerator.fill_query", false]], "fill_query() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.fill_query", false]], "find_missing_triples() (dicee.kge method)": [[11, "dicee.KGE.find_missing_triples", false]], "find_missing_triples() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.find_missing_triples", false]], "fit() (dicee.trainer.model_parallelism.mp method)": [[42, "dicee.trainer.model_parallelism.MP.fit", false]], "fit() (dicee.trainer.torch_trainer.torchtrainer method)": [[43, "dicee.trainer.torch_trainer.TorchTrainer.fit", false]], "fit() (dicee.trainer.torch_trainer.xmp method)": [[43, "dicee.trainer.torch_trainer.xMP.fit", false]], "fit() (dicee.trainer.torch_trainer_ddp.torchddptrainer method)": [[44, "dicee.trainer.torch_trainer_ddp.TorchDDPTrainer.fit", false]], "flash (dicee.models.transformers.causalselfattention attribute)": [[25, "dicee.models.transformers.CausalSelfAttention.flash", false]], "fmult (class in dicee.models)": [[19, "dicee.models.FMult", false]], "fmult (class in dicee.models.function_space)": [[18, "dicee.models.function_space.FMult", false]], "fmult2 (class in dicee.models)": [[19, "dicee.models.FMult2", false]], "fmult2 (class in dicee.models.function_space)": [[18, "dicee.models.function_space.FMult2", false]], "form_of_labelling (dicee.dice_trainer attribute)": [[11, "dicee.DICE_Trainer.form_of_labelling", false]], "form_of_labelling (dicee.trainer.dice_trainer attribute)": [[41, "dicee.trainer.DICE_Trainer.form_of_labelling", false]], "form_of_labelling (dicee.trainer.dice_trainer.dice_trainer attribute)": [[40, "dicee.trainer.dice_trainer.DICE_Trainer.form_of_labelling", false]], "forward() (dicee.basekge method)": [[11, "dicee.BaseKGE.forward", false]], "forward() (dicee.byte method)": [[11, "dicee.BytE.forward", false]], "forward() (dicee.models.base_model.basekge method)": [[14, "dicee.models.base_model.BaseKGE.forward", false]], "forward() (dicee.models.base_model.identityclass static method)": [[14, "dicee.models.base_model.IdentityClass.forward", false]], "forward() (dicee.models.basekge method)": [[19, "dicee.models.BaseKGE.forward", false], [19, "id121", false], [19, "id167", false], [19, "id218", false], [19, "id260", false], [19, "id37", false], [19, "id79", false]], "forward() (dicee.models.identityclass static method)": [[19, "dicee.models.IdentityClass.forward", false], [19, "id133", false], [19, "id179", false]], "forward() (dicee.models.transformers.block method)": [[25, "dicee.models.transformers.Block.forward", false]], "forward() (dicee.models.transformers.byte method)": [[25, "dicee.models.transformers.BytE.forward", false]], "forward() (dicee.models.transformers.causalselfattention method)": [[25, "dicee.models.transformers.CausalSelfAttention.forward", false]], "forward() (dicee.models.transformers.gpt method)": [[25, "dicee.models.transformers.GPT.forward", false]], "forward() (dicee.models.transformers.layernorm method)": [[25, "dicee.models.transformers.LayerNorm.forward", false]], "forward() (dicee.models.transformers.mlp method)": [[25, "dicee.models.transformers.MLP.forward", false]], "forward_backward_update() (dicee.trainer.torch_trainer.torchtrainer method)": [[43, "dicee.trainer.torch_trainer.TorchTrainer.forward_backward_update", false]], "forward_backward_update() (dicee.trainer.torch_trainer.xmp method)": [[43, "dicee.trainer.torch_trainer.xMP.forward_backward_update", false]], "forward_byte_pair_encoded_k_vs_all() (dicee.basekge method)": [[11, "dicee.BaseKGE.forward_byte_pair_encoded_k_vs_all", false]], "forward_byte_pair_encoded_k_vs_all() (dicee.models.base_model.basekge method)": [[14, "dicee.models.base_model.BaseKGE.forward_byte_pair_encoded_k_vs_all", false]], "forward_byte_pair_encoded_k_vs_all() (dicee.models.basekge method)": [[19, "dicee.models.BaseKGE.forward_byte_pair_encoded_k_vs_all", false], [19, "id118", false], [19, "id164", false], [19, "id215", false], [19, "id257", false], [19, "id34", false], [19, "id76", false]], "forward_byte_pair_encoded_triple() (dicee.basekge method)": [[11, "dicee.BaseKGE.forward_byte_pair_encoded_triple", false]], "forward_byte_pair_encoded_triple() (dicee.models.base_model.basekge method)": [[14, "dicee.models.base_model.BaseKGE.forward_byte_pair_encoded_triple", false]], "forward_byte_pair_encoded_triple() (dicee.models.basekge method)": [[19, "dicee.models.BaseKGE.forward_byte_pair_encoded_triple", false], [19, "id119", false], [19, "id165", false], [19, "id216", false], [19, "id258", false], [19, "id35", false], [19, "id77", false]], "forward_k_vs_all() (dicee.aconex method)": [[11, "dicee.AConEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.aconvo method)": [[11, "dicee.AConvO.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.aconvq method)": [[11, "dicee.AConvQ.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.basekge method)": [[11, "dicee.BaseKGE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.complex method)": [[11, "dicee.ComplEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.conex method)": [[11, "dicee.ConEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.convo method)": [[11, "dicee.ConvO.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.convq method)": [[11, "dicee.ConvQ.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.decal method)": [[11, "dicee.DeCaL.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.distmult method)": [[11, "dicee.DistMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.duale method)": [[11, "dicee.DualE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.keci method)": [[11, "dicee.Keci.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.aconex method)": [[19, "dicee.models.AConEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.aconvo method)": [[19, "dicee.models.AConvO.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.aconvq method)": [[19, "dicee.models.AConvQ.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.base_model.basekge method)": [[14, "dicee.models.base_model.BaseKGE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.basekge method)": [[19, "dicee.models.BaseKGE.forward_k_vs_all", false], [19, "id123", false], [19, "id169", false], [19, "id220", false], [19, "id262", false], [19, "id39", false], [19, "id81", false]], "forward_k_vs_all() (dicee.models.clifford.decal method)": [[15, "dicee.models.clifford.DeCaL.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.clifford.keci method)": [[15, "dicee.models.clifford.Keci.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.complex method)": [[19, "dicee.models.ComplEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.complex.aconex method)": [[16, "dicee.models.complex.AConEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.complex.complex method)": [[16, "dicee.models.complex.ComplEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.complex.conex method)": [[16, "dicee.models.complex.ConEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.conex method)": [[19, "dicee.models.ConEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.convo method)": [[19, "dicee.models.ConvO.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.convq method)": [[19, "dicee.models.ConvQ.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.decal method)": [[19, "dicee.models.DeCaL.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.distmult method)": [[19, "dicee.models.DistMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.duale method)": [[19, "dicee.models.DualE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.duale.duale method)": [[17, "dicee.models.dualE.DualE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.keci method)": [[19, "dicee.models.Keci.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.octonion.aconvo method)": [[20, "dicee.models.octonion.AConvO.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.octonion.convo method)": [[20, "dicee.models.octonion.ConvO.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.octonion.omult method)": [[20, "dicee.models.octonion.OMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.omult method)": [[19, "dicee.models.OMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.pykeen_models.pykeenkge method)": [[21, "dicee.models.pykeen_models.PykeenKGE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.pykeenkge method)": [[19, "dicee.models.PykeenKGE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.qmult method)": [[19, "dicee.models.QMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.quaternion.aconvq method)": [[22, "dicee.models.quaternion.AConvQ.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.quaternion.convq method)": [[22, "dicee.models.quaternion.ConvQ.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.quaternion.qmult method)": [[22, "dicee.models.quaternion.QMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.real.distmult method)": [[23, "dicee.models.real.DistMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.real.shallom method)": [[23, "dicee.models.real.Shallom.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.real.transe method)": [[23, "dicee.models.real.TransE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.shallom method)": [[19, "dicee.models.Shallom.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.transe method)": [[19, "dicee.models.TransE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.omult method)": [[11, "dicee.OMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.pykeenkge method)": [[11, "dicee.PykeenKGE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.qmult method)": [[11, "dicee.QMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.shallom method)": [[11, "dicee.Shallom.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.transe method)": [[11, "dicee.TransE.forward_k_vs_all", false]], "forward_k_vs_sample() (dicee.aconex method)": [[11, "dicee.AConEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.basekge method)": [[11, "dicee.BaseKGE.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.complex method)": [[11, "dicee.ComplEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.conex method)": [[11, "dicee.ConEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.distmult method)": [[11, "dicee.DistMult.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.keci method)": [[11, "dicee.Keci.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.aconex method)": [[19, "dicee.models.AConEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.base_model.basekge method)": [[14, "dicee.models.base_model.BaseKGE.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.basekge method)": [[19, "dicee.models.BaseKGE.forward_k_vs_sample", false], [19, "id124", false], [19, "id170", false], [19, "id221", false], [19, "id263", false], [19, "id40", false], [19, "id82", false]], "forward_k_vs_sample() (dicee.models.clifford.keci method)": [[15, "dicee.models.clifford.Keci.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.complex method)": [[19, "dicee.models.ComplEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.complex.aconex method)": [[16, "dicee.models.complex.AConEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.complex.complex method)": [[16, "dicee.models.complex.ComplEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.complex.conex method)": [[16, "dicee.models.complex.ConEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.conex method)": [[19, "dicee.models.ConEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.distmult method)": [[19, "dicee.models.DistMult.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.keci method)": [[19, "dicee.models.Keci.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.pykeen_models.pykeenkge method)": [[21, "dicee.models.pykeen_models.PykeenKGE.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.pykeenkge method)": [[19, "dicee.models.PykeenKGE.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.qmult method)": [[19, "dicee.models.QMult.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.quaternion.qmult method)": [[22, "dicee.models.quaternion.QMult.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.real.distmult method)": [[23, "dicee.models.real.DistMult.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.pykeenkge method)": [[11, "dicee.PykeenKGE.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.qmult method)": [[11, "dicee.QMult.forward_k_vs_sample", false]], "forward_k_vs_with_explicit() (dicee.keci method)": [[11, "dicee.Keci.forward_k_vs_with_explicit", false]], "forward_k_vs_with_explicit() (dicee.models.clifford.keci method)": [[15, "dicee.models.clifford.Keci.forward_k_vs_with_explicit", false]], "forward_k_vs_with_explicit() (dicee.models.keci method)": [[19, "dicee.models.Keci.forward_k_vs_with_explicit", false]], "forward_triples() (dicee.aconex method)": [[11, "dicee.AConEx.forward_triples", false]], "forward_triples() (dicee.aconvo method)": [[11, "dicee.AConvO.forward_triples", false]], "forward_triples() (dicee.aconvq method)": [[11, "dicee.AConvQ.forward_triples", false]], "forward_triples() (dicee.basekge method)": [[11, "dicee.BaseKGE.forward_triples", false]], "forward_triples() (dicee.conex method)": [[11, "dicee.ConEx.forward_triples", false]], "forward_triples() (dicee.convo method)": [[11, "dicee.ConvO.forward_triples", false]], "forward_triples() (dicee.convq method)": [[11, "dicee.ConvQ.forward_triples", false]], "forward_triples() (dicee.decal method)": [[11, "dicee.DeCaL.forward_triples", false]], "forward_triples() (dicee.duale method)": [[11, "dicee.DualE.forward_triples", false]], "forward_triples() (dicee.keci method)": [[11, "dicee.Keci.forward_triples", false]], "forward_triples() (dicee.lfmult method)": [[11, "dicee.LFMult.forward_triples", false]], "forward_triples() (dicee.models.aconex method)": [[19, "dicee.models.AConEx.forward_triples", false]], "forward_triples() (dicee.models.aconvo method)": [[19, "dicee.models.AConvO.forward_triples", false]], "forward_triples() (dicee.models.aconvq method)": [[19, "dicee.models.AConvQ.forward_triples", false]], "forward_triples() (dicee.models.base_model.basekge method)": [[14, "dicee.models.base_model.BaseKGE.forward_triples", false]], "forward_triples() (dicee.models.basekge method)": [[19, "dicee.models.BaseKGE.forward_triples", false], [19, "id122", false], [19, "id168", false], [19, "id219", false], [19, "id261", false], [19, "id38", false], [19, "id80", false]], "forward_triples() (dicee.models.clifford.decal method)": [[15, "dicee.models.clifford.DeCaL.forward_triples", false]], "forward_triples() (dicee.models.clifford.keci method)": [[15, "dicee.models.clifford.Keci.forward_triples", false]], "forward_triples() (dicee.models.complex.aconex method)": [[16, "dicee.models.complex.AConEx.forward_triples", false]], "forward_triples() (dicee.models.complex.conex method)": [[16, "dicee.models.complex.ConEx.forward_triples", false]], "forward_triples() (dicee.models.conex method)": [[19, "dicee.models.ConEx.forward_triples", false]], "forward_triples() (dicee.models.convo method)": [[19, "dicee.models.ConvO.forward_triples", false]], "forward_triples() (dicee.models.convq method)": [[19, "dicee.models.ConvQ.forward_triples", false]], "forward_triples() (dicee.models.decal method)": [[19, "dicee.models.DeCaL.forward_triples", false]], "forward_triples() (dicee.models.duale method)": [[19, "dicee.models.DualE.forward_triples", false]], "forward_triples() (dicee.models.duale.duale method)": [[17, "dicee.models.dualE.DualE.forward_triples", false]], "forward_triples() (dicee.models.fmult method)": [[19, "dicee.models.FMult.forward_triples", false]], "forward_triples() (dicee.models.fmult2 method)": [[19, "dicee.models.FMult2.forward_triples", false]], "forward_triples() (dicee.models.function_space.fmult method)": [[18, "dicee.models.function_space.FMult.forward_triples", false]], "forward_triples() (dicee.models.function_space.fmult2 method)": [[18, "dicee.models.function_space.FMult2.forward_triples", false]], "forward_triples() (dicee.models.function_space.gfmult method)": [[18, "dicee.models.function_space.GFMult.forward_triples", false]], "forward_triples() (dicee.models.function_space.lfmult method)": [[18, "dicee.models.function_space.LFMult.forward_triples", false]], "forward_triples() (dicee.models.function_space.lfmult1 method)": [[18, "dicee.models.function_space.LFMult1.forward_triples", false]], "forward_triples() (dicee.models.gfmult method)": [[19, "dicee.models.GFMult.forward_triples", false]], "forward_triples() (dicee.models.keci method)": [[19, "dicee.models.Keci.forward_triples", false]], "forward_triples() (dicee.models.lfmult method)": [[19, "dicee.models.LFMult.forward_triples", false]], "forward_triples() (dicee.models.lfmult1 method)": [[19, "dicee.models.LFMult1.forward_triples", false]], "forward_triples() (dicee.models.octonion.aconvo method)": [[20, "dicee.models.octonion.AConvO.forward_triples", false]], "forward_triples() (dicee.models.octonion.convo method)": [[20, "dicee.models.octonion.ConvO.forward_triples", false]], "forward_triples() (dicee.models.pyke method)": [[19, "dicee.models.Pyke.forward_triples", false]], "forward_triples() (dicee.models.pykeen_models.pykeenkge method)": [[21, "dicee.models.pykeen_models.PykeenKGE.forward_triples", false]], "forward_triples() (dicee.models.pykeenkge method)": [[19, "dicee.models.PykeenKGE.forward_triples", false]], "forward_triples() (dicee.models.quaternion.aconvq method)": [[22, "dicee.models.quaternion.AConvQ.forward_triples", false]], "forward_triples() (dicee.models.quaternion.convq method)": [[22, "dicee.models.quaternion.ConvQ.forward_triples", false]], "forward_triples() (dicee.models.real.pyke method)": [[23, "dicee.models.real.Pyke.forward_triples", false]], "forward_triples() (dicee.models.real.shallom method)": [[23, "dicee.models.real.Shallom.forward_triples", false]], "forward_triples() (dicee.models.shallom method)": [[19, "dicee.models.Shallom.forward_triples", false]], "forward_triples() (dicee.pyke method)": [[11, "dicee.Pyke.forward_triples", false]], "forward_triples() (dicee.pykeenkge method)": [[11, "dicee.PykeenKGE.forward_triples", false]], "forward_triples() (dicee.shallom method)": [[11, "dicee.Shallom.forward_triples", false]], "frequency (dicee.callbacks.perturb attribute)": [[5, "dicee.callbacks.Perturb.frequency", false]], "from_pretrained() (dicee.models.transformers.gpt class method)": [[25, "dicee.models.transformers.GPT.from_pretrained", false]], "from_pretrained_model_write_embeddings_into_csv() (in module dicee)": [[11, "dicee.from_pretrained_model_write_embeddings_into_csv", false]], "from_pretrained_model_write_embeddings_into_csv() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.from_pretrained_model_write_embeddings_into_csv", false]], "full_storage_path (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.full_storage_path", false]], "func_triple_to_bpe_representation (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.func_triple_to_bpe_representation", false]], "func_triple_to_bpe_representation() (dicee.knowledge_graph.kg method)": [[12, "dicee.knowledge_graph.KG.func_triple_to_bpe_representation", false]], "function() (dicee.models.fmult2 method)": [[19, "dicee.models.FMult2.function", false]], "function() (dicee.models.function_space.fmult2 method)": [[18, "dicee.models.function_space.FMult2.function", false]], "gamma (dicee.models.fmult attribute)": [[19, "dicee.models.FMult.gamma", false]], "gamma (dicee.models.function_space.fmult attribute)": [[18, "dicee.models.function_space.FMult.gamma", false]], "gelu (dicee.models.transformers.mlp attribute)": [[25, "dicee.models.transformers.MLP.gelu", false]], "gen_test (dicee.query_generator.querygenerator attribute)": [[26, "dicee.query_generator.QueryGenerator.gen_test", false]], "gen_test (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.gen_test", false]], "gen_valid (dicee.query_generator.querygenerator attribute)": [[26, "dicee.query_generator.QueryGenerator.gen_valid", false]], "gen_valid (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.gen_valid", false]], "generate() (dicee.byte method)": [[11, "dicee.BytE.generate", false]], "generate() (dicee.kge method)": [[11, "dicee.KGE.generate", false]], "generate() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.generate", false]], "generate() (dicee.models.transformers.byte method)": [[25, "dicee.models.transformers.BytE.generate", false]], "generate_queries() (dicee.query_generator.querygenerator method)": [[26, "dicee.query_generator.QueryGenerator.generate_queries", false]], "generate_queries() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.generate_queries", false]], "get() (dicee.scripts.serve.neuralsearcher method)": [[36, "dicee.scripts.serve.NeuralSearcher.get", false]], "get_aswa_state_dict() (dicee.callbacks.aswa method)": [[5, "dicee.callbacks.ASWA.get_aswa_state_dict", false]], "get_bpe_head_and_relation_representation() (dicee.basekge method)": [[11, "dicee.BaseKGE.get_bpe_head_and_relation_representation", false]], "get_bpe_head_and_relation_representation() (dicee.models.base_model.basekge method)": [[14, "dicee.models.base_model.BaseKGE.get_bpe_head_and_relation_representation", false]], "get_bpe_head_and_relation_representation() (dicee.models.basekge method)": [[19, "dicee.models.BaseKGE.get_bpe_head_and_relation_representation", false], [19, "id128", false], [19, "id174", false], [19, "id225", false], [19, "id267", false], [19, "id44", false], [19, "id86", false]], "get_bpe_token_representation() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.get_bpe_token_representation", false]], "get_callbacks() (in module dicee.trainer.dice_trainer)": [[40, "dicee.trainer.dice_trainer.get_callbacks", false]], "get_default_arguments() (in module dicee.analyse_experiments)": [[4, "dicee.analyse_experiments.get_default_arguments", false]], "get_default_arguments() (in module dicee.scripts.index)": [[34, "dicee.scripts.index.get_default_arguments", false]], "get_default_arguments() (in module dicee.scripts.run)": [[35, "dicee.scripts.run.get_default_arguments", false]], "get_default_arguments() (in module dicee.scripts.serve)": [[36, "dicee.scripts.serve.get_default_arguments", false]], "get_ee_vocab() (in module dicee)": [[11, "dicee.get_ee_vocab", false]], "get_ee_vocab() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.get_ee_vocab", false]], "get_ee_vocab() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.get_ee_vocab", false]], "get_ee_vocab() (in module dicee.static_preprocess_funcs)": [[39, "dicee.static_preprocess_funcs.get_ee_vocab", false]], "get_embeddings() (dicee.basekge method)": [[11, "dicee.BaseKGE.get_embeddings", false]], "get_embeddings() (dicee.models.base_model.basekge method)": [[14, "dicee.models.base_model.BaseKGE.get_embeddings", false]], "get_embeddings() (dicee.models.basekge method)": [[19, "dicee.models.BaseKGE.get_embeddings", false], [19, "id129", false], [19, "id175", false], [19, "id226", false], [19, "id268", false], [19, "id45", false], [19, "id87", false]], "get_embeddings() (dicee.models.real.shallom method)": [[23, "dicee.models.real.Shallom.get_embeddings", false]], "get_embeddings() (dicee.models.shallom method)": [[19, "dicee.models.Shallom.get_embeddings", false]], "get_embeddings() (dicee.shallom method)": [[11, "dicee.Shallom.get_embeddings", false]], "get_ensemble() (dicee.trainer.model_parallelism.mp method)": [[42, "dicee.trainer.model_parallelism.MP.get_ensemble", false]], "get_entity_embeddings() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.get_entity_embeddings", false]], "get_entity_index() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.get_entity_index", false]], "get_er_vocab() (in module dicee)": [[11, "dicee.get_er_vocab", false]], "get_er_vocab() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.get_er_vocab", false]], "get_er_vocab() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.get_er_vocab", false]], "get_er_vocab() (in module dicee.static_preprocess_funcs)": [[39, "dicee.static_preprocess_funcs.get_er_vocab", false]], "get_eval_report() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.get_eval_report", false]], "get_head_relation_representation() (dicee.basekge method)": [[11, "dicee.BaseKGE.get_head_relation_representation", false]], "get_head_relation_representation() (dicee.models.base_model.basekge method)": [[14, "dicee.models.base_model.BaseKGE.get_head_relation_representation", false]], "get_head_relation_representation() (dicee.models.basekge method)": [[19, "dicee.models.BaseKGE.get_head_relation_representation", false], [19, "id126", false], [19, "id172", false], [19, "id223", false], [19, "id265", false], [19, "id42", false], [19, "id84", false]], "get_kronecker_triple_representation() (dicee.callbacks.krone method)": [[5, "dicee.callbacks.KronE.get_kronecker_triple_representation", false]], "get_num_params() (dicee.models.transformers.gpt method)": [[25, "dicee.models.transformers.GPT.get_num_params", false]], "get_padded_bpe_triple_representation() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.get_padded_bpe_triple_representation", false]], "get_queries() (dicee.query_generator.querygenerator method)": [[26, "dicee.query_generator.QueryGenerator.get_queries", false]], "get_queries() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.get_queries", false]], "get_re_vocab() (in module dicee)": [[11, "dicee.get_re_vocab", false]], "get_re_vocab() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.get_re_vocab", false]], "get_re_vocab() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.get_re_vocab", false]], "get_re_vocab() (in module dicee.static_preprocess_funcs)": [[39, "dicee.static_preprocess_funcs.get_re_vocab", false]], "get_relation_embeddings() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.get_relation_embeddings", false]], "get_relation_index() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.get_relation_index", false]], "get_sentence_representation() (dicee.basekge method)": [[11, "dicee.BaseKGE.get_sentence_representation", false]], "get_sentence_representation() (dicee.models.base_model.basekge method)": [[14, "dicee.models.base_model.BaseKGE.get_sentence_representation", false]], "get_sentence_representation() (dicee.models.basekge method)": [[19, "dicee.models.BaseKGE.get_sentence_representation", false], [19, "id127", false], [19, "id173", false], [19, "id224", false], [19, "id266", false], [19, "id43", false], [19, "id85", false]], "get_transductive_entity_embeddings() (dicee.kge method)": [[11, "dicee.KGE.get_transductive_entity_embeddings", false]], "get_transductive_entity_embeddings() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.get_transductive_entity_embeddings", false]], "get_triple_representation() (dicee.basekge method)": [[11, "dicee.BaseKGE.get_triple_representation", false]], "get_triple_representation() (dicee.models.base_model.basekge method)": [[14, "dicee.models.base_model.BaseKGE.get_triple_representation", false]], "get_triple_representation() (dicee.models.basekge method)": [[19, "dicee.models.BaseKGE.get_triple_representation", false], [19, "id125", false], [19, "id171", false], [19, "id222", false], [19, "id264", false], [19, "id41", false], [19, "id83", false]], "gfmult (class in dicee.models)": [[19, "dicee.models.GFMult", false]], "gfmult (class in dicee.models.function_space)": [[18, "dicee.models.function_space.GFMult", false]], "global_rank (dicee.abstracts.abstracttrainer attribute)": [[3, "dicee.abstracts.AbstractTrainer.global_rank", false]], "global_rank (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[44, "dicee.trainer.torch_trainer_ddp.NodeTrainer.global_rank", false]], "gpt (class in dicee.models.transformers)": [[25, "dicee.models.transformers.GPT", false]], "gptconfig (class in dicee.models.transformers)": [[25, "dicee.models.transformers.GPTConfig", false]], "gpus (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.gpus", false]], "gradient_accumulation_steps (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.gradient_accumulation_steps", false]], "ground_queries() (dicee.query_generator.querygenerator method)": [[26, "dicee.query_generator.QueryGenerator.ground_queries", false]], "ground_queries() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.ground_queries", false]], "hidden_dropout (dicee.basekge attribute)": [[11, "dicee.BaseKGE.hidden_dropout", false]], "hidden_dropout (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.hidden_dropout", false]], "hidden_dropout (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.hidden_dropout", false], [19, "id113", false], [19, "id159", false], [19, "id210", false], [19, "id252", false], [19, "id29", false], [19, "id71", false]], "hidden_dropout_rate (dicee.basekge attribute)": [[11, "dicee.BaseKGE.hidden_dropout_rate", false]], "hidden_dropout_rate (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.hidden_dropout_rate", false]], "hidden_dropout_rate (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.hidden_dropout_rate", false]], "hidden_dropout_rate (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.hidden_dropout_rate", false], [19, "id13", false], [19, "id143", false], [19, "id194", false], [19, "id236", false], [19, "id55", false], [19, "id97", false]], "hidden_normalizer (dicee.basekge attribute)": [[11, "dicee.BaseKGE.hidden_normalizer", false]], "hidden_normalizer (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.hidden_normalizer", false]], "hidden_normalizer (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.hidden_normalizer", false], [19, "id109", false], [19, "id155", false], [19, "id206", false], [19, "id248", false], [19, "id25", false], [19, "id67", false]], "identityclass (class in dicee.models)": [[19, "dicee.models.IdentityClass", false], [19, "id130", false], [19, "id176", false]], "identityclass (class in dicee.models.base_model)": [[14, "dicee.models.base_model.IdentityClass", false]], "idx_entity_to_bpe_shaped (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.idx_entity_to_bpe_shaped", false]], "index_triple() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.index_triple", false]], "init_dataloader() (dicee.dice_trainer method)": [[11, "dicee.DICE_Trainer.init_dataloader", false]], "init_dataloader() (dicee.trainer.dice_trainer method)": [[41, "dicee.trainer.DICE_Trainer.init_dataloader", false]], "init_dataloader() (dicee.trainer.dice_trainer.dice_trainer method)": [[40, "dicee.trainer.dice_trainer.DICE_Trainer.init_dataloader", false]], "init_dataset() (dicee.dice_trainer method)": [[11, "dicee.DICE_Trainer.init_dataset", false]], "init_dataset() (dicee.trainer.dice_trainer method)": [[41, "dicee.trainer.DICE_Trainer.init_dataset", false]], "init_dataset() (dicee.trainer.dice_trainer.dice_trainer method)": [[40, "dicee.trainer.dice_trainer.DICE_Trainer.init_dataset", false]], "init_param (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.init_param", false]], "init_params_with_sanity_checking() (dicee.basekge method)": [[11, "dicee.BaseKGE.init_params_with_sanity_checking", false]], "init_params_with_sanity_checking() (dicee.models.base_model.basekge method)": [[14, "dicee.models.base_model.BaseKGE.init_params_with_sanity_checking", false]], "init_params_with_sanity_checking() (dicee.models.basekge method)": [[19, "dicee.models.BaseKGE.init_params_with_sanity_checking", false], [19, "id120", false], [19, "id166", false], [19, "id217", false], [19, "id259", false], [19, "id36", false], [19, "id78", false]], "initial_eval_setting (dicee.callbacks.aswa attribute)": [[5, "dicee.callbacks.ASWA.initial_eval_setting", false]], "initialize_or_load_model() (dicee.dice_trainer method)": [[11, "dicee.DICE_Trainer.initialize_or_load_model", false]], "initialize_or_load_model() (dicee.trainer.dice_trainer method)": [[41, "dicee.trainer.DICE_Trainer.initialize_or_load_model", false]], "initialize_or_load_model() (dicee.trainer.dice_trainer.dice_trainer method)": [[40, "dicee.trainer.dice_trainer.DICE_Trainer.initialize_or_load_model", false]], "initialize_trainer() (dicee.dice_trainer method)": [[11, "dicee.DICE_Trainer.initialize_trainer", false]], "initialize_trainer() (dicee.trainer.dice_trainer method)": [[41, "dicee.trainer.DICE_Trainer.initialize_trainer", false]], "initialize_trainer() (dicee.trainer.dice_trainer.dice_trainer method)": [[40, "dicee.trainer.dice_trainer.DICE_Trainer.initialize_trainer", false]], "initialize_trainer() (in module dicee.trainer.dice_trainer)": [[40, "dicee.trainer.dice_trainer.initialize_trainer", false]], "input_dp_ent_real (dicee.basekge attribute)": [[11, "dicee.BaseKGE.input_dp_ent_real", false]], "input_dp_ent_real (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.input_dp_ent_real", false]], "input_dp_ent_real (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.input_dp_ent_real", false], [19, "id111", false], [19, "id157", false], [19, "id208", false], [19, "id250", false], [19, "id27", false], [19, "id69", false]], "input_dp_rel_real (dicee.basekge attribute)": [[11, "dicee.BaseKGE.input_dp_rel_real", false]], "input_dp_rel_real (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.input_dp_rel_real", false]], "input_dp_rel_real (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.input_dp_rel_real", false], [19, "id112", false], [19, "id158", false], [19, "id209", false], [19, "id251", false], [19, "id28", false], [19, "id70", false]], "input_dropout_rate (dicee.basekge attribute)": [[11, "dicee.BaseKGE.input_dropout_rate", false]], "input_dropout_rate (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.input_dropout_rate", false]], "input_dropout_rate (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.input_dropout_rate", false]], "input_dropout_rate (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.input_dropout_rate", false], [19, "id12", false], [19, "id142", false], [19, "id193", false], [19, "id235", false], [19, "id54", false], [19, "id96", false]], "intialize_model() (in module dicee)": [[11, "dicee.intialize_model", false]], "intialize_model() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.intialize_model", false]], "is_continual_training (dicee.dice_trainer attribute)": [[11, "dicee.DICE_Trainer.is_continual_training", false]], "is_continual_training (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.is_continual_training", false]], "is_continual_training (dicee.execute attribute)": [[11, "dicee.Execute.is_continual_training", false]], "is_continual_training (dicee.executer.execute attribute)": [[10, "dicee.executer.Execute.is_continual_training", false]], "is_continual_training (dicee.trainer.dice_trainer attribute)": [[41, "dicee.trainer.DICE_Trainer.is_continual_training", false]], "is_continual_training (dicee.trainer.dice_trainer.dice_trainer attribute)": [[40, "dicee.trainer.dice_trainer.DICE_Trainer.is_continual_training", false]], "is_global_zero (dicee.abstracts.abstracttrainer attribute)": [[3, "dicee.abstracts.AbstractTrainer.is_global_zero", false]], "is_seen() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.is_seen", false]], "is_sparql_endpoint_alive() (in module dicee.sanity_checkers)": [[32, "dicee.sanity_checkers.is_sparql_endpoint_alive", false]], "k (dicee.models.fmult attribute)": [[19, "dicee.models.FMult.k", false]], "k (dicee.models.fmult2 attribute)": [[19, "dicee.models.FMult2.k", false]], "k (dicee.models.function_space.fmult attribute)": [[18, "dicee.models.function_space.FMult.k", false]], "k (dicee.models.function_space.fmult2 attribute)": [[18, "dicee.models.function_space.FMult2.k", false]], "k (dicee.models.function_space.gfmult attribute)": [[18, "dicee.models.function_space.GFMult.k", false]], "k (dicee.models.gfmult attribute)": [[19, "dicee.models.GFMult.k", false]], "k_fold_cross_validation() (dicee.dice_trainer method)": [[11, "dicee.DICE_Trainer.k_fold_cross_validation", false]], "k_fold_cross_validation() (dicee.trainer.dice_trainer method)": [[41, "dicee.trainer.DICE_Trainer.k_fold_cross_validation", false]], "k_fold_cross_validation() (dicee.trainer.dice_trainer.dice_trainer method)": [[40, "dicee.trainer.dice_trainer.DICE_Trainer.k_fold_cross_validation", false]], "k_vs_all_score() (dicee.complex static method)": [[11, "dicee.ComplEx.k_vs_all_score", false]], "k_vs_all_score() (dicee.distmult method)": [[11, "dicee.DistMult.k_vs_all_score", false]], "k_vs_all_score() (dicee.keci method)": [[11, "dicee.Keci.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.clifford.keci method)": [[15, "dicee.models.clifford.Keci.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.complex static method)": [[19, "dicee.models.ComplEx.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.complex.complex static method)": [[16, "dicee.models.complex.ComplEx.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.distmult method)": [[19, "dicee.models.DistMult.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.keci method)": [[19, "dicee.models.Keci.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.octonion.omult method)": [[20, "dicee.models.octonion.OMult.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.omult method)": [[19, "dicee.models.OMult.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.qmult method)": [[19, "dicee.models.QMult.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.quaternion.qmult method)": [[22, "dicee.models.quaternion.QMult.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.real.distmult method)": [[23, "dicee.models.real.DistMult.k_vs_all_score", false]], "k_vs_all_score() (dicee.omult method)": [[11, "dicee.OMult.k_vs_all_score", false]], "k_vs_all_score() (dicee.qmult method)": [[11, "dicee.QMult.k_vs_all_score", false]], "keci (class in dicee)": [[11, "dicee.Keci", false]], "keci (class in dicee.models)": [[19, "dicee.models.Keci", false]], "keci (class in dicee.models.clifford)": [[15, "dicee.models.clifford.Keci", false]], "kecibase (class in dicee)": [[11, "dicee.KeciBase", false]], "kecibase (class in dicee.models)": [[19, "dicee.models.KeciBase", false]], "kecibase (class in dicee.models.clifford)": [[15, "dicee.models.clifford.KeciBase", false]], "kernel_size (dicee.basekge attribute)": [[11, "dicee.BaseKGE.kernel_size", false]], "kernel_size (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.kernel_size", false]], "kernel_size (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.kernel_size", false]], "kernel_size (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.kernel_size", false], [19, "id100", false], [19, "id146", false], [19, "id16", false], [19, "id197", false], [19, "id239", false], [19, "id58", false]], "kg (class in dicee.knowledge_graph)": [[12, "dicee.knowledge_graph.KG", false]], "kg (dicee.callbacks.pseudolabellingcallback attribute)": [[5, "dicee.callbacks.PseudoLabellingCallback.kg", false]], "kg (dicee.read_preprocess_save_load_kg.loadsavetodisk attribute)": [[27, "dicee.read_preprocess_save_load_kg.LoadSaveToDisk.kg", false]], "kg (dicee.read_preprocess_save_load_kg.preprocess.preprocesskg attribute)": [[28, "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG.kg", false]], "kg (dicee.read_preprocess_save_load_kg.preprocesskg attribute)": [[27, "dicee.read_preprocess_save_load_kg.PreprocessKG.kg", false]], "kg (dicee.read_preprocess_save_load_kg.read_from_disk.readfromdisk attribute)": [[29, "dicee.read_preprocess_save_load_kg.read_from_disk.ReadFromDisk.kg", false]], "kg (dicee.read_preprocess_save_load_kg.readfromdisk attribute)": [[27, "dicee.read_preprocess_save_load_kg.ReadFromDisk.kg", false]], "kg (dicee.read_preprocess_save_load_kg.save_load_disk.loadsavetodisk attribute)": [[30, "dicee.read_preprocess_save_load_kg.save_load_disk.LoadSaveToDisk.kg", false]], "kge (class in dicee)": [[11, "dicee.KGE", false]], "kge (class in dicee.knowledge_graph_embeddings)": [[13, "dicee.knowledge_graph_embeddings.KGE", false]], "kgesavecallback (class in dicee.callbacks)": [[5, "dicee.callbacks.KGESaveCallback", false]], "knowledge_graph (dicee.execute attribute)": [[11, "dicee.Execute.knowledge_graph", false]], "knowledge_graph (dicee.executer.execute attribute)": [[10, "dicee.executer.Execute.knowledge_graph", false]], "krone (class in dicee.callbacks)": [[5, "dicee.callbacks.KronE", false]], "kvsall (class in dicee)": [[11, "dicee.KvsAll", false]], "kvsall (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.KvsAll", false]], "kvsall_score() (dicee.duale method)": [[11, "dicee.DualE.kvsall_score", false]], "kvsall_score() (dicee.models.duale method)": [[19, "dicee.models.DualE.kvsall_score", false]], "kvsall_score() (dicee.models.duale.duale method)": [[17, "dicee.models.dualE.DualE.kvsall_score", false]], "kvssampledataset (class in dicee)": [[11, "dicee.KvsSampleDataset", false]], "kvssampledataset (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.KvsSampleDataset", false]], "label_smoothing_rate (dicee.allvsall attribute)": [[11, "dicee.AllvsAll.label_smoothing_rate", false]], "label_smoothing_rate (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.label_smoothing_rate", false]], "label_smoothing_rate (dicee.dataset_classes.allvsall attribute)": [[7, "dicee.dataset_classes.AllvsAll.label_smoothing_rate", false]], "label_smoothing_rate (dicee.dataset_classes.kvsall attribute)": [[7, "dicee.dataset_classes.KvsAll.label_smoothing_rate", false]], "label_smoothing_rate (dicee.dataset_classes.kvssampledataset attribute)": [[7, "dicee.dataset_classes.KvsSampleDataset.label_smoothing_rate", false]], "label_smoothing_rate (dicee.dataset_classes.onevssample attribute)": [[7, "dicee.dataset_classes.OnevsSample.label_smoothing_rate", false], [7, "id4", false]], "label_smoothing_rate (dicee.dataset_classes.triplepredictiondataset attribute)": [[7, "dicee.dataset_classes.TriplePredictionDataset.label_smoothing_rate", false]], "label_smoothing_rate (dicee.kvsall attribute)": [[11, "dicee.KvsAll.label_smoothing_rate", false]], "label_smoothing_rate (dicee.kvssampledataset attribute)": [[11, "dicee.KvsSampleDataset.label_smoothing_rate", false]], "label_smoothing_rate (dicee.onevssample attribute)": [[11, "dicee.OnevsSample.label_smoothing_rate", false], [11, "id30", false]], "label_smoothing_rate (dicee.triplepredictiondataset attribute)": [[11, "dicee.TriplePredictionDataset.label_smoothing_rate", false]], "layernorm (class in dicee.models.transformers)": [[25, "dicee.models.transformers.LayerNorm", false]], "learning_rate (dicee.basekge attribute)": [[11, "dicee.BaseKGE.learning_rate", false]], "learning_rate (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.learning_rate", false]], "learning_rate (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.learning_rate", false], [19, "id10", false], [19, "id140", false], [19, "id191", false], [19, "id233", false], [19, "id52", false], [19, "id94", false]], "length (dicee.dataset_classes.negsampledataset attribute)": [[7, "dicee.dataset_classes.NegSampleDataset.length", false]], "length (dicee.dataset_classes.triplepredictiondataset attribute)": [[7, "dicee.dataset_classes.TriplePredictionDataset.length", false]], "length (dicee.negsampledataset attribute)": [[11, "dicee.NegSampleDataset.length", false]], "length (dicee.triplepredictiondataset attribute)": [[11, "dicee.TriplePredictionDataset.length", false]], "level (dicee.callbacks.perturb attribute)": [[5, "dicee.callbacks.Perturb.level", false]], "lfmult (class in dicee)": [[11, "dicee.LFMult", false]], "lfmult (class in dicee.models)": [[19, "dicee.models.LFMult", false]], "lfmult (class in dicee.models.function_space)": [[18, "dicee.models.function_space.LFMult", false]], "lfmult1 (class in dicee.models)": [[19, "dicee.models.LFMult1", false]], "lfmult1 (class in dicee.models.function_space)": [[18, "dicee.models.function_space.LFMult1", false]], "linear() (dicee.lfmult method)": [[11, "dicee.LFMult.linear", false]], "linear() (dicee.models.function_space.lfmult method)": [[18, "dicee.models.function_space.LFMult.linear", false]], "linear() (dicee.models.lfmult method)": [[19, "dicee.models.LFMult.linear", false]], "list2tuple() (dicee.query_generator.querygenerator method)": [[26, "dicee.query_generator.QueryGenerator.list2tuple", false]], "list2tuple() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.list2tuple", false]], "lm_head (dicee.byte attribute)": [[11, "dicee.BytE.lm_head", false]], "lm_head (dicee.models.transformers.byte attribute)": [[25, "dicee.models.transformers.BytE.lm_head", false]], "lm_head (dicee.models.transformers.gpt attribute)": [[25, "dicee.models.transformers.GPT.lm_head", false]], "ln_1 (dicee.models.transformers.block attribute)": [[25, "dicee.models.transformers.Block.ln_1", false]], "ln_2 (dicee.models.transformers.block attribute)": [[25, "dicee.models.transformers.Block.ln_2", false]], "load() (dicee.read_preprocess_save_load_kg.loadsavetodisk method)": [[27, "dicee.read_preprocess_save_load_kg.LoadSaveToDisk.load", false]], "load() (dicee.read_preprocess_save_load_kg.save_load_disk.loadsavetodisk method)": [[30, "dicee.read_preprocess_save_load_kg.save_load_disk.LoadSaveToDisk.load", false]], "load_json() (in module dicee)": [[11, "dicee.load_json", false]], "load_json() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.load_json", false]], "load_model() (in module dicee)": [[11, "dicee.load_model", false]], "load_model() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.load_model", false]], "load_model_ensemble() (in module dicee)": [[11, "dicee.load_model_ensemble", false]], "load_model_ensemble() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.load_model_ensemble", false]], "load_numpy() (in module dicee)": [[11, "dicee.load_numpy", false]], "load_numpy() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.load_numpy", false]], "load_numpy_ndarray() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.load_numpy_ndarray", false]], "load_pickle() (in module dicee)": [[11, "dicee.load_pickle", false]], "load_pickle() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.load_pickle", false]], "load_pickle() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.load_pickle", false]], "load_queries() (dicee.query_generator.querygenerator method)": [[26, "dicee.query_generator.QueryGenerator.load_queries", false]], "load_queries() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.load_queries", false]], "load_queries_and_answers() (dicee.query_generator.querygenerator static method)": [[26, "dicee.query_generator.QueryGenerator.load_queries_and_answers", false]], "load_queries_and_answers() (dicee.querygenerator static method)": [[11, "dicee.QueryGenerator.load_queries_and_answers", false]], "load_term_mapping() (in module dicee)": [[11, "dicee.load_term_mapping", false], [11, "id25", false]], "load_term_mapping() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.load_term_mapping", false]], "load_term_mapping() (in module dicee.trainer.dice_trainer)": [[40, "dicee.trainer.dice_trainer.load_term_mapping", false]], "load_with_pandas() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.load_with_pandas", false]], "loadsavetodisk (class in dicee.read_preprocess_save_load_kg)": [[27, "dicee.read_preprocess_save_load_kg.LoadSaveToDisk", false]], "loadsavetodisk (class in dicee.read_preprocess_save_load_kg.save_load_disk)": [[30, "dicee.read_preprocess_save_load_kg.save_load_disk.LoadSaveToDisk", false]], "local_rank (dicee.abstracts.abstracttrainer attribute)": [[3, "dicee.abstracts.AbstractTrainer.local_rank", false]], "local_rank (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[44, "dicee.trainer.torch_trainer_ddp.NodeTrainer.local_rank", false]], "loss (dicee.basekge attribute)": [[11, "dicee.BaseKGE.loss", false]], "loss (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.loss", false]], "loss (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.loss", false], [19, "id103", false], [19, "id149", false], [19, "id19", false], [19, "id200", false], [19, "id242", false], [19, "id61", false]], "loss_func (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[44, "dicee.trainer.torch_trainer_ddp.NodeTrainer.loss_func", false]], "loss_function (dicee.trainer.torch_trainer.torchtrainer attribute)": [[43, "dicee.trainer.torch_trainer.TorchTrainer.loss_function", false]], "loss_function (dicee.trainer.torch_trainer.xmp attribute)": [[43, "dicee.trainer.torch_trainer.xMP.loss_function", false]], "loss_function() (dicee.byte method)": [[11, "dicee.BytE.loss_function", false]], "loss_function() (dicee.models.base_model.basekgelightning method)": [[14, "dicee.models.base_model.BaseKGELightning.loss_function", false]], "loss_function() (dicee.models.basekgelightning method)": [[19, "dicee.models.BaseKGELightning.loss_function", false]], "loss_function() (dicee.models.transformers.byte method)": [[25, "dicee.models.transformers.BytE.loss_function", false]], "loss_history (dicee.basekge attribute)": [[11, "dicee.BaseKGE.loss_history", false]], "loss_history (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.loss_history", false]], "loss_history (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.loss_history", false], [19, "id114", false], [19, "id160", false], [19, "id211", false], [19, "id253", false], [19, "id30", false], [19, "id72", false]], "loss_history (dicee.models.pykeen_models.pykeenkge attribute)": [[21, "dicee.models.pykeen_models.PykeenKGE.loss_history", false]], "loss_history (dicee.models.pykeenkge attribute)": [[19, "dicee.models.PykeenKGE.loss_history", false]], "loss_history (dicee.pykeenkge attribute)": [[11, "dicee.PykeenKGE.loss_history", false]], "loss_history (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[44, "dicee.trainer.torch_trainer_ddp.NodeTrainer.loss_history", false]], "lr (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.lr", false]], "lr (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.lr", false]], "m (dicee.lfmult attribute)": [[11, "dicee.LFMult.m", false]], "m (dicee.models.function_space.lfmult attribute)": [[18, "dicee.models.function_space.LFMult.m", false]], "m (dicee.models.lfmult attribute)": [[19, "dicee.models.LFMult.m", false]], "main() (in module dicee.scripts.index)": [[34, "dicee.scripts.index.main", false]], "main() (in module dicee.scripts.run)": [[35, "dicee.scripts.run.main", false]], "main() (in module dicee.scripts.serve)": [[36, "dicee.scripts.serve.main", false]], "make_iterable_verbose() (in module dicee.static_funcs_training)": [[38, "dicee.static_funcs_training.make_iterable_verbose", false]], "make_iterable_verbose() (in module dicee.trainer.torch_trainer_ddp)": [[44, "dicee.trainer.torch_trainer_ddp.make_iterable_verbose", false]], "mapping_from_first_two_cols_to_third() (in module dicee)": [[11, "dicee.mapping_from_first_two_cols_to_third", false]], "mapping_from_first_two_cols_to_third() (in module dicee.static_preprocess_funcs)": [[39, "dicee.static_preprocess_funcs.mapping_from_first_two_cols_to_third", false]], "margin (dicee.models.pyke attribute)": [[19, "dicee.models.Pyke.margin", false]], "margin (dicee.models.real.pyke attribute)": [[23, "dicee.models.real.Pyke.margin", false]], "margin (dicee.models.real.transe attribute)": [[23, "dicee.models.real.TransE.margin", false]], "margin (dicee.models.transe attribute)": [[19, "dicee.models.TransE.margin", false]], "margin (dicee.pyke attribute)": [[11, "dicee.Pyke.margin", false]], "margin (dicee.transe attribute)": [[11, "dicee.TransE.margin", false]], "max_ans_num (dicee.query_generator.querygenerator attribute)": [[26, "dicee.query_generator.QueryGenerator.max_ans_num", false]], "max_ans_num (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.max_ans_num", false]], "max_epochs (dicee.callbacks.kgesavecallback attribute)": [[5, "dicee.callbacks.KGESaveCallback.max_epochs", false]], "max_length_subword_tokens (dicee.basekge attribute)": [[11, "dicee.BaseKGE.max_length_subword_tokens", false]], "max_length_subword_tokens (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.max_length_subword_tokens", false]], "max_length_subword_tokens (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.max_length_subword_tokens", false]], "max_length_subword_tokens (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.max_length_subword_tokens", false], [19, "id116", false], [19, "id162", false], [19, "id213", false], [19, "id255", false], [19, "id32", false], [19, "id74", false]], "max_num_of_classes (dicee.dataset_classes.kvssampledataset attribute)": [[7, "dicee.dataset_classes.KvsSampleDataset.max_num_of_classes", false]], "max_num_of_classes (dicee.kvssampledataset attribute)": [[11, "dicee.KvsSampleDataset.max_num_of_classes", false]], "mem_of_model() (dicee.models.base_model.basekgelightning method)": [[14, "dicee.models.base_model.BaseKGELightning.mem_of_model", false]], "mem_of_model() (dicee.models.basekgelightning method)": [[19, "dicee.models.BaseKGELightning.mem_of_model", false]], "method (dicee.callbacks.perturb attribute)": [[5, "dicee.callbacks.Perturb.method", false]], "mlp (class in dicee.models.transformers)": [[25, "dicee.models.transformers.MLP", false]], "mlp (dicee.models.transformers.block attribute)": [[25, "dicee.models.transformers.Block.mlp", false]], "mode (dicee.query_generator.querygenerator attribute)": [[26, "dicee.query_generator.QueryGenerator.mode", false]], "mode (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.mode", false]], "model (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.model", false]], "model (dicee.models.pykeen_models.pykeenkge attribute)": [[21, "dicee.models.pykeen_models.PykeenKGE.model", false]], "model (dicee.models.pykeenkge attribute)": [[19, "dicee.models.PykeenKGE.model", false]], "model (dicee.pykeenkge attribute)": [[11, "dicee.PykeenKGE.model", false]], "model (dicee.scripts.serve.neuralsearcher attribute)": [[36, "dicee.scripts.serve.NeuralSearcher.model", false]], "model (dicee.trainer.torch_trainer.torchtrainer attribute)": [[43, "dicee.trainer.torch_trainer.TorchTrainer.model", false]], "model (dicee.trainer.torch_trainer.xmp attribute)": [[43, "dicee.trainer.torch_trainer.xMP.model", false]], "model (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[44, "dicee.trainer.torch_trainer_ddp.NodeTrainer.model", false]], "model_kwargs (dicee.models.pykeen_models.pykeenkge attribute)": [[21, "dicee.models.pykeen_models.PykeenKGE.model_kwargs", false]], "model_kwargs (dicee.models.pykeenkge attribute)": [[19, "dicee.models.PykeenKGE.model_kwargs", false]], "model_kwargs (dicee.pykeenkge attribute)": [[11, "dicee.PykeenKGE.model_kwargs", false]], "model_name (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.model_name", false]], "models (dicee.trainer.dice_trainer.ensemblekge attribute)": [[40, "dicee.trainer.dice_trainer.EnsembleKGE.models", false]], "module": [[2, "module-dicee.__main__", false], [3, "module-dicee.abstracts", false], [4, "module-dicee.analyse_experiments", false], [5, "module-dicee.callbacks", false], [6, "module-dicee.config", false], [7, "module-dicee.dataset_classes", false], [8, "module-dicee.eval_static_funcs", false], [9, "module-dicee.evaluator", false], [10, "module-dicee.executer", false], [11, "module-dicee", false], [12, "module-dicee.knowledge_graph", false], [13, "module-dicee.knowledge_graph_embeddings", false], [14, "module-dicee.models.base_model", false], [15, "module-dicee.models.clifford", false], [16, "module-dicee.models.complex", false], [17, "module-dicee.models.dualE", false], [18, "module-dicee.models.function_space", false], [19, "module-dicee.models", false], [20, "module-dicee.models.octonion", false], [21, "module-dicee.models.pykeen_models", false], [22, "module-dicee.models.quaternion", false], [23, "module-dicee.models.real", false], [24, "module-dicee.models.static_funcs", false], [25, "module-dicee.models.transformers", false], [26, "module-dicee.query_generator", false], [27, "module-dicee.read_preprocess_save_load_kg", false], [28, "module-dicee.read_preprocess_save_load_kg.preprocess", false], [29, "module-dicee.read_preprocess_save_load_kg.read_from_disk", false], [30, "module-dicee.read_preprocess_save_load_kg.save_load_disk", false], [31, "module-dicee.read_preprocess_save_load_kg.util", false], [32, "module-dicee.sanity_checkers", false], [33, "module-dicee.scripts", false], [34, "module-dicee.scripts.index", false], [35, "module-dicee.scripts.run", false], [36, "module-dicee.scripts.serve", false], [37, "module-dicee.static_funcs", false], [38, "module-dicee.static_funcs_training", false], [39, "module-dicee.static_preprocess_funcs", false], [40, "module-dicee.trainer.dice_trainer", false], [41, "module-dicee.trainer", false], [42, "module-dicee.trainer.model_parallelism", false], [43, "module-dicee.trainer.torch_trainer", false], [44, "module-dicee.trainer.torch_trainer_ddp", false]], "mp (class in dicee.trainer.model_parallelism)": [[42, "dicee.trainer.model_parallelism.MP", false]], "multiclassclassificationdataset (class in dicee)": [[11, "dicee.MultiClassClassificationDataset", false]], "multiclassclassificationdataset (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.MultiClassClassificationDataset", false]], "multilabeldataset (class in dicee)": [[11, "dicee.MultiLabelDataset", false]], "multilabeldataset (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.MultiLabelDataset", false]], "n (dicee.models.fmult2 attribute)": [[19, "dicee.models.FMult2.n", false]], "n (dicee.models.function_space.fmult2 attribute)": [[18, "dicee.models.function_space.FMult2.n", false]], "n_embd (dicee.models.transformers.causalselfattention attribute)": [[25, "dicee.models.transformers.CausalSelfAttention.n_embd", false]], "n_embd (dicee.models.transformers.gptconfig attribute)": [[25, "dicee.models.transformers.GPTConfig.n_embd", false]], "n_head (dicee.models.transformers.causalselfattention attribute)": [[25, "dicee.models.transformers.CausalSelfAttention.n_head", false]], "n_head (dicee.models.transformers.gptconfig attribute)": [[25, "dicee.models.transformers.GPTConfig.n_head", false]], "n_layer (dicee.models.transformers.gptconfig attribute)": [[25, "dicee.models.transformers.GPTConfig.n_layer", false]], "n_layers (dicee.models.fmult2 attribute)": [[19, "dicee.models.FMult2.n_layers", false]], "n_layers (dicee.models.function_space.fmult2 attribute)": [[18, "dicee.models.function_space.FMult2.n_layers", false]], "name (dicee.abstracts.baseinteractivekge property)": [[3, "dicee.abstracts.BaseInteractiveKGE.name", false]], "name (dicee.aconex attribute)": [[11, "dicee.AConEx.name", false]], "name (dicee.aconvo attribute)": [[11, "dicee.AConvO.name", false]], "name (dicee.aconvq attribute)": [[11, "dicee.AConvQ.name", false]], "name (dicee.byte attribute)": [[11, "dicee.BytE.name", false]], "name (dicee.complex attribute)": [[11, "dicee.ComplEx.name", false]], "name (dicee.conex attribute)": [[11, "dicee.ConEx.name", false]], "name (dicee.convo attribute)": [[11, "dicee.ConvO.name", false]], "name (dicee.convq attribute)": [[11, "dicee.ConvQ.name", false]], "name (dicee.decal attribute)": [[11, "dicee.DeCaL.name", false]], "name (dicee.distmult attribute)": [[11, "dicee.DistMult.name", false]], "name (dicee.duale attribute)": [[11, "dicee.DualE.name", false]], "name (dicee.keci attribute)": [[11, "dicee.Keci.name", false]], "name (dicee.kecibase attribute)": [[11, "dicee.KeciBase.name", false]], "name (dicee.lfmult attribute)": [[11, "dicee.LFMult.name", false]], "name (dicee.models.aconex attribute)": [[19, "dicee.models.AConEx.name", false]], "name (dicee.models.aconvo attribute)": [[19, "dicee.models.AConvO.name", false]], "name (dicee.models.aconvq attribute)": [[19, "dicee.models.AConvQ.name", false]], "name (dicee.models.clifford.decal attribute)": [[15, "dicee.models.clifford.DeCaL.name", false]], "name (dicee.models.clifford.keci attribute)": [[15, "dicee.models.clifford.Keci.name", false]], "name (dicee.models.clifford.kecibase attribute)": [[15, "dicee.models.clifford.KeciBase.name", false]], "name (dicee.models.complex attribute)": [[19, "dicee.models.ComplEx.name", false]], "name (dicee.models.complex.aconex attribute)": [[16, "dicee.models.complex.AConEx.name", false]], "name (dicee.models.complex.complex attribute)": [[16, "dicee.models.complex.ComplEx.name", false]], "name (dicee.models.complex.conex attribute)": [[16, "dicee.models.complex.ConEx.name", false]], "name (dicee.models.conex attribute)": [[19, "dicee.models.ConEx.name", false]], "name (dicee.models.convo attribute)": [[19, "dicee.models.ConvO.name", false]], "name (dicee.models.convq attribute)": [[19, "dicee.models.ConvQ.name", false]], "name (dicee.models.decal attribute)": [[19, "dicee.models.DeCaL.name", false]], "name (dicee.models.distmult attribute)": [[19, "dicee.models.DistMult.name", false]], "name (dicee.models.duale attribute)": [[19, "dicee.models.DualE.name", false]], "name (dicee.models.duale.duale attribute)": [[17, "dicee.models.dualE.DualE.name", false]], "name (dicee.models.fmult attribute)": [[19, "dicee.models.FMult.name", false]], "name (dicee.models.fmult2 attribute)": [[19, "dicee.models.FMult2.name", false]], "name (dicee.models.function_space.fmult attribute)": [[18, "dicee.models.function_space.FMult.name", false]], "name (dicee.models.function_space.fmult2 attribute)": [[18, "dicee.models.function_space.FMult2.name", false]], "name (dicee.models.function_space.gfmult attribute)": [[18, "dicee.models.function_space.GFMult.name", false]], "name (dicee.models.function_space.lfmult attribute)": [[18, "dicee.models.function_space.LFMult.name", false]], "name (dicee.models.function_space.lfmult1 attribute)": [[18, "dicee.models.function_space.LFMult1.name", false]], "name (dicee.models.gfmult attribute)": [[19, "dicee.models.GFMult.name", false]], "name (dicee.models.keci attribute)": [[19, "dicee.models.Keci.name", false]], "name (dicee.models.kecibase attribute)": [[19, "dicee.models.KeciBase.name", false]], "name (dicee.models.lfmult attribute)": [[19, "dicee.models.LFMult.name", false]], "name (dicee.models.lfmult1 attribute)": [[19, "dicee.models.LFMult1.name", false]], "name (dicee.models.octonion.aconvo attribute)": [[20, "dicee.models.octonion.AConvO.name", false]], "name (dicee.models.octonion.convo attribute)": [[20, "dicee.models.octonion.ConvO.name", false]], "name (dicee.models.octonion.omult attribute)": [[20, "dicee.models.octonion.OMult.name", false]], "name (dicee.models.omult attribute)": [[19, "dicee.models.OMult.name", false]], "name (dicee.models.pyke attribute)": [[19, "dicee.models.Pyke.name", false]], "name (dicee.models.pykeen_models.pykeenkge attribute)": [[21, "dicee.models.pykeen_models.PykeenKGE.name", false]], "name (dicee.models.pykeenkge attribute)": [[19, "dicee.models.PykeenKGE.name", false]], "name (dicee.models.qmult attribute)": [[19, "dicee.models.QMult.name", false]], "name (dicee.models.quaternion.aconvq attribute)": [[22, "dicee.models.quaternion.AConvQ.name", false]], "name (dicee.models.quaternion.convq attribute)": [[22, "dicee.models.quaternion.ConvQ.name", false]], "name (dicee.models.quaternion.qmult attribute)": [[22, "dicee.models.quaternion.QMult.name", false]], "name (dicee.models.real.distmult attribute)": [[23, "dicee.models.real.DistMult.name", false]], "name (dicee.models.real.pyke attribute)": [[23, "dicee.models.real.Pyke.name", false]], "name (dicee.models.real.shallom attribute)": [[23, "dicee.models.real.Shallom.name", false]], "name (dicee.models.real.transe attribute)": [[23, "dicee.models.real.TransE.name", false]], "name (dicee.models.shallom attribute)": [[19, "dicee.models.Shallom.name", false]], "name (dicee.models.transe attribute)": [[19, "dicee.models.TransE.name", false]], "name (dicee.models.transformers.byte attribute)": [[25, "dicee.models.transformers.BytE.name", false]], "name (dicee.omult attribute)": [[11, "dicee.OMult.name", false]], "name (dicee.pyke attribute)": [[11, "dicee.Pyke.name", false]], "name (dicee.pykeenkge attribute)": [[11, "dicee.PykeenKGE.name", false]], "name (dicee.qmult attribute)": [[11, "dicee.QMult.name", false]], "name (dicee.shallom attribute)": [[11, "dicee.Shallom.name", false]], "name (dicee.transe attribute)": [[11, "dicee.TransE.name", false]], "namespace (class in dicee.config)": [[6, "dicee.config.Namespace", false]], "neg_ratio (dicee.bpe_negativesamplingdataset attribute)": [[11, "dicee.BPE_NegativeSamplingDataset.neg_ratio", false]], "neg_ratio (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.neg_ratio", false]], "neg_ratio (dicee.dataset_classes.bpe_negativesamplingdataset attribute)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset.neg_ratio", false]], "neg_ratio (dicee.dataset_classes.kvssampledataset attribute)": [[7, "dicee.dataset_classes.KvsSampleDataset.neg_ratio", false]], "neg_ratio (dicee.kvssampledataset attribute)": [[11, "dicee.KvsSampleDataset.neg_ratio", false]], "neg_sample_ratio (dicee.cvdatamodule attribute)": [[11, "dicee.CVDataModule.neg_sample_ratio", false]], "neg_sample_ratio (dicee.dataset_classes.cvdatamodule attribute)": [[7, "dicee.dataset_classes.CVDataModule.neg_sample_ratio", false]], "neg_sample_ratio (dicee.dataset_classes.negsampledataset attribute)": [[7, "dicee.dataset_classes.NegSampleDataset.neg_sample_ratio", false]], "neg_sample_ratio (dicee.dataset_classes.onevssample attribute)": [[7, "dicee.dataset_classes.OnevsSample.neg_sample_ratio", false], [7, "id3", false]], "neg_sample_ratio (dicee.dataset_classes.triplepredictiondataset attribute)": [[7, "dicee.dataset_classes.TriplePredictionDataset.neg_sample_ratio", false]], "neg_sample_ratio (dicee.negsampledataset attribute)": [[11, "dicee.NegSampleDataset.neg_sample_ratio", false]], "neg_sample_ratio (dicee.onevssample attribute)": [[11, "dicee.OnevsSample.neg_sample_ratio", false], [11, "id29", false]], "neg_sample_ratio (dicee.triplepredictiondataset attribute)": [[11, "dicee.TriplePredictionDataset.neg_sample_ratio", false]], "negnorm() (dicee.kge method)": [[11, "dicee.KGE.negnorm", false]], "negnorm() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.negnorm", false]], "negsampledataset (class in dicee)": [[11, "dicee.NegSampleDataset", false]], "negsampledataset (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.NegSampleDataset", false]], "neural_searcher (in module dicee.scripts.serve)": [[36, "dicee.scripts.serve.neural_searcher", false]], "neuralsearcher (class in dicee.scripts.serve)": [[36, "dicee.scripts.serve.NeuralSearcher", false]], "nodetrainer (class in dicee.trainer.torch_trainer_ddp)": [[44, "dicee.trainer.torch_trainer_ddp.NodeTrainer", false]], "norm_fc1 (dicee.aconex attribute)": [[11, "dicee.AConEx.norm_fc1", false]], "norm_fc1 (dicee.aconvo attribute)": [[11, "dicee.AConvO.norm_fc1", false]], "norm_fc1 (dicee.conex attribute)": [[11, "dicee.ConEx.norm_fc1", false]], "norm_fc1 (dicee.convo attribute)": [[11, "dicee.ConvO.norm_fc1", false]], "norm_fc1 (dicee.models.aconex attribute)": [[19, "dicee.models.AConEx.norm_fc1", false]], "norm_fc1 (dicee.models.aconvo attribute)": [[19, "dicee.models.AConvO.norm_fc1", false]], "norm_fc1 (dicee.models.complex.aconex attribute)": [[16, "dicee.models.complex.AConEx.norm_fc1", false]], "norm_fc1 (dicee.models.complex.conex attribute)": [[16, "dicee.models.complex.ConEx.norm_fc1", false]], "norm_fc1 (dicee.models.conex attribute)": [[19, "dicee.models.ConEx.norm_fc1", false]], "norm_fc1 (dicee.models.convo attribute)": [[19, "dicee.models.ConvO.norm_fc1", false]], "norm_fc1 (dicee.models.octonion.aconvo attribute)": [[20, "dicee.models.octonion.AConvO.norm_fc1", false]], "norm_fc1 (dicee.models.octonion.convo attribute)": [[20, "dicee.models.octonion.ConvO.norm_fc1", false]], "normalization (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.normalization", false]], "normalization (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.normalization", false]], "normalize_head_entity_embeddings (dicee.basekge attribute)": [[11, "dicee.BaseKGE.normalize_head_entity_embeddings", false]], "normalize_head_entity_embeddings (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.normalize_head_entity_embeddings", false]], "normalize_head_entity_embeddings (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.normalize_head_entity_embeddings", false], [19, "id106", false], [19, "id152", false], [19, "id203", false], [19, "id22", false], [19, "id245", false], [19, "id64", false]], "normalize_relation_embeddings (dicee.basekge attribute)": [[11, "dicee.BaseKGE.normalize_relation_embeddings", false]], "normalize_relation_embeddings (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.normalize_relation_embeddings", false]], "normalize_relation_embeddings (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.normalize_relation_embeddings", false], [19, "id107", false], [19, "id153", false], [19, "id204", false], [19, "id23", false], [19, "id246", false], [19, "id65", false]], "normalize_tail_entity_embeddings (dicee.basekge attribute)": [[11, "dicee.BaseKGE.normalize_tail_entity_embeddings", false]], "normalize_tail_entity_embeddings (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.normalize_tail_entity_embeddings", false]], "normalize_tail_entity_embeddings (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.normalize_tail_entity_embeddings", false], [19, "id108", false], [19, "id154", false], [19, "id205", false], [19, "id24", false], [19, "id247", false], [19, "id66", false]], "normalizer_class (dicee.basekge attribute)": [[11, "dicee.BaseKGE.normalizer_class", false]], "normalizer_class (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.normalizer_class", false]], "normalizer_class (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.normalizer_class", false], [19, "id105", false], [19, "id151", false], [19, "id202", false], [19, "id21", false], [19, "id244", false], [19, "id63", false]], "num_bpe_entities (dicee.bpe_negativesamplingdataset attribute)": [[11, "dicee.BPE_NegativeSamplingDataset.num_bpe_entities", false]], "num_bpe_entities (dicee.dataset_classes.bpe_negativesamplingdataset attribute)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset.num_bpe_entities", false]], "num_bpe_entities (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.num_bpe_entities", false]], "num_core (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.num_core", false]], "num_datapoints (dicee.bpe_negativesamplingdataset attribute)": [[11, "dicee.BPE_NegativeSamplingDataset.num_datapoints", false]], "num_datapoints (dicee.dataset_classes.bpe_negativesamplingdataset attribute)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset.num_datapoints", false]], "num_datapoints (dicee.dataset_classes.multilabeldataset attribute)": [[7, "dicee.dataset_classes.MultiLabelDataset.num_datapoints", false]], "num_datapoints (dicee.multilabeldataset attribute)": [[11, "dicee.MultiLabelDataset.num_datapoints", false]], "num_ent (dicee.duale attribute)": [[11, "dicee.DualE.num_ent", false]], "num_ent (dicee.models.duale attribute)": [[19, "dicee.models.DualE.num_ent", false]], "num_ent (dicee.models.duale.duale attribute)": [[17, "dicee.models.dualE.DualE.num_ent", false]], "num_entities (dicee.basekge attribute)": [[11, "dicee.BaseKGE.num_entities", false]], "num_entities (dicee.cvdatamodule attribute)": [[11, "dicee.CVDataModule.num_entities", false]], "num_entities (dicee.dataset_classes.cvdatamodule attribute)": [[7, "dicee.dataset_classes.CVDataModule.num_entities", false]], "num_entities (dicee.dataset_classes.kvssampledataset attribute)": [[7, "dicee.dataset_classes.KvsSampleDataset.num_entities", false]], "num_entities (dicee.dataset_classes.negsampledataset attribute)": [[7, "dicee.dataset_classes.NegSampleDataset.num_entities", false]], "num_entities (dicee.dataset_classes.onevssample attribute)": [[7, "dicee.dataset_classes.OnevsSample.num_entities", false], [7, "id1", false]], "num_entities (dicee.dataset_classes.triplepredictiondataset attribute)": [[7, "dicee.dataset_classes.TriplePredictionDataset.num_entities", false]], "num_entities (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.num_entities", false]], "num_entities (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.num_entities", false]], "num_entities (dicee.kvssampledataset attribute)": [[11, "dicee.KvsSampleDataset.num_entities", false]], "num_entities (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.num_entities", false]], "num_entities (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.num_entities", false], [19, "id137", false], [19, "id188", false], [19, "id230", false], [19, "id49", false], [19, "id7", false], [19, "id91", false]], "num_entities (dicee.negsampledataset attribute)": [[11, "dicee.NegSampleDataset.num_entities", false]], "num_entities (dicee.onevssample attribute)": [[11, "dicee.OnevsSample.num_entities", false], [11, "id27", false]], "num_entities (dicee.triplepredictiondataset attribute)": [[11, "dicee.TriplePredictionDataset.num_entities", false]], "num_epochs (dicee.abstracts.abstractppecallback attribute)": [[3, "dicee.abstracts.AbstractPPECallback.num_epochs", false]], "num_epochs (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.num_epochs", false]], "num_epochs (dicee.callbacks.aswa attribute)": [[5, "dicee.callbacks.ASWA.num_epochs", false]], "num_epochs (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.num_epochs", false]], "num_epochs (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[44, "dicee.trainer.torch_trainer_ddp.NodeTrainer.num_epochs", false]], "num_folds_for_cv (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.num_folds_for_cv", false]], "num_of_data_points (dicee.dataset_classes.multiclassclassificationdataset attribute)": [[7, "dicee.dataset_classes.MultiClassClassificationDataset.num_of_data_points", false]], "num_of_data_points (dicee.multiclassclassificationdataset attribute)": [[11, "dicee.MultiClassClassificationDataset.num_of_data_points", false]], "num_of_epochs (dicee.callbacks.pseudolabellingcallback attribute)": [[5, "dicee.callbacks.PseudoLabellingCallback.num_of_epochs", false]], "num_of_output_channels (dicee.basekge attribute)": [[11, "dicee.BaseKGE.num_of_output_channels", false]], "num_of_output_channels (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.num_of_output_channels", false]], "num_of_output_channels (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.num_of_output_channels", false]], "num_of_output_channels (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.num_of_output_channels", false], [19, "id101", false], [19, "id147", false], [19, "id17", false], [19, "id198", false], [19, "id240", false], [19, "id59", false]], "num_params (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.num_params", false]], "num_relations (dicee.basekge attribute)": [[11, "dicee.BaseKGE.num_relations", false]], "num_relations (dicee.cvdatamodule attribute)": [[11, "dicee.CVDataModule.num_relations", false]], "num_relations (dicee.dataset_classes.cvdatamodule attribute)": [[7, "dicee.dataset_classes.CVDataModule.num_relations", false]], "num_relations (dicee.dataset_classes.negsampledataset attribute)": [[7, "dicee.dataset_classes.NegSampleDataset.num_relations", false]], "num_relations (dicee.dataset_classes.onevssample attribute)": [[7, "dicee.dataset_classes.OnevsSample.num_relations", false], [7, "id2", false]], "num_relations (dicee.dataset_classes.triplepredictiondataset attribute)": [[7, "dicee.dataset_classes.TriplePredictionDataset.num_relations", false]], "num_relations (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.num_relations", false]], "num_relations (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.num_relations", false]], "num_relations (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.num_relations", false]], "num_relations (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.num_relations", false], [19, "id138", false], [19, "id189", false], [19, "id231", false], [19, "id50", false], [19, "id8", false], [19, "id92", false]], "num_relations (dicee.negsampledataset attribute)": [[11, "dicee.NegSampleDataset.num_relations", false]], "num_relations (dicee.onevssample attribute)": [[11, "dicee.OnevsSample.num_relations", false], [11, "id28", false]], "num_relations (dicee.triplepredictiondataset attribute)": [[11, "dicee.TriplePredictionDataset.num_relations", false]], "num_sample (dicee.models.fmult attribute)": [[19, "dicee.models.FMult.num_sample", false]], "num_sample (dicee.models.function_space.fmult attribute)": [[18, "dicee.models.function_space.FMult.num_sample", false]], "num_sample (dicee.models.function_space.gfmult attribute)": [[18, "dicee.models.function_space.GFMult.num_sample", false]], "num_sample (dicee.models.gfmult attribute)": [[19, "dicee.models.GFMult.num_sample", false]], "num_tokens (dicee.basekge attribute)": [[11, "dicee.BaseKGE.num_tokens", false]], "num_tokens (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.num_tokens", false]], "num_tokens (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.num_tokens", false]], "num_tokens (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.num_tokens", false], [19, "id139", false], [19, "id190", false], [19, "id232", false], [19, "id51", false], [19, "id9", false], [19, "id93", false]], "num_workers (dicee.cvdatamodule attribute)": [[11, "dicee.CVDataModule.num_workers", false]], "num_workers (dicee.dataset_classes.cvdatamodule attribute)": [[7, "dicee.dataset_classes.CVDataModule.num_workers", false]], "numpy_data_type_changer() (in module dicee)": [[11, "dicee.numpy_data_type_changer", false]], "numpy_data_type_changer() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.numpy_data_type_changer", false]], "octonion_mul() (in module dicee.models)": [[19, "dicee.models.octonion_mul", false]], "octonion_mul() (in module dicee.models.octonion)": [[20, "dicee.models.octonion.octonion_mul", false]], "octonion_mul_norm() (in module dicee.models)": [[19, "dicee.models.octonion_mul_norm", false]], "octonion_mul_norm() (in module dicee.models.octonion)": [[20, "dicee.models.octonion.octonion_mul_norm", false]], "octonion_normalizer() (dicee.aconvo static method)": [[11, "dicee.AConvO.octonion_normalizer", false]], "octonion_normalizer() (dicee.convo static method)": [[11, "dicee.ConvO.octonion_normalizer", false]], "octonion_normalizer() (dicee.models.aconvo static method)": [[19, "dicee.models.AConvO.octonion_normalizer", false]], "octonion_normalizer() (dicee.models.convo static method)": [[19, "dicee.models.ConvO.octonion_normalizer", false]], "octonion_normalizer() (dicee.models.octonion.aconvo static method)": [[20, "dicee.models.octonion.AConvO.octonion_normalizer", false]], "octonion_normalizer() (dicee.models.octonion.convo static method)": [[20, "dicee.models.octonion.ConvO.octonion_normalizer", false]], "octonion_normalizer() (dicee.models.octonion.omult static method)": [[20, "dicee.models.octonion.OMult.octonion_normalizer", false]], "octonion_normalizer() (dicee.models.omult static method)": [[19, "dicee.models.OMult.octonion_normalizer", false]], "octonion_normalizer() (dicee.omult static method)": [[11, "dicee.OMult.octonion_normalizer", false]], "omult (class in dicee)": [[11, "dicee.OMult", false]], "omult (class in dicee.models)": [[19, "dicee.models.OMult", false]], "omult (class in dicee.models.octonion)": [[20, "dicee.models.octonion.OMult", false]], "on_epoch_end() (dicee.callbacks.kgesavecallback method)": [[5, "dicee.callbacks.KGESaveCallback.on_epoch_end", false]], "on_epoch_end() (dicee.callbacks.pseudolabellingcallback method)": [[5, "dicee.callbacks.PseudoLabellingCallback.on_epoch_end", false]], "on_fit_end() (dicee.abstracts.abstractcallback method)": [[3, "dicee.abstracts.AbstractCallback.on_fit_end", false]], "on_fit_end() (dicee.abstracts.abstractppecallback method)": [[3, "dicee.abstracts.AbstractPPECallback.on_fit_end", false]], "on_fit_end() (dicee.abstracts.abstracttrainer method)": [[3, "dicee.abstracts.AbstractTrainer.on_fit_end", false]], "on_fit_end() (dicee.callbacks.accumulateepochlosscallback method)": [[5, "dicee.callbacks.AccumulateEpochLossCallback.on_fit_end", false]], "on_fit_end() (dicee.callbacks.aswa method)": [[5, "dicee.callbacks.ASWA.on_fit_end", false]], "on_fit_end() (dicee.callbacks.eval method)": [[5, "dicee.callbacks.Eval.on_fit_end", false]], "on_fit_end() (dicee.callbacks.kgesavecallback method)": [[5, "dicee.callbacks.KGESaveCallback.on_fit_end", false]], "on_fit_end() (dicee.callbacks.printcallback method)": [[5, "dicee.callbacks.PrintCallback.on_fit_end", false]], "on_fit_start() (dicee.abstracts.abstractcallback method)": [[3, "dicee.abstracts.AbstractCallback.on_fit_start", false]], "on_fit_start() (dicee.abstracts.abstractppecallback method)": [[3, "dicee.abstracts.AbstractPPECallback.on_fit_start", false]], "on_fit_start() (dicee.abstracts.abstracttrainer method)": [[3, "dicee.abstracts.AbstractTrainer.on_fit_start", false]], "on_fit_start() (dicee.callbacks.eval method)": [[5, "dicee.callbacks.Eval.on_fit_start", false]], "on_fit_start() (dicee.callbacks.kgesavecallback method)": [[5, "dicee.callbacks.KGESaveCallback.on_fit_start", false]], "on_fit_start() (dicee.callbacks.krone method)": [[5, "dicee.callbacks.KronE.on_fit_start", false]], "on_fit_start() (dicee.callbacks.printcallback method)": [[5, "dicee.callbacks.PrintCallback.on_fit_start", false]], "on_init_end() (dicee.abstracts.abstractcallback method)": [[3, "dicee.abstracts.AbstractCallback.on_init_end", false]], "on_init_start() (dicee.abstracts.abstractcallback method)": [[3, "dicee.abstracts.AbstractCallback.on_init_start", false]], "on_train_batch_end() (dicee.abstracts.abstractcallback method)": [[3, "dicee.abstracts.AbstractCallback.on_train_batch_end", false]], "on_train_batch_end() (dicee.abstracts.abstracttrainer method)": [[3, "dicee.abstracts.AbstractTrainer.on_train_batch_end", false]], "on_train_batch_end() (dicee.callbacks.eval method)": [[5, "dicee.callbacks.Eval.on_train_batch_end", false]], "on_train_batch_end() (dicee.callbacks.kgesavecallback method)": [[5, "dicee.callbacks.KGESaveCallback.on_train_batch_end", false]], "on_train_batch_end() (dicee.callbacks.printcallback method)": [[5, "dicee.callbacks.PrintCallback.on_train_batch_end", false]], "on_train_batch_start() (dicee.callbacks.perturb method)": [[5, "dicee.callbacks.Perturb.on_train_batch_start", false]], "on_train_epoch_end() (dicee.abstracts.abstractcallback method)": [[3, "dicee.abstracts.AbstractCallback.on_train_epoch_end", false]], "on_train_epoch_end() (dicee.abstracts.abstracttrainer method)": [[3, "dicee.abstracts.AbstractTrainer.on_train_epoch_end", false]], "on_train_epoch_end() (dicee.callbacks.aswa method)": [[5, "dicee.callbacks.ASWA.on_train_epoch_end", false]], "on_train_epoch_end() (dicee.callbacks.eval method)": [[5, "dicee.callbacks.Eval.on_train_epoch_end", false]], "on_train_epoch_end() (dicee.callbacks.kgesavecallback method)": [[5, "dicee.callbacks.KGESaveCallback.on_train_epoch_end", false]], "on_train_epoch_end() (dicee.callbacks.printcallback method)": [[5, "dicee.callbacks.PrintCallback.on_train_epoch_end", false]], "on_train_epoch_end() (dicee.models.base_model.basekgelightning method)": [[14, "dicee.models.base_model.BaseKGELightning.on_train_epoch_end", false]], "on_train_epoch_end() (dicee.models.basekgelightning method)": [[19, "dicee.models.BaseKGELightning.on_train_epoch_end", false]], "onevsalldataset (class in dicee)": [[11, "dicee.OnevsAllDataset", false]], "onevsalldataset (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.OnevsAllDataset", false]], "onevssample (class in dicee)": [[11, "dicee.OnevsSample", false]], "onevssample (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.OnevsSample", false]], "optim (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.optim", false]], "optimizer (dicee.trainer.torch_trainer.torchtrainer attribute)": [[43, "dicee.trainer.torch_trainer.TorchTrainer.optimizer", false]], "optimizer (dicee.trainer.torch_trainer.xmp attribute)": [[43, "dicee.trainer.torch_trainer.xMP.optimizer", false]], "optimizer (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[44, "dicee.trainer.torch_trainer_ddp.NodeTrainer.optimizer", false]], "optimizer_name (dicee.basekge attribute)": [[11, "dicee.BaseKGE.optimizer_name", false]], "optimizer_name (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.optimizer_name", false]], "optimizer_name (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.optimizer_name", false], [19, "id14", false], [19, "id144", false], [19, "id195", false], [19, "id237", false], [19, "id56", false], [19, "id98", false]], "optimizers (dicee.trainer.dice_trainer.ensemblekge attribute)": [[40, "dicee.trainer.dice_trainer.EnsembleKGE.optimizers", false]], "ordered_bpe_entities (dicee.bpe_negativesamplingdataset attribute)": [[11, "dicee.BPE_NegativeSamplingDataset.ordered_bpe_entities", false]], "ordered_bpe_entities (dicee.dataset_classes.bpe_negativesamplingdataset attribute)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset.ordered_bpe_entities", false]], "ordered_bpe_entities (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.ordered_bpe_entities", false]], "ordered_shaped_bpe_tokens (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.ordered_shaped_bpe_tokens", false]], "p (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.p", false]], "p (dicee.decal attribute)": [[11, "dicee.DeCaL.p", false]], "p (dicee.keci attribute)": [[11, "dicee.Keci.p", false]], "p (dicee.models.clifford.decal attribute)": [[15, "dicee.models.clifford.DeCaL.p", false]], "p (dicee.models.clifford.keci attribute)": [[15, "dicee.models.clifford.Keci.p", false]], "p (dicee.models.decal attribute)": [[19, "dicee.models.DeCaL.p", false]], "p (dicee.models.keci attribute)": [[19, "dicee.models.Keci.p", false]], "padding (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.padding", false]], "pandas_dataframe_indexer() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.pandas_dataframe_indexer", false]], "param_init (dicee.basekge attribute)": [[11, "dicee.BaseKGE.param_init", false]], "param_init (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.param_init", false]], "param_init (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.param_init", false], [19, "id110", false], [19, "id156", false], [19, "id207", false], [19, "id249", false], [19, "id26", false], [19, "id68", false]], "parameters() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.parameters", false]], "path (dicee.abstracts.abstractppecallback attribute)": [[3, "dicee.abstracts.AbstractPPECallback.path", false]], "path (dicee.callbacks.accumulateepochlosscallback attribute)": [[5, "dicee.callbacks.AccumulateEpochLossCallback.path", false]], "path (dicee.callbacks.aswa attribute)": [[5, "dicee.callbacks.ASWA.path", false]], "path (dicee.callbacks.eval attribute)": [[5, "dicee.callbacks.Eval.path", false]], "path (dicee.callbacks.kgesavecallback attribute)": [[5, "dicee.callbacks.KGESaveCallback.path", false]], "path_dataset_folder (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.path_dataset_folder", false]], "path_for_deserialization (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.path_for_deserialization", false]], "path_for_serialization (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.path_for_serialization", false]], "path_single_kg (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.path_single_kg", false]], "path_single_kg (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.path_single_kg", false]], "path_to_store_single_run (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.path_to_store_single_run", false]], "perturb (class in dicee.callbacks)": [[5, "dicee.callbacks.Perturb", false]], "polars_dataframe_indexer() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.polars_dataframe_indexer", false]], "poly_nn() (dicee.lfmult method)": [[11, "dicee.LFMult.poly_NN", false]], "poly_nn() (dicee.models.function_space.lfmult method)": [[18, "dicee.models.function_space.LFMult.poly_NN", false]], "poly_nn() (dicee.models.lfmult method)": [[19, "dicee.models.LFMult.poly_NN", false]], "polynomial() (dicee.lfmult method)": [[11, "dicee.LFMult.polynomial", false]], "polynomial() (dicee.models.function_space.lfmult method)": [[18, "dicee.models.function_space.LFMult.polynomial", false]], "polynomial() (dicee.models.lfmult method)": [[19, "dicee.models.LFMult.polynomial", false]], "pop() (dicee.lfmult method)": [[11, "dicee.LFMult.pop", false]], "pop() (dicee.models.function_space.lfmult method)": [[18, "dicee.models.function_space.LFMult.pop", false]], "pop() (dicee.models.lfmult method)": [[19, "dicee.models.LFMult.pop", false]], "pq (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.pq", false]], "predict() (dicee.kge method)": [[11, "dicee.KGE.predict", false]], "predict() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.predict", false]], "predict_dataloader() (dicee.models.base_model.basekgelightning method)": [[14, "dicee.models.base_model.BaseKGELightning.predict_dataloader", false]], "predict_dataloader() (dicee.models.basekgelightning method)": [[19, "dicee.models.BaseKGELightning.predict_dataloader", false]], "predict_missing_head_entity() (dicee.kge method)": [[11, "dicee.KGE.predict_missing_head_entity", false]], "predict_missing_head_entity() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.predict_missing_head_entity", false]], "predict_missing_relations() (dicee.kge method)": [[11, "dicee.KGE.predict_missing_relations", false]], "predict_missing_relations() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.predict_missing_relations", false]], "predict_missing_tail_entity() (dicee.kge method)": [[11, "dicee.KGE.predict_missing_tail_entity", false]], "predict_missing_tail_entity() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.predict_missing_tail_entity", false]], "predict_topk() (dicee.kge method)": [[11, "dicee.KGE.predict_topk", false]], "predict_topk() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.predict_topk", false]], "prepare_data() (dicee.cvdatamodule method)": [[11, "dicee.CVDataModule.prepare_data", false]], "prepare_data() (dicee.dataset_classes.cvdatamodule method)": [[7, "dicee.dataset_classes.CVDataModule.prepare_data", false]], "preprocess_with_byte_pair_encoding() (dicee.read_preprocess_save_load_kg.preprocess.preprocesskg method)": [[28, "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG.preprocess_with_byte_pair_encoding", false]], "preprocess_with_byte_pair_encoding() (dicee.read_preprocess_save_load_kg.preprocesskg method)": [[27, "dicee.read_preprocess_save_load_kg.PreprocessKG.preprocess_with_byte_pair_encoding", false]], "preprocess_with_byte_pair_encoding_with_padding() (dicee.read_preprocess_save_load_kg.preprocess.preprocesskg method)": [[28, "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG.preprocess_with_byte_pair_encoding_with_padding", false]], "preprocess_with_byte_pair_encoding_with_padding() (dicee.read_preprocess_save_load_kg.preprocesskg method)": [[27, "dicee.read_preprocess_save_load_kg.PreprocessKG.preprocess_with_byte_pair_encoding_with_padding", false]], "preprocess_with_pandas() (dicee.read_preprocess_save_load_kg.preprocess.preprocesskg method)": [[28, "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG.preprocess_with_pandas", false]], "preprocess_with_pandas() (dicee.read_preprocess_save_load_kg.preprocesskg method)": [[27, "dicee.read_preprocess_save_load_kg.PreprocessKG.preprocess_with_pandas", false]], "preprocess_with_polars() (dicee.read_preprocess_save_load_kg.preprocess.preprocesskg method)": [[28, "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG.preprocess_with_polars", false]], "preprocess_with_polars() (dicee.read_preprocess_save_load_kg.preprocesskg method)": [[27, "dicee.read_preprocess_save_load_kg.PreprocessKG.preprocess_with_polars", false]], "preprocesses_input_args() (in module dicee.static_preprocess_funcs)": [[39, "dicee.static_preprocess_funcs.preprocesses_input_args", false]], "preprocesskg (class in dicee.read_preprocess_save_load_kg)": [[27, "dicee.read_preprocess_save_load_kg.PreprocessKG", false]], "preprocesskg (class in dicee.read_preprocess_save_load_kg.preprocess)": [[28, "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG", false]], "printcallback (class in dicee.callbacks)": [[5, "dicee.callbacks.PrintCallback", false]], "process (dicee.trainer.torch_trainer.torchtrainer attribute)": [[43, "dicee.trainer.torch_trainer.TorchTrainer.process", false]], "process (dicee.trainer.torch_trainer.xmp attribute)": [[43, "dicee.trainer.torch_trainer.xMP.process", false]], "pseudolabellingcallback (class in dicee.callbacks)": [[5, "dicee.callbacks.PseudoLabellingCallback", false]], "pyke (class in dicee)": [[11, "dicee.Pyke", false]], "pyke (class in dicee.models)": [[19, "dicee.models.Pyke", false]], "pyke (class in dicee.models.real)": [[23, "dicee.models.real.Pyke", false]], "pykeen_model_kwargs (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.pykeen_model_kwargs", false]], "pykeenkge (class in dicee)": [[11, "dicee.PykeenKGE", false]], "pykeenkge (class in dicee.models)": [[19, "dicee.models.PykeenKGE", false]], "pykeenkge (class in dicee.models.pykeen_models)": [[21, "dicee.models.pykeen_models.PykeenKGE", false]], "q (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.q", false]], "q (dicee.decal attribute)": [[11, "dicee.DeCaL.q", false]], "q (dicee.keci attribute)": [[11, "dicee.Keci.q", false]], "q (dicee.models.clifford.decal attribute)": [[15, "dicee.models.clifford.DeCaL.q", false]], "q (dicee.models.clifford.keci attribute)": [[15, "dicee.models.clifford.Keci.q", false]], "q (dicee.models.decal attribute)": [[19, "dicee.models.DeCaL.q", false]], "q (dicee.models.keci attribute)": [[19, "dicee.models.Keci.q", false]], "qdrant_client (dicee.scripts.serve.neuralsearcher attribute)": [[36, "dicee.scripts.serve.NeuralSearcher.qdrant_client", false]], "qmult (class in dicee)": [[11, "dicee.QMult", false]], "qmult (class in dicee.models)": [[19, "dicee.models.QMult", false]], "qmult (class in dicee.models.quaternion)": [[22, "dicee.models.quaternion.QMult", false]], "quaternion_mul() (in module dicee.models)": [[19, "dicee.models.quaternion_mul", false]], "quaternion_mul() (in module dicee.models.static_funcs)": [[24, "dicee.models.static_funcs.quaternion_mul", false]], "quaternion_mul_with_unit_norm() (in module dicee.models)": [[19, "dicee.models.quaternion_mul_with_unit_norm", false]], "quaternion_mul_with_unit_norm() (in module dicee.models.quaternion)": [[22, "dicee.models.quaternion.quaternion_mul_with_unit_norm", false]], "quaternion_multiplication_followed_by_inner_product() (dicee.models.qmult method)": [[19, "dicee.models.QMult.quaternion_multiplication_followed_by_inner_product", false]], "quaternion_multiplication_followed_by_inner_product() (dicee.models.quaternion.qmult method)": [[22, "dicee.models.quaternion.QMult.quaternion_multiplication_followed_by_inner_product", false]], "quaternion_multiplication_followed_by_inner_product() (dicee.qmult method)": [[11, "dicee.QMult.quaternion_multiplication_followed_by_inner_product", false]], "quaternion_normalizer() (dicee.models.qmult static method)": [[19, "dicee.models.QMult.quaternion_normalizer", false]], "quaternion_normalizer() (dicee.models.quaternion.qmult static method)": [[22, "dicee.models.quaternion.QMult.quaternion_normalizer", false]], "quaternion_normalizer() (dicee.qmult static method)": [[11, "dicee.QMult.quaternion_normalizer", false]], "query_name_to_struct (dicee.query_generator.querygenerator attribute)": [[26, "dicee.query_generator.QueryGenerator.query_name_to_struct", false]], "query_name_to_struct (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.query_name_to_struct", false]], "querygenerator (class in dicee)": [[11, "dicee.QueryGenerator", false]], "querygenerator (class in dicee.query_generator)": [[26, "dicee.query_generator.QueryGenerator", false]], "r (dicee.decal attribute)": [[11, "dicee.DeCaL.r", false]], "r (dicee.keci attribute)": [[11, "dicee.Keci.r", false]], "r (dicee.models.clifford.decal attribute)": [[15, "dicee.models.clifford.DeCaL.r", false]], "r (dicee.models.clifford.keci attribute)": [[15, "dicee.models.clifford.Keci.r", false]], "r (dicee.models.decal attribute)": [[19, "dicee.models.DeCaL.r", false]], "r (dicee.models.keci attribute)": [[19, "dicee.models.Keci.r", false]], "random_prediction() (in module dicee)": [[11, "dicee.random_prediction", false]], "random_prediction() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.random_prediction", false]], "random_seed (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.random_seed", false]], "ratio (dicee.callbacks.perturb attribute)": [[5, "dicee.callbacks.Perturb.ratio", false]], "re (dicee.decal attribute)": [[11, "dicee.DeCaL.re", false]], "re (dicee.models.clifford.decal attribute)": [[15, "dicee.models.clifford.DeCaL.re", false]], "re (dicee.models.decal attribute)": [[19, "dicee.models.DeCaL.re", false]], "re_vocab (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.re_vocab", false]], "read_from_disk() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.read_from_disk", false]], "read_from_triple_store() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.read_from_triple_store", false]], "read_only_few (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.read_only_few", false]], "read_only_few (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.read_only_few", false]], "read_or_load_kg() (in module dicee)": [[11, "dicee.read_or_load_kg", false]], "read_or_load_kg() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.read_or_load_kg", false]], "read_with_pandas() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.read_with_pandas", false]], "read_with_polars() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.read_with_polars", false]], "readfromdisk (class in dicee.read_preprocess_save_load_kg)": [[27, "dicee.read_preprocess_save_load_kg.ReadFromDisk", false]], "readfromdisk (class in dicee.read_preprocess_save_load_kg.read_from_disk)": [[29, "dicee.read_preprocess_save_load_kg.read_from_disk.ReadFromDisk", false]], "rel2id (dicee.query_generator.querygenerator attribute)": [[26, "dicee.query_generator.QueryGenerator.rel2id", false]], "rel2id (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.rel2id", false]], "relation_embeddings (dicee.aconvq attribute)": [[11, "dicee.AConvQ.relation_embeddings", false]], "relation_embeddings (dicee.convq attribute)": [[11, "dicee.ConvQ.relation_embeddings", false]], "relation_embeddings (dicee.decal attribute)": [[11, "dicee.DeCaL.relation_embeddings", false]], "relation_embeddings (dicee.duale attribute)": [[11, "dicee.DualE.relation_embeddings", false]], "relation_embeddings (dicee.lfmult attribute)": [[11, "dicee.LFMult.relation_embeddings", false]], "relation_embeddings (dicee.models.aconvq attribute)": [[19, "dicee.models.AConvQ.relation_embeddings", false]], "relation_embeddings (dicee.models.clifford.decal attribute)": [[15, "dicee.models.clifford.DeCaL.relation_embeddings", false]], "relation_embeddings (dicee.models.convq attribute)": [[19, "dicee.models.ConvQ.relation_embeddings", false]], "relation_embeddings (dicee.models.decal attribute)": [[19, "dicee.models.DeCaL.relation_embeddings", false]], "relation_embeddings (dicee.models.duale attribute)": [[19, "dicee.models.DualE.relation_embeddings", false]], "relation_embeddings (dicee.models.duale.duale attribute)": [[17, "dicee.models.dualE.DualE.relation_embeddings", false]], "relation_embeddings (dicee.models.fmult attribute)": [[19, "dicee.models.FMult.relation_embeddings", false]], "relation_embeddings (dicee.models.fmult2 attribute)": [[19, "dicee.models.FMult2.relation_embeddings", false]], "relation_embeddings (dicee.models.function_space.fmult attribute)": [[18, "dicee.models.function_space.FMult.relation_embeddings", false]], "relation_embeddings (dicee.models.function_space.fmult2 attribute)": [[18, "dicee.models.function_space.FMult2.relation_embeddings", false]], "relation_embeddings (dicee.models.function_space.gfmult attribute)": [[18, "dicee.models.function_space.GFMult.relation_embeddings", false]], "relation_embeddings (dicee.models.function_space.lfmult attribute)": [[18, "dicee.models.function_space.LFMult.relation_embeddings", false]], "relation_embeddings (dicee.models.function_space.lfmult1 attribute)": [[18, "dicee.models.function_space.LFMult1.relation_embeddings", false]], "relation_embeddings (dicee.models.gfmult attribute)": [[19, "dicee.models.GFMult.relation_embeddings", false]], "relation_embeddings (dicee.models.lfmult attribute)": [[19, "dicee.models.LFMult.relation_embeddings", false]], "relation_embeddings (dicee.models.lfmult1 attribute)": [[19, "dicee.models.LFMult1.relation_embeddings", false]], "relation_embeddings (dicee.models.pykeen_models.pykeenkge attribute)": [[21, "dicee.models.pykeen_models.PykeenKGE.relation_embeddings", false]], "relation_embeddings (dicee.models.pykeenkge attribute)": [[19, "dicee.models.PykeenKGE.relation_embeddings", false]], "relation_embeddings (dicee.models.quaternion.aconvq attribute)": [[22, "dicee.models.quaternion.AConvQ.relation_embeddings", false]], "relation_embeddings (dicee.models.quaternion.convq attribute)": [[22, "dicee.models.quaternion.ConvQ.relation_embeddings", false]], "relation_embeddings (dicee.pykeenkge attribute)": [[11, "dicee.PykeenKGE.relation_embeddings", false]], "relation_to_idx (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.relation_to_idx", false]], "relations_str (dicee.knowledge_graph.kg property)": [[12, "dicee.knowledge_graph.KG.relations_str", false]], "reload_dataset() (in module dicee)": [[11, "dicee.reload_dataset", false]], "reload_dataset() (in module dicee.dataset_classes)": [[7, "dicee.dataset_classes.reload_dataset", false]], "report (dicee.dice_trainer attribute)": [[11, "dicee.DICE_Trainer.report", false]], "report (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.report", false]], "report (dicee.execute attribute)": [[11, "dicee.Execute.report", false]], "report (dicee.executer.execute attribute)": [[10, "dicee.executer.Execute.report", false]], "report (dicee.trainer.dice_trainer attribute)": [[41, "dicee.trainer.DICE_Trainer.report", false]], "report (dicee.trainer.dice_trainer.dice_trainer attribute)": [[40, "dicee.trainer.dice_trainer.DICE_Trainer.report", false]], "reports (dicee.callbacks.eval attribute)": [[5, "dicee.callbacks.Eval.reports", false]], "requires_grad_for_interactions (dicee.keci attribute)": [[11, "dicee.Keci.requires_grad_for_interactions", false]], "requires_grad_for_interactions (dicee.kecibase attribute)": [[11, "dicee.KeciBase.requires_grad_for_interactions", false]], "requires_grad_for_interactions (dicee.models.clifford.keci attribute)": [[15, "dicee.models.clifford.Keci.requires_grad_for_interactions", false]], "requires_grad_for_interactions (dicee.models.clifford.kecibase attribute)": [[15, "dicee.models.clifford.KeciBase.requires_grad_for_interactions", false]], "requires_grad_for_interactions (dicee.models.keci attribute)": [[19, "dicee.models.Keci.requires_grad_for_interactions", false]], "requires_grad_for_interactions (dicee.models.kecibase attribute)": [[19, "dicee.models.KeciBase.requires_grad_for_interactions", false]], "resid_dropout (dicee.models.transformers.causalselfattention attribute)": [[25, "dicee.models.transformers.CausalSelfAttention.resid_dropout", false]], "residual_convolution() (dicee.aconex method)": [[11, "dicee.AConEx.residual_convolution", false]], "residual_convolution() (dicee.aconvo method)": [[11, "dicee.AConvO.residual_convolution", false]], "residual_convolution() (dicee.aconvq method)": [[11, "dicee.AConvQ.residual_convolution", false]], "residual_convolution() (dicee.conex method)": [[11, "dicee.ConEx.residual_convolution", false]], "residual_convolution() (dicee.convo method)": [[11, "dicee.ConvO.residual_convolution", false]], "residual_convolution() (dicee.convq method)": [[11, "dicee.ConvQ.residual_convolution", false]], "residual_convolution() (dicee.models.aconex method)": [[19, "dicee.models.AConEx.residual_convolution", false]], "residual_convolution() (dicee.models.aconvo method)": [[19, "dicee.models.AConvO.residual_convolution", false]], "residual_convolution() (dicee.models.aconvq method)": [[19, "dicee.models.AConvQ.residual_convolution", false]], "residual_convolution() (dicee.models.complex.aconex method)": [[16, "dicee.models.complex.AConEx.residual_convolution", false]], "residual_convolution() (dicee.models.complex.conex method)": [[16, "dicee.models.complex.ConEx.residual_convolution", false]], "residual_convolution() (dicee.models.conex method)": [[19, "dicee.models.ConEx.residual_convolution", false]], "residual_convolution() (dicee.models.convo method)": [[19, "dicee.models.ConvO.residual_convolution", false]], "residual_convolution() (dicee.models.convq method)": [[19, "dicee.models.ConvQ.residual_convolution", false]], "residual_convolution() (dicee.models.octonion.aconvo method)": [[20, "dicee.models.octonion.AConvO.residual_convolution", false]], "residual_convolution() (dicee.models.octonion.convo method)": [[20, "dicee.models.octonion.ConvO.residual_convolution", false]], "residual_convolution() (dicee.models.quaternion.aconvq method)": [[22, "dicee.models.quaternion.AConvQ.residual_convolution", false]], "residual_convolution() (dicee.models.quaternion.convq method)": [[22, "dicee.models.quaternion.ConvQ.residual_convolution", false]], "retrieve_embeddings() (in module dicee.scripts.serve)": [[36, "dicee.scripts.serve.retrieve_embeddings", false]], "return_multi_hop_query_results() (dicee.kge method)": [[11, "dicee.KGE.return_multi_hop_query_results", false]], "return_multi_hop_query_results() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.return_multi_hop_query_results", false]], "root() (in module dicee.scripts.serve)": [[36, "dicee.scripts.serve.root", false]], "roots (dicee.models.fmult attribute)": [[19, "dicee.models.FMult.roots", false]], "roots (dicee.models.function_space.fmult attribute)": [[18, "dicee.models.function_space.FMult.roots", false]], "roots (dicee.models.function_space.gfmult attribute)": [[18, "dicee.models.function_space.GFMult.roots", false]], "roots (dicee.models.gfmult attribute)": [[19, "dicee.models.GFMult.roots", false]], "runtime (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.runtime", false]], "sample_counter (dicee.abstracts.abstractppecallback attribute)": [[3, "dicee.abstracts.AbstractPPECallback.sample_counter", false]], "sample_entity() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.sample_entity", false]], "sample_relation() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.sample_relation", false]], "sample_triples_ratio (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.sample_triples_ratio", false]], "sample_triples_ratio (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.sample_triples_ratio", false]], "sanity_checking_with_arguments() (in module dicee.sanity_checkers)": [[32, "dicee.sanity_checkers.sanity_checking_with_arguments", false]], "save() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.save", false]], "save() (dicee.read_preprocess_save_load_kg.loadsavetodisk method)": [[27, "dicee.read_preprocess_save_load_kg.LoadSaveToDisk.save", false]], "save() (dicee.read_preprocess_save_load_kg.save_load_disk.loadsavetodisk method)": [[30, "dicee.read_preprocess_save_load_kg.save_load_disk.LoadSaveToDisk.save", false]], "save_checkpoint() (dicee.abstracts.abstracttrainer static method)": [[3, "dicee.abstracts.AbstractTrainer.save_checkpoint", false]], "save_checkpoint_model() (in module dicee)": [[11, "dicee.save_checkpoint_model", false]], "save_checkpoint_model() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.save_checkpoint_model", false]], "save_embeddings() (in module dicee)": [[11, "dicee.save_embeddings", false]], "save_embeddings() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.save_embeddings", false]], "save_embeddings_as_csv (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.save_embeddings_as_csv", false]], "save_experiment() (dicee.analyse_experiments.experiment method)": [[4, "dicee.analyse_experiments.Experiment.save_experiment", false]], "save_model_at_every_epoch (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.save_model_at_every_epoch", false]], "save_numpy_ndarray() (in module dicee)": [[11, "dicee.save_numpy_ndarray", false]], "save_numpy_ndarray() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.save_numpy_ndarray", false]], "save_numpy_ndarray() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.save_numpy_ndarray", false]], "save_pickle() (in module dicee)": [[11, "dicee.save_pickle", false]], "save_pickle() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.save_pickle", false]], "save_pickle() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.save_pickle", false]], "save_queries() (dicee.query_generator.querygenerator method)": [[26, "dicee.query_generator.QueryGenerator.save_queries", false]], "save_queries() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.save_queries", false]], "save_queries_and_answers() (dicee.query_generator.querygenerator static method)": [[26, "dicee.query_generator.QueryGenerator.save_queries_and_answers", false]], "save_queries_and_answers() (dicee.querygenerator static method)": [[11, "dicee.QueryGenerator.save_queries_and_answers", false]], "save_trained_model() (dicee.execute method)": [[11, "dicee.Execute.save_trained_model", false]], "save_trained_model() (dicee.executer.execute method)": [[10, "dicee.executer.Execute.save_trained_model", false]], "scalar_batch_nn() (dicee.lfmult method)": [[11, "dicee.LFMult.scalar_batch_NN", false]], "scalar_batch_nn() (dicee.models.function_space.lfmult method)": [[18, "dicee.models.function_space.LFMult.scalar_batch_NN", false]], "scalar_batch_nn() (dicee.models.lfmult method)": [[19, "dicee.models.LFMult.scalar_batch_NN", false]], "scaler (dicee.callbacks.perturb attribute)": [[5, "dicee.callbacks.Perturb.scaler", false]], "scaler (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[44, "dicee.trainer.torch_trainer_ddp.NodeTrainer.scaler", false]], "score() (dicee.complex static method)": [[11, "dicee.ComplEx.score", false]], "score() (dicee.distmult method)": [[11, "dicee.DistMult.score", false]], "score() (dicee.keci method)": [[11, "dicee.Keci.score", false]], "score() (dicee.models.clifford.keci method)": [[15, "dicee.models.clifford.Keci.score", false]], "score() (dicee.models.complex static method)": [[19, "dicee.models.ComplEx.score", false]], "score() (dicee.models.complex.complex static method)": [[16, "dicee.models.complex.ComplEx.score", false]], "score() (dicee.models.distmult method)": [[19, "dicee.models.DistMult.score", false]], "score() (dicee.models.keci method)": [[19, "dicee.models.Keci.score", false]], "score() (dicee.models.octonion.omult method)": [[20, "dicee.models.octonion.OMult.score", false]], "score() (dicee.models.omult method)": [[19, "dicee.models.OMult.score", false]], "score() (dicee.models.qmult method)": [[19, "dicee.models.QMult.score", false]], "score() (dicee.models.quaternion.qmult method)": [[22, "dicee.models.quaternion.QMult.score", false]], "score() (dicee.models.real.distmult method)": [[23, "dicee.models.real.DistMult.score", false]], "score() (dicee.models.real.transe method)": [[23, "dicee.models.real.TransE.score", false]], "score() (dicee.models.transe method)": [[19, "dicee.models.TransE.score", false]], "score() (dicee.omult method)": [[11, "dicee.OMult.score", false]], "score() (dicee.qmult method)": [[11, "dicee.QMult.score", false]], "score() (dicee.transe method)": [[11, "dicee.TransE.score", false]], "score_func (dicee.models.fmult2 attribute)": [[19, "dicee.models.FMult2.score_func", false]], "score_func (dicee.models.function_space.fmult2 attribute)": [[18, "dicee.models.function_space.FMult2.score_func", false]], "scoring_technique (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.scoring_technique", false]], "scoring_technique (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.scoring_technique", false]], "search() (dicee.scripts.serve.neuralsearcher method)": [[36, "dicee.scripts.serve.NeuralSearcher.search", false]], "search_embeddings() (in module dicee.scripts.serve)": [[36, "dicee.scripts.serve.search_embeddings", false]], "seed (dicee.query_generator.querygenerator attribute)": [[26, "dicee.query_generator.QueryGenerator.seed", false]], "seed (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.seed", false]], "select_model() (in module dicee)": [[11, "dicee.select_model", false]], "select_model() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.select_model", false]], "selected_optimizer (dicee.basekge attribute)": [[11, "dicee.BaseKGE.selected_optimizer", false]], "selected_optimizer (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.selected_optimizer", false]], "selected_optimizer (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.selected_optimizer", false], [19, "id104", false], [19, "id150", false], [19, "id20", false], [19, "id201", false], [19, "id243", false], [19, "id62", false]], "separator (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.separator", false]], "separator (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.separator", false]], "sequential_vocabulary_construction() (dicee.read_preprocess_save_load_kg.preprocess.preprocesskg method)": [[28, "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG.sequential_vocabulary_construction", false]], "sequential_vocabulary_construction() (dicee.read_preprocess_save_load_kg.preprocesskg method)": [[27, "dicee.read_preprocess_save_load_kg.PreprocessKG.sequential_vocabulary_construction", false]], "set_global_seed() (dicee.query_generator.querygenerator method)": [[26, "dicee.query_generator.QueryGenerator.set_global_seed", false]], "set_global_seed() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.set_global_seed", false]], "set_model_eval_mode() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.set_model_eval_mode", false]], "set_model_train_mode() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.set_model_train_mode", false]], "setup() (dicee.cvdatamodule method)": [[11, "dicee.CVDataModule.setup", false]], "setup() (dicee.dataset_classes.cvdatamodule method)": [[7, "dicee.dataset_classes.CVDataModule.setup", false]], "setup_executor() (dicee.execute method)": [[11, "dicee.Execute.setup_executor", false]], "setup_executor() (dicee.executer.execute method)": [[10, "dicee.executer.Execute.setup_executor", false]], "shallom (class in dicee)": [[11, "dicee.Shallom", false]], "shallom (class in dicee.models)": [[19, "dicee.models.Shallom", false]], "shallom (class in dicee.models.real)": [[23, "dicee.models.real.Shallom", false]], "shallom (dicee.models.real.shallom attribute)": [[23, "dicee.models.real.Shallom.shallom", false]], "shallom (dicee.models.shallom attribute)": [[19, "dicee.models.Shallom.shallom", false]], "shallom (dicee.shallom attribute)": [[11, "dicee.Shallom.shallom", false]], "single_hop_query_answering() (dicee.kge method)": [[11, "dicee.KGE.single_hop_query_answering", false]], "single_hop_query_answering() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.single_hop_query_answering", false]], "sparql_endpoint (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.sparql_endpoint", false]], "sparql_endpoint (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.sparql_endpoint", false]], "start() (dicee.dice_trainer method)": [[11, "dicee.DICE_Trainer.start", false]], "start() (dicee.execute method)": [[11, "dicee.Execute.start", false]], "start() (dicee.executer.execute method)": [[10, "dicee.executer.Execute.start", false]], "start() (dicee.read_preprocess_save_load_kg.preprocess.preprocesskg method)": [[28, "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG.start", false]], "start() (dicee.read_preprocess_save_load_kg.preprocesskg method)": [[27, "dicee.read_preprocess_save_load_kg.PreprocessKG.start", false]], "start() (dicee.read_preprocess_save_load_kg.read_from_disk.readfromdisk method)": [[29, "dicee.read_preprocess_save_load_kg.read_from_disk.ReadFromDisk.start", false]], "start() (dicee.read_preprocess_save_load_kg.readfromdisk method)": [[27, "dicee.read_preprocess_save_load_kg.ReadFromDisk.start", false]], "start() (dicee.trainer.dice_trainer method)": [[41, "dicee.trainer.DICE_Trainer.start", false]], "start() (dicee.trainer.dice_trainer.dice_trainer method)": [[40, "dicee.trainer.dice_trainer.DICE_Trainer.start", false]], "start_time (dicee.callbacks.printcallback attribute)": [[5, "dicee.callbacks.PrintCallback.start_time", false]], "start_time (dicee.execute attribute)": [[11, "dicee.Execute.start_time", false]], "start_time (dicee.executer.execute attribute)": [[10, "dicee.executer.Execute.start_time", false]], "storage_path (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.storage_path", false]], "storage_path (dicee.dice_trainer attribute)": [[11, "dicee.DICE_Trainer.storage_path", false]], "storage_path (dicee.trainer.dice_trainer attribute)": [[41, "dicee.trainer.DICE_Trainer.storage_path", false]], "storage_path (dicee.trainer.dice_trainer.dice_trainer attribute)": [[40, "dicee.trainer.dice_trainer.DICE_Trainer.storage_path", false]], "store() (in module dicee)": [[11, "dicee.store", false]], "store() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.store", false]], "store_ensemble() (dicee.abstracts.abstractppecallback method)": [[3, "dicee.abstracts.AbstractPPECallback.store_ensemble", false]], "strategy (dicee.abstracts.abstracttrainer attribute)": [[3, "dicee.abstracts.AbstractTrainer.strategy", false]], "swa (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.swa", false]], "t() (dicee.duale method)": [[11, "dicee.DualE.T", false]], "t() (dicee.models.duale method)": [[19, "dicee.models.DualE.T", false]], "t() (dicee.models.duale.duale method)": [[17, "dicee.models.dualE.DualE.T", false]], "t_conorm() (dicee.kge method)": [[11, "dicee.KGE.t_conorm", false]], "t_conorm() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.t_conorm", false]], "t_norm() (dicee.kge method)": [[11, "dicee.KGE.t_norm", false]], "t_norm() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.t_norm", false]], "target_dim (dicee.allvsall attribute)": [[11, "dicee.AllvsAll.target_dim", false]], "target_dim (dicee.dataset_classes.allvsall attribute)": [[7, "dicee.dataset_classes.AllvsAll.target_dim", false]], "target_dim (dicee.dataset_classes.multilabeldataset attribute)": [[7, "dicee.dataset_classes.MultiLabelDataset.target_dim", false]], "target_dim (dicee.dataset_classes.onevsalldataset attribute)": [[7, "dicee.dataset_classes.OnevsAllDataset.target_dim", false]], "target_dim (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.target_dim", false]], "target_dim (dicee.multilabeldataset attribute)": [[11, "dicee.MultiLabelDataset.target_dim", false]], "target_dim (dicee.onevsalldataset attribute)": [[11, "dicee.OnevsAllDataset.target_dim", false]], "temperature (dicee.byte attribute)": [[11, "dicee.BytE.temperature", false]], "temperature (dicee.models.transformers.byte attribute)": [[25, "dicee.models.transformers.BytE.temperature", false]], "tensor_t_norm() (dicee.kge method)": [[11, "dicee.KGE.tensor_t_norm", false]], "tensor_t_norm() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.tensor_t_norm", false]], "test_dataloader() (dicee.models.base_model.basekgelightning method)": [[14, "dicee.models.base_model.BaseKGELightning.test_dataloader", false]], "test_dataloader() (dicee.models.basekgelightning method)": [[19, "dicee.models.BaseKGELightning.test_dataloader", false]], "test_epoch_end() (dicee.models.base_model.basekgelightning method)": [[14, "dicee.models.base_model.BaseKGELightning.test_epoch_end", false]], "test_epoch_end() (dicee.models.basekgelightning method)": [[19, "dicee.models.BaseKGELightning.test_epoch_end", false]], "test_h1 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.test_h1", false]], "test_h10 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.test_h10", false]], "test_h3 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.test_h3", false]], "test_mrr (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.test_mrr", false]], "test_path (dicee.query_generator.querygenerator attribute)": [[26, "dicee.query_generator.QueryGenerator.test_path", false]], "test_path (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.test_path", false]], "timeit() (in module dicee)": [[11, "dicee.timeit", false], [11, "id0", false]], "timeit() (in module dicee.read_preprocess_save_load_kg.util)": [[31, "dicee.read_preprocess_save_load_kg.util.timeit", false]], "timeit() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.timeit", false]], "timeit() (in module dicee.static_preprocess_funcs)": [[39, "dicee.static_preprocess_funcs.timeit", false]], "to() (dicee.kge method)": [[11, "dicee.KGE.to", false]], "to() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.to", false]], "to_df() (dicee.analyse_experiments.experiment method)": [[4, "dicee.analyse_experiments.Experiment.to_df", false]], "topk (dicee.byte attribute)": [[11, "dicee.BytE.topk", false]], "topk (dicee.models.transformers.byte attribute)": [[25, "dicee.models.transformers.BytE.topk", false]], "torch_ordered_shaped_bpe_entities (dicee.dataset_classes.multilabeldataset attribute)": [[7, "dicee.dataset_classes.MultiLabelDataset.torch_ordered_shaped_bpe_entities", false]], "torch_ordered_shaped_bpe_entities (dicee.multilabeldataset attribute)": [[11, "dicee.MultiLabelDataset.torch_ordered_shaped_bpe_entities", false]], "torchddptrainer (class in dicee.trainer.torch_trainer_ddp)": [[44, "dicee.trainer.torch_trainer_ddp.TorchDDPTrainer", false]], "torchtrainer (class in dicee.trainer.torch_trainer)": [[43, "dicee.trainer.torch_trainer.TorchTrainer", false]], "train() (dicee.kge method)": [[11, "dicee.KGE.train", false]], "train() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.train", false]], "train() (dicee.trainer.torch_trainer_ddp.nodetrainer method)": [[44, "dicee.trainer.torch_trainer_ddp.NodeTrainer.train", false]], "train_data (dicee.allvsall attribute)": [[11, "dicee.AllvsAll.train_data", false]], "train_data (dicee.dataset_classes.allvsall attribute)": [[7, "dicee.dataset_classes.AllvsAll.train_data", false]], "train_data (dicee.dataset_classes.kvsall attribute)": [[7, "dicee.dataset_classes.KvsAll.train_data", false]], "train_data (dicee.dataset_classes.kvssampledataset attribute)": [[7, "dicee.dataset_classes.KvsSampleDataset.train_data", false]], "train_data (dicee.dataset_classes.multiclassclassificationdataset attribute)": [[7, "dicee.dataset_classes.MultiClassClassificationDataset.train_data", false]], "train_data (dicee.dataset_classes.onevsalldataset attribute)": [[7, "dicee.dataset_classes.OnevsAllDataset.train_data", false]], "train_data (dicee.dataset_classes.onevssample attribute)": [[7, "dicee.dataset_classes.OnevsSample.train_data", false], [7, "id0", false]], "train_data (dicee.kvsall attribute)": [[11, "dicee.KvsAll.train_data", false]], "train_data (dicee.kvssampledataset attribute)": [[11, "dicee.KvsSampleDataset.train_data", false]], "train_data (dicee.multiclassclassificationdataset attribute)": [[11, "dicee.MultiClassClassificationDataset.train_data", false]], "train_data (dicee.onevsalldataset attribute)": [[11, "dicee.OnevsAllDataset.train_data", false]], "train_data (dicee.onevssample attribute)": [[11, "dicee.OnevsSample.train_data", false], [11, "id26", false]], "train_dataloader() (dicee.cvdatamodule method)": [[11, "dicee.CVDataModule.train_dataloader", false]], "train_dataloader() (dicee.dataset_classes.cvdatamodule method)": [[7, "dicee.dataset_classes.CVDataModule.train_dataloader", false]], "train_dataloader() (dicee.models.base_model.basekgelightning method)": [[14, "dicee.models.base_model.BaseKGELightning.train_dataloader", false]], "train_dataloader() (dicee.models.basekgelightning method)": [[19, "dicee.models.BaseKGELightning.train_dataloader", false]], "train_dataloaders (dicee.trainer.torch_trainer.torchtrainer attribute)": [[43, "dicee.trainer.torch_trainer.TorchTrainer.train_dataloaders", false]], "train_dataloaders (dicee.trainer.torch_trainer.xmp attribute)": [[43, "dicee.trainer.torch_trainer.xMP.train_dataloaders", false]], "train_dataset_loader (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[44, "dicee.trainer.torch_trainer_ddp.NodeTrainer.train_dataset_loader", false]], "train_h1 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.train_h1", false]], "train_h10 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.train_h10", false]], "train_h3 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.train_h3", false]], "train_indices_target (dicee.dataset_classes.multilabeldataset attribute)": [[7, "dicee.dataset_classes.MultiLabelDataset.train_indices_target", false]], "train_indices_target (dicee.multilabeldataset attribute)": [[11, "dicee.MultiLabelDataset.train_indices_target", false]], "train_k_vs_all() (dicee.kge method)": [[11, "dicee.KGE.train_k_vs_all", false]], "train_k_vs_all() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.train_k_vs_all", false]], "train_mrr (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.train_mrr", false]], "train_path (dicee.query_generator.querygenerator attribute)": [[26, "dicee.query_generator.QueryGenerator.train_path", false]], "train_path (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.train_path", false]], "train_set (dicee.bpe_negativesamplingdataset attribute)": [[11, "dicee.BPE_NegativeSamplingDataset.train_set", false]], "train_set (dicee.dataset_classes.bpe_negativesamplingdataset attribute)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset.train_set", false]], "train_set (dicee.dataset_classes.multilabeldataset attribute)": [[7, "dicee.dataset_classes.MultiLabelDataset.train_set", false]], "train_set (dicee.dataset_classes.negsampledataset attribute)": [[7, "dicee.dataset_classes.NegSampleDataset.train_set", false]], "train_set (dicee.dataset_classes.triplepredictiondataset attribute)": [[7, "dicee.dataset_classes.TriplePredictionDataset.train_set", false]], "train_set (dicee.multilabeldataset attribute)": [[11, "dicee.MultiLabelDataset.train_set", false]], "train_set (dicee.negsampledataset attribute)": [[11, "dicee.NegSampleDataset.train_set", false]], "train_set (dicee.triplepredictiondataset attribute)": [[11, "dicee.TriplePredictionDataset.train_set", false]], "train_set_idx (dicee.cvdatamodule attribute)": [[11, "dicee.CVDataModule.train_set_idx", false]], "train_set_idx (dicee.dataset_classes.cvdatamodule attribute)": [[7, "dicee.dataset_classes.CVDataModule.train_set_idx", false]], "train_set_target (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.train_set_target", false]], "train_target (dicee.allvsall attribute)": [[11, "dicee.AllvsAll.train_target", false]], "train_target (dicee.dataset_classes.allvsall attribute)": [[7, "dicee.dataset_classes.AllvsAll.train_target", false]], "train_target (dicee.dataset_classes.kvsall attribute)": [[7, "dicee.dataset_classes.KvsAll.train_target", false]], "train_target (dicee.dataset_classes.kvssampledataset attribute)": [[7, "dicee.dataset_classes.KvsSampleDataset.train_target", false]], "train_target (dicee.kvsall attribute)": [[11, "dicee.KvsAll.train_target", false]], "train_target (dicee.kvssampledataset attribute)": [[11, "dicee.KvsSampleDataset.train_target", false]], "train_target_indices (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.train_target_indices", false]], "train_triples() (dicee.kge method)": [[11, "dicee.KGE.train_triples", false]], "train_triples() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.train_triples", false]], "trained_model (dicee.execute attribute)": [[11, "dicee.Execute.trained_model", false]], "trained_model (dicee.executer.execute attribute)": [[10, "dicee.executer.Execute.trained_model", false]], "trainer (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.trainer", false]], "trainer (dicee.dice_trainer attribute)": [[11, "dicee.DICE_Trainer.trainer", false]], "trainer (dicee.execute attribute)": [[11, "dicee.Execute.trainer", false]], "trainer (dicee.executer.execute attribute)": [[10, "dicee.executer.Execute.trainer", false]], "trainer (dicee.trainer.dice_trainer attribute)": [[41, "dicee.trainer.DICE_Trainer.trainer", false]], "trainer (dicee.trainer.dice_trainer.dice_trainer attribute)": [[40, "dicee.trainer.dice_trainer.DICE_Trainer.trainer", false]], "trainer (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[44, "dicee.trainer.torch_trainer_ddp.NodeTrainer.trainer", false]], "training_step (dicee.trainer.torch_trainer.torchtrainer attribute)": [[43, "dicee.trainer.torch_trainer.TorchTrainer.training_step", false]], "training_step (dicee.trainer.torch_trainer.xmp attribute)": [[43, "dicee.trainer.torch_trainer.xMP.training_step", false]], "training_step() (dicee.byte method)": [[11, "dicee.BytE.training_step", false]], "training_step() (dicee.models.base_model.basekgelightning method)": [[14, "dicee.models.base_model.BaseKGELightning.training_step", false]], "training_step() (dicee.models.basekgelightning method)": [[19, "dicee.models.BaseKGELightning.training_step", false]], "training_step() (dicee.models.transformers.byte method)": [[25, "dicee.models.transformers.BytE.training_step", false]], "training_step_outputs (dicee.models.base_model.basekgelightning attribute)": [[14, "dicee.models.base_model.BaseKGELightning.training_step_outputs", false]], "training_step_outputs (dicee.models.basekgelightning attribute)": [[19, "dicee.models.BaseKGELightning.training_step_outputs", false]], "training_technique (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.training_technique", false]], "transe (class in dicee)": [[11, "dicee.TransE", false]], "transe (class in dicee.models)": [[19, "dicee.models.TransE", false]], "transe (class in dicee.models.real)": [[23, "dicee.models.real.TransE", false]], "transfer_batch_to_device() (dicee.cvdatamodule method)": [[11, "dicee.CVDataModule.transfer_batch_to_device", false]], "transfer_batch_to_device() (dicee.dataset_classes.cvdatamodule method)": [[7, "dicee.dataset_classes.CVDataModule.transfer_batch_to_device", false]], "transformer (dicee.byte attribute)": [[11, "dicee.BytE.transformer", false]], "transformer (dicee.models.transformers.byte attribute)": [[25, "dicee.models.transformers.BytE.transformer", false]], "transformer (dicee.models.transformers.gpt attribute)": [[25, "dicee.models.transformers.GPT.transformer", false]], "trapezoid() (dicee.models.fmult2 method)": [[19, "dicee.models.FMult2.trapezoid", false]], "trapezoid() (dicee.models.function_space.fmult2 method)": [[18, "dicee.models.function_space.FMult2.trapezoid", false]], "tri_score() (dicee.lfmult method)": [[11, "dicee.LFMult.tri_score", false]], "tri_score() (dicee.models.function_space.lfmult method)": [[18, "dicee.models.function_space.LFMult.tri_score", false]], "tri_score() (dicee.models.function_space.lfmult1 method)": [[18, "dicee.models.function_space.LFMult1.tri_score", false]], "tri_score() (dicee.models.lfmult method)": [[19, "dicee.models.LFMult.tri_score", false]], "tri_score() (dicee.models.lfmult1 method)": [[19, "dicee.models.LFMult1.tri_score", false]], "triple_score() (dicee.kge method)": [[11, "dicee.KGE.triple_score", false]], "triple_score() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.triple_score", false]], "triplepredictiondataset (class in dicee)": [[11, "dicee.TriplePredictionDataset", false]], "triplepredictiondataset (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.TriplePredictionDataset", false]], "tuple2list() (dicee.query_generator.querygenerator method)": [[26, "dicee.query_generator.QueryGenerator.tuple2list", false]], "tuple2list() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.tuple2list", false]], "unlabelled_size (dicee.callbacks.pseudolabellingcallback attribute)": [[5, "dicee.callbacks.PseudoLabellingCallback.unlabelled_size", false]], "unmap() (dicee.query_generator.querygenerator method)": [[26, "dicee.query_generator.QueryGenerator.unmap", false]], "unmap() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.unmap", false]], "unmap_query() (dicee.query_generator.querygenerator method)": [[26, "dicee.query_generator.QueryGenerator.unmap_query", false]], "unmap_query() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.unmap_query", false]], "val_aswa (dicee.callbacks.aswa attribute)": [[5, "dicee.callbacks.ASWA.val_aswa", false]], "val_dataloader() (dicee.models.base_model.basekgelightning method)": [[14, "dicee.models.base_model.BaseKGELightning.val_dataloader", false]], "val_dataloader() (dicee.models.basekgelightning method)": [[19, "dicee.models.BaseKGELightning.val_dataloader", false]], "val_h1 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.val_h1", false]], "val_h10 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.val_h10", false]], "val_h3 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.val_h3", false]], "val_mrr (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.val_mrr", false]], "val_path (dicee.query_generator.querygenerator attribute)": [[26, "dicee.query_generator.QueryGenerator.val_path", false]], "val_path (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.val_path", false]], "validate_knowledge_graph() (in module dicee.sanity_checkers)": [[32, "dicee.sanity_checkers.validate_knowledge_graph", false]], "vocab_preparation() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.vocab_preparation", false]], "vocab_size (dicee.models.transformers.gptconfig attribute)": [[25, "dicee.models.transformers.GPTConfig.vocab_size", false]], "vocab_to_parquet() (in module dicee)": [[11, "dicee.vocab_to_parquet", false]], "vocab_to_parquet() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.vocab_to_parquet", false]], "vtp_score() (dicee.lfmult method)": [[11, "dicee.LFMult.vtp_score", false]], "vtp_score() (dicee.models.function_space.lfmult method)": [[18, "dicee.models.function_space.LFMult.vtp_score", false]], "vtp_score() (dicee.models.function_space.lfmult1 method)": [[18, "dicee.models.function_space.LFMult1.vtp_score", false]], "vtp_score() (dicee.models.lfmult method)": [[19, "dicee.models.LFMult.vtp_score", false]], "vtp_score() (dicee.models.lfmult1 method)": [[19, "dicee.models.LFMult1.vtp_score", false]], "weight (dicee.models.transformers.layernorm attribute)": [[25, "dicee.models.transformers.LayerNorm.weight", false]], "weight_decay (dicee.basekge attribute)": [[11, "dicee.BaseKGE.weight_decay", false]], "weight_decay (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.weight_decay", false]], "weight_decay (dicee.models.base_model.basekge attribute)": [[14, "dicee.models.base_model.BaseKGE.weight_decay", false]], "weight_decay (dicee.models.basekge attribute)": [[19, "dicee.models.BaseKGE.weight_decay", false], [19, "id102", false], [19, "id148", false], [19, "id18", false], [19, "id199", false], [19, "id241", false], [19, "id60", false]], "weights (dicee.models.fmult attribute)": [[19, "dicee.models.FMult.weights", false]], "weights (dicee.models.function_space.fmult attribute)": [[18, "dicee.models.function_space.FMult.weights", false]], "weights (dicee.models.function_space.gfmult attribute)": [[18, "dicee.models.function_space.GFMult.weights", false]], "weights (dicee.models.gfmult attribute)": [[19, "dicee.models.GFMult.weights", false]], "write_csv_from_model_parallel() (in module dicee)": [[11, "dicee.write_csv_from_model_parallel", false]], "write_csv_from_model_parallel() (in module dicee.static_funcs)": [[37, "dicee.static_funcs.write_csv_from_model_parallel", false]], "write_links() (dicee.query_generator.querygenerator method)": [[26, "dicee.query_generator.QueryGenerator.write_links", false]], "write_links() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.write_links", false]], "write_report() (dicee.execute method)": [[11, "dicee.Execute.write_report", false]], "write_report() (dicee.executer.execute method)": [[10, "dicee.executer.Execute.write_report", false]], "x_values (dicee.lfmult attribute)": [[11, "dicee.LFMult.x_values", false]], "x_values (dicee.models.function_space.lfmult attribute)": [[18, "dicee.models.function_space.LFMult.x_values", false]], "x_values (dicee.models.lfmult attribute)": [[19, "dicee.models.LFMult.x_values", false]], "xmp (class in dicee.trainer.torch_trainer)": [[43, "dicee.trainer.torch_trainer.xMP", false]]}, "objects": {"": [[11, 0, 0, "-", "dicee"]], "dicee": [[11, 1, 1, "", "AConEx"], [11, 1, 1, "", "AConvO"], [11, 1, 1, "", "AConvQ"], [11, 1, 1, "", "AllvsAll"], [11, 1, 1, "", "BPE_NegativeSamplingDataset"], [11, 1, 1, "", "BaseKGE"], [11, 1, 1, "", "BytE"], [11, 1, 1, "", "CVDataModule"], [11, 1, 1, "", "ComplEx"], [11, 1, 1, "", "ConEx"], [11, 1, 1, "", "ConvO"], [11, 1, 1, "", "ConvQ"], [11, 1, 1, "", "DICE_Trainer"], [11, 1, 1, "", "DeCaL"], [11, 1, 1, "", "DistMult"], [11, 1, 1, "", "DualE"], [11, 1, 1, "", "Execute"], [11, 1, 1, "", "KGE"], [11, 1, 1, "", "Keci"], [11, 1, 1, "", "KeciBase"], [11, 1, 1, "", "KvsAll"], [11, 1, 1, "", "KvsSampleDataset"], [11, 1, 1, "", "LFMult"], [11, 1, 1, "", "MultiClassClassificationDataset"], [11, 1, 1, "", "MultiLabelDataset"], [11, 1, 1, "", "NegSampleDataset"], [11, 1, 1, "", "OMult"], [11, 1, 1, "", "OnevsAllDataset"], [11, 1, 1, "", "OnevsSample"], [11, 1, 1, "", "Pyke"], [11, 1, 1, "", "PykeenKGE"], [11, 1, 1, "", "QMult"], [11, 1, 1, "", "QueryGenerator"], [11, 1, 1, "", "Shallom"], [11, 1, 1, "", "TransE"], [11, 1, 1, "", "TriplePredictionDataset"], [2, 0, 0, "-", "__main__"], [11, 4, 1, "", "__version__"], [3, 0, 0, "-", "abstracts"], [11, 6, 1, "", "add_noisy_triples"], [4, 0, 0, "-", "analyse_experiments"], [5, 0, 0, "-", "callbacks"], [6, 0, 0, "-", "config"], [11, 6, 1, "", "construct_dataset"], [11, 6, 1, "", "continual_training_setup_executor"], [11, 6, 1, "", "create_experiment_folder"], [11, 6, 1, "", "create_recipriocal_triples"], [7, 0, 0, "-", "dataset_classes"], [11, 6, 1, "", "deploy_head_entity_prediction"], [11, 6, 1, "", "deploy_relation_prediction"], [11, 6, 1, "", "deploy_tail_entity_prediction"], [11, 6, 1, "", "deploy_triple_prediction"], [11, 6, 1, "", "download_file"], [11, 6, 1, "", "download_files_from_url"], [11, 6, 1, "", "download_pretrained_model"], [8, 0, 0, "-", "eval_static_funcs"], [11, 6, 1, "", "evaluate"], [9, 0, 0, "-", "evaluator"], [10, 0, 0, "-", "executer"], [11, 6, 1, "", "exponential_function"], [11, 6, 1, "", "from_pretrained_model_write_embeddings_into_csv"], [11, 6, 1, "", "get_ee_vocab"], [11, 6, 1, "", "get_er_vocab"], [11, 6, 1, "", "get_re_vocab"], [11, 6, 1, "", "intialize_model"], [12, 0, 0, "-", "knowledge_graph"], [13, 0, 0, "-", "knowledge_graph_embeddings"], [11, 6, 1, "", "load_json"], [11, 6, 1, "", "load_model"], [11, 6, 1, "", "load_model_ensemble"], [11, 6, 1, "", "load_numpy"], [11, 6, 1, "", "load_pickle"], [11, 6, 1, "id25", "load_term_mapping"], [11, 6, 1, "", "mapping_from_first_two_cols_to_third"], [19, 0, 0, "-", "models"], [11, 6, 1, "", "numpy_data_type_changer"], [26, 0, 0, "-", "query_generator"], [11, 6, 1, "", "random_prediction"], [11, 6, 1, "", "read_or_load_kg"], [27, 0, 0, "-", "read_preprocess_save_load_kg"], [11, 6, 1, "", "reload_dataset"], [32, 0, 0, "-", "sanity_checkers"], [11, 6, 1, "", "save_checkpoint_model"], [11, 6, 1, "", "save_embeddings"], [11, 6, 1, "", "save_numpy_ndarray"], [11, 6, 1, "", "save_pickle"], [33, 0, 0, "-", "scripts"], [11, 6, 1, "", "select_model"], [37, 0, 0, "-", "static_funcs"], [38, 0, 0, "-", "static_funcs_training"], [39, 0, 0, "-", "static_preprocess_funcs"], [11, 6, 1, "", "store"], [11, 6, 1, "id0", "timeit"], [41, 0, 0, "-", "trainer"], [11, 6, 1, "", "vocab_to_parquet"], [11, 6, 1, "", "write_csv_from_model_parallel"]], "dicee.AConEx": [[11, 2, 1, "", "bn_conv2d"], [11, 2, 1, "", "conv2d"], [11, 2, 1, "", "fc1"], [11, 2, 1, "", "fc_num_input"], [11, 2, 1, "", "feature_map_dropout"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_k_vs_sample"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "name"], [11, 2, 1, "", "norm_fc1"], [11, 3, 1, "", "residual_convolution"]], "dicee.AConvO": [[11, 2, 1, "", "bn_conv2d"], [11, 2, 1, "", "conv2d"], [11, 2, 1, "", "fc1"], [11, 2, 1, "", "fc_num_input"], [11, 2, 1, "", "feature_map_dropout"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "name"], [11, 2, 1, "", "norm_fc1"], [11, 3, 1, "", "octonion_normalizer"], [11, 3, 1, "", "residual_convolution"]], "dicee.AConvQ": [[11, 2, 1, "", "bn_conv1"], [11, 2, 1, "", "bn_conv2"], [11, 2, 1, "", "conv2d"], [11, 2, 1, "", "entity_embeddings"], [11, 2, 1, "", "fc1"], [11, 2, 1, "", "fc_num_input"], [11, 2, 1, "", "feature_map_dropout"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "name"], [11, 2, 1, "", "relation_embeddings"], [11, 3, 1, "", "residual_convolution"]], "dicee.AllvsAll": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 2, 1, "", "collate_fn"], [11, 2, 1, "", "label_smoothing_rate"], [11, 2, 1, "", "target_dim"], [11, 2, 1, "", "train_data"], [11, 2, 1, "", "train_target"]], "dicee.BPE_NegativeSamplingDataset": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 3, 1, "", "collate_fn"], [11, 2, 1, "", "neg_ratio"], [11, 2, 1, "", "num_bpe_entities"], [11, 2, 1, "", "num_datapoints"], [11, 2, 1, "", "ordered_bpe_entities"], [11, 2, 1, "", "train_set"]], "dicee.BaseKGE": [[11, 2, 1, "", "apply_unit_norm"], [11, 2, 1, "", "args"], [11, 2, 1, "", "block_size"], [11, 2, 1, "", "byte_pair_encoding"], [11, 2, 1, "", "embedding_dim"], [11, 2, 1, "", "feature_map_dropout_rate"], [11, 3, 1, "", "forward"], [11, 3, 1, "", "forward_byte_pair_encoded_k_vs_all"], [11, 3, 1, "", "forward_byte_pair_encoded_triple"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_k_vs_sample"], [11, 3, 1, "", "forward_triples"], [11, 3, 1, "", "get_bpe_head_and_relation_representation"], [11, 3, 1, "", "get_embeddings"], [11, 3, 1, "", "get_head_relation_representation"], [11, 3, 1, "", "get_sentence_representation"], [11, 3, 1, "", "get_triple_representation"], [11, 2, 1, "", "hidden_dropout"], [11, 2, 1, "", "hidden_dropout_rate"], [11, 2, 1, "", "hidden_normalizer"], [11, 3, 1, "", "init_params_with_sanity_checking"], [11, 2, 1, "", "input_dp_ent_real"], [11, 2, 1, "", "input_dp_rel_real"], [11, 2, 1, "", "input_dropout_rate"], [11, 2, 1, "", "kernel_size"], [11, 2, 1, "", "learning_rate"], [11, 2, 1, "", "loss"], [11, 2, 1, "", "loss_history"], [11, 2, 1, "", "max_length_subword_tokens"], [11, 2, 1, "", "normalize_head_entity_embeddings"], [11, 2, 1, "", "normalize_relation_embeddings"], [11, 2, 1, "", "normalize_tail_entity_embeddings"], [11, 2, 1, "", "normalizer_class"], [11, 2, 1, "", "num_entities"], [11, 2, 1, "", "num_of_output_channels"], [11, 2, 1, "", "num_relations"], [11, 2, 1, "", "num_tokens"], [11, 2, 1, "", "optimizer_name"], [11, 2, 1, "", "param_init"], [11, 2, 1, "", "selected_optimizer"], [11, 2, 1, "", "weight_decay"]], "dicee.BytE": [[11, 2, 1, "", "config"], [11, 3, 1, "", "forward"], [11, 3, 1, "", "generate"], [11, 2, 1, "", "lm_head"], [11, 3, 1, "", "loss_function"], [11, 2, 1, "", "name"], [11, 2, 1, "", "temperature"], [11, 2, 1, "", "topk"], [11, 3, 1, "", "training_step"], [11, 2, 1, "", "transformer"]], "dicee.CVDataModule": [[11, 2, 1, "", "batch_size"], [11, 2, 1, "", "neg_sample_ratio"], [11, 2, 1, "", "num_entities"], [11, 2, 1, "", "num_relations"], [11, 2, 1, "", "num_workers"], [11, 3, 1, "", "prepare_data"], [11, 3, 1, "", "setup"], [11, 3, 1, "", "train_dataloader"], [11, 2, 1, "", "train_set_idx"], [11, 3, 1, "", "transfer_batch_to_device"]], "dicee.ComplEx": [[11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_k_vs_sample"], [11, 3, 1, "", "k_vs_all_score"], [11, 2, 1, "", "name"], [11, 3, 1, "", "score"]], "dicee.ConEx": [[11, 2, 1, "", "bn_conv2d"], [11, 2, 1, "", "conv2d"], [11, 2, 1, "", "fc1"], [11, 2, 1, "", "fc_num_input"], [11, 2, 1, "", "feature_map_dropout"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_k_vs_sample"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "name"], [11, 2, 1, "", "norm_fc1"], [11, 3, 1, "", "residual_convolution"]], "dicee.ConvO": [[11, 2, 1, "", "bn_conv2d"], [11, 2, 1, "", "conv2d"], [11, 2, 1, "", "fc1"], [11, 2, 1, "", "fc_num_input"], [11, 2, 1, "", "feature_map_dropout"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "name"], [11, 2, 1, "", "norm_fc1"], [11, 3, 1, "", "octonion_normalizer"], [11, 3, 1, "", "residual_convolution"]], "dicee.ConvQ": [[11, 2, 1, "", "bn_conv1"], [11, 2, 1, "", "bn_conv2"], [11, 2, 1, "", "conv2d"], [11, 2, 1, "", "entity_embeddings"], [11, 2, 1, "", "fc1"], [11, 2, 1, "", "fc_num_input"], [11, 2, 1, "", "feature_map_dropout"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "name"], [11, 2, 1, "", "relation_embeddings"], [11, 3, 1, "", "residual_convolution"]], "dicee.DICE_Trainer": [[11, 2, 1, "", "args"], [11, 3, 1, "", "continual_start"], [11, 2, 1, "", "evaluator"], [11, 2, 1, "", "form_of_labelling"], [11, 3, 1, "", "init_dataloader"], [11, 3, 1, "", "init_dataset"], [11, 3, 1, "", "initialize_or_load_model"], [11, 3, 1, "", "initialize_trainer"], [11, 2, 1, "", "is_continual_training"], [11, 3, 1, "", "k_fold_cross_validation"], [11, 2, 1, "", "report"], [11, 3, 1, "", "start"], [11, 2, 1, "", "storage_path"], [11, 2, 1, "", "trainer"]], "dicee.DeCaL": [[11, 3, 1, "", "apply_coefficients"], [11, 3, 1, "", "cl_pqr"], [11, 3, 1, "", "compute_sigma_pp"], [11, 3, 1, "", "compute_sigma_pq"], [11, 3, 1, "", "compute_sigma_pr"], [11, 3, 1, "", "compute_sigma_qq"], [11, 3, 1, "", "compute_sigma_qr"], [11, 3, 1, "", "compute_sigma_rr"], [11, 3, 1, "", "compute_sigmas_multivect"], [11, 3, 1, "", "compute_sigmas_single"], [11, 3, 1, "", "construct_cl_multivector"], [11, 2, 1, "", "entity_embeddings"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "name"], [11, 2, 1, "", "p"], [11, 2, 1, "", "q"], [11, 2, 1, "", "r"], [11, 2, 1, "", "re"], [11, 2, 1, "", "relation_embeddings"]], "dicee.DistMult": [[11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_k_vs_sample"], [11, 3, 1, "", "k_vs_all_score"], [11, 2, 1, "", "name"], [11, 3, 1, "", "score"]], "dicee.DualE": [[11, 3, 1, "", "T"], [11, 2, 1, "", "entity_embeddings"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_triples"], [11, 3, 1, "", "kvsall_score"], [11, 2, 1, "", "name"], [11, 2, 1, "", "num_ent"], [11, 2, 1, "", "relation_embeddings"]], "dicee.Execute": [[11, 2, 1, "", "args"], [11, 3, 1, "", "dept_read_preprocess_index_serialize_data"], [11, 3, 1, "", "end"], [11, 2, 1, "", "evaluator"], [11, 2, 1, "", "is_continual_training"], [11, 2, 1, "", "knowledge_graph"], [11, 2, 1, "", "report"], [11, 3, 1, "", "save_trained_model"], [11, 3, 1, "", "setup_executor"], [11, 3, 1, "", "start"], [11, 2, 1, "", "start_time"], [11, 2, 1, "", "trained_model"], [11, 2, 1, "", "trainer"], [11, 3, 1, "", "write_report"]], "dicee.KGE": [[11, 3, 1, "", "__str__"], [11, 3, 1, "", "answer_multi_hop_query"], [11, 3, 1, "", "create_vector_database"], [11, 3, 1, "", "deploy"], [11, 3, 1, "", "eval_lp_performance"], [11, 3, 1, "", "find_missing_triples"], [11, 3, 1, "", "generate"], [11, 3, 1, "", "get_transductive_entity_embeddings"], [11, 3, 1, "", "negnorm"], [11, 3, 1, "", "predict"], [11, 3, 1, "", "predict_missing_head_entity"], [11, 3, 1, "", "predict_missing_relations"], [11, 3, 1, "", "predict_missing_tail_entity"], [11, 3, 1, "", "predict_topk"], [11, 3, 1, "", "return_multi_hop_query_results"], [11, 3, 1, "", "single_hop_query_answering"], [11, 3, 1, "", "t_conorm"], [11, 3, 1, "", "t_norm"], [11, 3, 1, "", "tensor_t_norm"], [11, 3, 1, "", "to"], [11, 3, 1, "", "train"], [11, 3, 1, "", "train_k_vs_all"], [11, 3, 1, "", "train_triples"], [11, 3, 1, "", "triple_score"]], "dicee.Keci": [[11, 3, 1, "", "apply_coefficients"], [11, 3, 1, "", "clifford_multiplication"], [11, 3, 1, "", "compute_sigma_pp"], [11, 3, 1, "", "compute_sigma_pq"], [11, 3, 1, "", "compute_sigma_qq"], [11, 3, 1, "", "construct_batch_selected_cl_multivector"], [11, 3, 1, "", "construct_cl_multivector"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_k_vs_sample"], [11, 3, 1, "", "forward_k_vs_with_explicit"], [11, 3, 1, "", "forward_triples"], [11, 3, 1, "", "k_vs_all_score"], [11, 2, 1, "", "name"], [11, 2, 1, "", "p"], [11, 2, 1, "", "q"], [11, 2, 1, "", "r"], [11, 2, 1, "", "requires_grad_for_interactions"], [11, 3, 1, "", "score"]], "dicee.KeciBase": [[11, 2, 1, "", "name"], [11, 2, 1, "", "requires_grad_for_interactions"]], "dicee.KvsAll": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 2, 1, "", "collate_fn"], [11, 2, 1, "", "label_smoothing_rate"], [11, 2, 1, "", "train_data"], [11, 2, 1, "", "train_target"]], "dicee.KvsSampleDataset": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 2, 1, "", "collate_fn"], [11, 2, 1, "", "label_smoothing_rate"], [11, 2, 1, "", "max_num_of_classes"], [11, 2, 1, "", "neg_ratio"], [11, 2, 1, "", "num_entities"], [11, 2, 1, "", "train_data"], [11, 2, 1, "", "train_target"]], "dicee.LFMult": [[11, 3, 1, "", "comp_func"], [11, 3, 1, "", "construct_multi_coeff"], [11, 2, 1, "", "degree"], [11, 2, 1, "", "entity_embeddings"], [11, 3, 1, "", "forward_triples"], [11, 3, 1, "", "linear"], [11, 2, 1, "", "m"], [11, 2, 1, "", "name"], [11, 3, 1, "", "poly_NN"], [11, 3, 1, "", "polynomial"], [11, 3, 1, "", "pop"], [11, 2, 1, "", "relation_embeddings"], [11, 3, 1, "", "scalar_batch_NN"], [11, 3, 1, "", "tri_score"], [11, 3, 1, "", "vtp_score"], [11, 2, 1, "", "x_values"]], "dicee.MultiClassClassificationDataset": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 2, 1, "", "block_size"], [11, 2, 1, "", "collate_fn"], [11, 2, 1, "", "num_of_data_points"], [11, 2, 1, "", "train_data"]], "dicee.MultiLabelDataset": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 2, 1, "", "collate_fn"], [11, 2, 1, "", "num_datapoints"], [11, 2, 1, "", "target_dim"], [11, 2, 1, "", "torch_ordered_shaped_bpe_entities"], [11, 2, 1, "", "train_indices_target"], [11, 2, 1, "", "train_set"]], "dicee.NegSampleDataset": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 2, 1, "", "length"], [11, 2, 1, "", "neg_sample_ratio"], [11, 2, 1, "", "num_entities"], [11, 2, 1, "", "num_relations"], [11, 2, 1, "", "train_set"]], "dicee.OMult": [[11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "k_vs_all_score"], [11, 2, 1, "", "name"], [11, 3, 1, "", "octonion_normalizer"], [11, 3, 1, "", "score"]], "dicee.OnevsAllDataset": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 2, 1, "", "collate_fn"], [11, 2, 1, "", "target_dim"], [11, 2, 1, "", "train_data"]], "dicee.OnevsSample": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 2, 1, "id31", "collate_fn"], [11, 2, 1, "id30", "label_smoothing_rate"], [11, 2, 1, "id29", "neg_sample_ratio"], [11, 2, 1, "id27", "num_entities"], [11, 2, 1, "id28", "num_relations"], [11, 2, 1, "id26", "train_data"]], "dicee.Pyke": [[11, 2, 1, "", "dist_func"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "margin"], [11, 2, 1, "", "name"]], "dicee.PykeenKGE": [[11, 2, 1, "", "args"], [11, 2, 1, "", "entity_embeddings"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_k_vs_sample"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "loss_history"], [11, 2, 1, "", "model"], [11, 2, 1, "", "model_kwargs"], [11, 2, 1, "", "name"], [11, 2, 1, "", "relation_embeddings"]], "dicee.QMult": [[11, 2, 1, "", "explicit"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_k_vs_sample"], [11, 3, 1, "", "k_vs_all_score"], [11, 2, 1, "", "name"], [11, 3, 1, "", "quaternion_multiplication_followed_by_inner_product"], [11, 3, 1, "", "quaternion_normalizer"], [11, 3, 1, "", "score"]], "dicee.QueryGenerator": [[11, 3, 1, "", "achieve_answer"], [11, 3, 1, "", "construct_graph"], [11, 2, 1, "", "ent2id"], [11, 2, 1, "", "ent_in"], [11, 2, 1, "", "ent_out"], [11, 3, 1, "", "fill_query"], [11, 2, 1, "", "gen_test"], [11, 2, 1, "", "gen_valid"], [11, 3, 1, "", "generate_queries"], [11, 3, 1, "", "get_queries"], [11, 3, 1, "", "ground_queries"], [11, 3, 1, "", "list2tuple"], [11, 3, 1, "", "load_queries"], [11, 3, 1, "", "load_queries_and_answers"], [11, 2, 1, "", "max_ans_num"], [11, 2, 1, "", "mode"], [11, 2, 1, "", "query_name_to_struct"], [11, 2, 1, "", "rel2id"], [11, 3, 1, "", "save_queries"], [11, 3, 1, "", "save_queries_and_answers"], [11, 2, 1, "", "seed"], [11, 3, 1, "", "set_global_seed"], [11, 2, 1, "", "test_path"], [11, 2, 1, "", "train_path"], [11, 3, 1, "", "tuple2list"], [11, 3, 1, "", "unmap"], [11, 3, 1, "", "unmap_query"], [11, 2, 1, "", "val_path"], [11, 3, 1, "", "write_links"]], "dicee.Shallom": [[11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_triples"], [11, 3, 1, "", "get_embeddings"], [11, 2, 1, "", "name"], [11, 2, 1, "", "shallom"]], "dicee.TransE": [[11, 3, 1, "", "forward_k_vs_all"], [11, 2, 1, "", "margin"], [11, 2, 1, "", "name"], [11, 3, 1, "", "score"]], "dicee.TriplePredictionDataset": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 3, 1, "", "collate_fn"], [11, 2, 1, "", "label_smoothing_rate"], [11, 2, 1, "", "length"], [11, 2, 1, "", "neg_sample_ratio"], [11, 2, 1, "", "num_entities"], [11, 2, 1, "", "num_relations"], [11, 2, 1, "", "train_set"]], "dicee.abstracts": [[3, 1, 1, "", "AbstractCallback"], [3, 1, 1, "", "AbstractPPECallback"], [3, 1, 1, "", "AbstractTrainer"], [3, 1, 1, "", "BaseInteractiveKGE"]], "dicee.abstracts.AbstractCallback": [[3, 3, 1, "", "on_fit_end"], [3, 3, 1, "", "on_fit_start"], [3, 3, 1, "", "on_init_end"], [3, 3, 1, "", "on_init_start"], [3, 3, 1, "", "on_train_batch_end"], [3, 3, 1, "", "on_train_epoch_end"]], "dicee.abstracts.AbstractPPECallback": [[3, 2, 1, "", "alphas"], [3, 2, 1, "", "epoch_count"], [3, 2, 1, "", "num_epochs"], [3, 3, 1, "", "on_fit_end"], [3, 3, 1, "", "on_fit_start"], [3, 2, 1, "", "path"], [3, 2, 1, "", "sample_counter"], [3, 3, 1, "", "store_ensemble"]], "dicee.abstracts.AbstractTrainer": [[3, 2, 1, "", "attributes"], [3, 2, 1, "", "callbacks"], [3, 2, 1, "", "global_rank"], [3, 2, 1, "", "is_global_zero"], [3, 2, 1, "", "local_rank"], [3, 3, 1, "", "on_fit_end"], [3, 3, 1, "", "on_fit_start"], [3, 3, 1, "", "on_train_batch_end"], [3, 3, 1, "", "on_train_epoch_end"], [3, 3, 1, "", "save_checkpoint"], [3, 2, 1, "", "strategy"]], "dicee.abstracts.BaseInteractiveKGE": [[3, 3, 1, "", "add_new_entity_embeddings"], [3, 2, 1, "", "apply_semantic_constraint"], [3, 2, 1, "", "configs"], [3, 2, 1, "", "construct_ensemble"], [3, 3, 1, "", "construct_input_and_output"], [3, 3, 1, "", "get_bpe_token_representation"], [3, 3, 1, "", "get_entity_embeddings"], [3, 3, 1, "", "get_entity_index"], [3, 3, 1, "", "get_eval_report"], [3, 3, 1, "", "get_padded_bpe_triple_representation"], [3, 3, 1, "", "get_relation_embeddings"], [3, 3, 1, "", "get_relation_index"], [3, 3, 1, "", "index_triple"], [3, 3, 1, "", "is_seen"], [3, 5, 1, "", "name"], [3, 3, 1, "", "parameters"], [3, 3, 1, "", "sample_entity"], [3, 3, 1, "", "sample_relation"], [3, 3, 1, "", "save"], [3, 3, 1, "", "set_model_eval_mode"], [3, 3, 1, "", "set_model_train_mode"]], "dicee.analyse_experiments": [[4, 1, 1, "", "Experiment"], [4, 6, 1, "", "analyse"], [4, 6, 1, "", "get_default_arguments"]], "dicee.analyse_experiments.Experiment": [[4, 2, 1, "", "aswa"], [4, 2, 1, "", "batch_size"], [4, 2, 1, "", "byte_pair_encoding"], [4, 2, 1, "", "callbacks"], [4, 2, 1, "", "embedding_dim"], [4, 2, 1, "", "full_storage_path"], [4, 2, 1, "", "lr"], [4, 2, 1, "", "model_name"], [4, 2, 1, "", "normalization"], [4, 2, 1, "", "num_epochs"], [4, 2, 1, "", "num_params"], [4, 2, 1, "", "path_dataset_folder"], [4, 2, 1, "", "pq"], [4, 2, 1, "", "runtime"], [4, 3, 1, "", "save_experiment"], [4, 2, 1, "", "scoring_technique"], [4, 2, 1, "", "test_h1"], [4, 2, 1, "", "test_h10"], [4, 2, 1, "", "test_h3"], [4, 2, 1, "", "test_mrr"], [4, 3, 1, "", "to_df"], [4, 2, 1, "", "train_h1"], [4, 2, 1, "", "train_h10"], [4, 2, 1, "", "train_h3"], [4, 2, 1, "", "train_mrr"], [4, 2, 1, "", "val_h1"], [4, 2, 1, "", "val_h10"], [4, 2, 1, "", "val_h3"], [4, 2, 1, "", "val_mrr"]], "dicee.callbacks": [[5, 1, 1, "", "ASWA"], [5, 1, 1, "", "AccumulateEpochLossCallback"], [5, 1, 1, "", "Eval"], [5, 1, 1, "", "KGESaveCallback"], [5, 1, 1, "", "KronE"], [5, 1, 1, "", "Perturb"], [5, 1, 1, "", "PrintCallback"], [5, 1, 1, "", "PseudoLabellingCallback"], [5, 6, 1, "", "compute_convergence"], [5, 6, 1, "", "estimate_q"]], "dicee.callbacks.ASWA": [[5, 2, 1, "", "alphas"], [5, 3, 1, "", "compute_mrr"], [5, 3, 1, "", "decide"], [5, 2, 1, "", "epoch_count"], [5, 3, 1, "", "get_aswa_state_dict"], [5, 2, 1, "", "initial_eval_setting"], [5, 2, 1, "", "num_epochs"], [5, 3, 1, "", "on_fit_end"], [5, 3, 1, "", "on_train_epoch_end"], [5, 2, 1, "", "path"], [5, 2, 1, "", "val_aswa"]], "dicee.callbacks.AccumulateEpochLossCallback": [[5, 3, 1, "", "on_fit_end"], [5, 2, 1, "", "path"]], "dicee.callbacks.Eval": [[5, 2, 1, "", "epoch_counter"], [5, 2, 1, "", "epoch_ratio"], [5, 3, 1, "", "on_fit_end"], [5, 3, 1, "", "on_fit_start"], [5, 3, 1, "", "on_train_batch_end"], [5, 3, 1, "", "on_train_epoch_end"], [5, 2, 1, "", "path"], [5, 2, 1, "", "reports"]], "dicee.callbacks.KGESaveCallback": [[5, 2, 1, "", "epoch_counter"], [5, 2, 1, "", "every_x_epoch"], [5, 2, 1, "", "max_epochs"], [5, 3, 1, "", "on_epoch_end"], [5, 3, 1, "", "on_fit_end"], [5, 3, 1, "", "on_fit_start"], [5, 3, 1, "", "on_train_batch_end"], [5, 3, 1, "", "on_train_epoch_end"], [5, 2, 1, "", "path"]], "dicee.callbacks.KronE": [[5, 3, 1, "", "batch_kronecker_product"], [5, 2, 1, "", "f"], [5, 3, 1, "", "get_kronecker_triple_representation"], [5, 3, 1, "", "on_fit_start"]], "dicee.callbacks.Perturb": [[5, 2, 1, "", "frequency"], [5, 2, 1, "", "level"], [5, 2, 1, "", "method"], [5, 3, 1, "", "on_train_batch_start"], [5, 2, 1, "", "ratio"], [5, 2, 1, "", "scaler"]], "dicee.callbacks.PrintCallback": [[5, 3, 1, "", "on_fit_end"], [5, 3, 1, "", "on_fit_start"], [5, 3, 1, "", "on_train_batch_end"], [5, 3, 1, "", "on_train_epoch_end"], [5, 2, 1, "", "start_time"]], "dicee.callbacks.PseudoLabellingCallback": [[5, 2, 1, "", "batch_size"], [5, 3, 1, "", "create_random_data"], [5, 2, 1, "", "data_module"], [5, 2, 1, "", "kg"], [5, 2, 1, "", "num_of_epochs"], [5, 3, 1, "", "on_epoch_end"], [5, 2, 1, "", "unlabelled_size"]], "dicee.config": [[6, 1, 1, "", "Namespace"]], "dicee.config.Namespace": [[6, 3, 1, "", "__iter__"], [6, 2, 1, "", "adaptive_swa"], [6, 2, 1, "", "add_noise_rate"], [6, 2, 1, "", "backend"], [6, 2, 1, "", "batch_size"], [6, 2, 1, "", "block_size"], [6, 2, 1, "", "byte_pair_encoding"], [6, 2, 1, "", "callbacks"], [6, 2, 1, "", "continual_learning"], [6, 2, 1, "", "dataset_dir"], [6, 2, 1, "", "embedding_dim"], [6, 2, 1, "", "eval_model"], [6, 2, 1, "", "feature_map_dropout_rate"], [6, 2, 1, "", "gpus"], [6, 2, 1, "", "gradient_accumulation_steps"], [6, 2, 1, "", "hidden_dropout_rate"], [6, 2, 1, "", "init_param"], [6, 2, 1, "", "input_dropout_rate"], [6, 2, 1, "", "kernel_size"], [6, 2, 1, "", "label_smoothing_rate"], [6, 2, 1, "", "lr"], [6, 2, 1, "", "model"], [6, 2, 1, "", "neg_ratio"], [6, 2, 1, "", "normalization"], [6, 2, 1, "", "num_core"], [6, 2, 1, "", "num_epochs"], [6, 2, 1, "", "num_folds_for_cv"], [6, 2, 1, "", "num_of_output_channels"], [6, 2, 1, "", "optim"], [6, 2, 1, "", "p"], [6, 2, 1, "", "path_single_kg"], [6, 2, 1, "", "path_to_store_single_run"], [6, 2, 1, "", "pykeen_model_kwargs"], [6, 2, 1, "", "q"], [6, 2, 1, "", "random_seed"], [6, 2, 1, "", "read_only_few"], [6, 2, 1, "", "sample_triples_ratio"], [6, 2, 1, "", "save_embeddings_as_csv"], [6, 2, 1, "", "save_model_at_every_epoch"], [6, 2, 1, "", "scoring_technique"], [6, 2, 1, "", "separator"], [6, 2, 1, "", "sparql_endpoint"], [6, 2, 1, "", "storage_path"], [6, 2, 1, "", "swa"], [6, 2, 1, "", "trainer"], [6, 2, 1, "", "weight_decay"]], "dicee.dataset_classes": [[7, 1, 1, "", "AllvsAll"], [7, 1, 1, "", "BPE_NegativeSamplingDataset"], [7, 1, 1, "", "CVDataModule"], [7, 1, 1, "", "KvsAll"], [7, 1, 1, "", "KvsSampleDataset"], [7, 1, 1, "", "MultiClassClassificationDataset"], [7, 1, 1, "", "MultiLabelDataset"], [7, 1, 1, "", "NegSampleDataset"], [7, 1, 1, "", "OnevsAllDataset"], [7, 1, 1, "", "OnevsSample"], [7, 1, 1, "", "TriplePredictionDataset"], [7, 6, 1, "", "construct_dataset"], [7, 6, 1, "", "reload_dataset"]], "dicee.dataset_classes.AllvsAll": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 2, 1, "", "collate_fn"], [7, 2, 1, "", "label_smoothing_rate"], [7, 2, 1, "", "target_dim"], [7, 2, 1, "", "train_data"], [7, 2, 1, "", "train_target"]], "dicee.dataset_classes.BPE_NegativeSamplingDataset": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 3, 1, "", "collate_fn"], [7, 2, 1, "", "neg_ratio"], [7, 2, 1, "", "num_bpe_entities"], [7, 2, 1, "", "num_datapoints"], [7, 2, 1, "", "ordered_bpe_entities"], [7, 2, 1, "", "train_set"]], "dicee.dataset_classes.CVDataModule": [[7, 2, 1, "", "batch_size"], [7, 2, 1, "", "neg_sample_ratio"], [7, 2, 1, "", "num_entities"], [7, 2, 1, "", "num_relations"], [7, 2, 1, "", "num_workers"], [7, 3, 1, "", "prepare_data"], [7, 3, 1, "", "setup"], [7, 3, 1, "", "train_dataloader"], [7, 2, 1, "", "train_set_idx"], [7, 3, 1, "", "transfer_batch_to_device"]], "dicee.dataset_classes.KvsAll": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 2, 1, "", "collate_fn"], [7, 2, 1, "", "label_smoothing_rate"], [7, 2, 1, "", "train_data"], [7, 2, 1, "", "train_target"]], "dicee.dataset_classes.KvsSampleDataset": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 2, 1, "", "collate_fn"], [7, 2, 1, "", "label_smoothing_rate"], [7, 2, 1, "", "max_num_of_classes"], [7, 2, 1, "", "neg_ratio"], [7, 2, 1, "", "num_entities"], [7, 2, 1, "", "train_data"], [7, 2, 1, "", "train_target"]], "dicee.dataset_classes.MultiClassClassificationDataset": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 2, 1, "", "block_size"], [7, 2, 1, "", "collate_fn"], [7, 2, 1, "", "num_of_data_points"], [7, 2, 1, "", "train_data"]], "dicee.dataset_classes.MultiLabelDataset": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 2, 1, "", "collate_fn"], [7, 2, 1, "", "num_datapoints"], [7, 2, 1, "", "target_dim"], [7, 2, 1, "", "torch_ordered_shaped_bpe_entities"], [7, 2, 1, "", "train_indices_target"], [7, 2, 1, "", "train_set"]], "dicee.dataset_classes.NegSampleDataset": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 2, 1, "", "length"], [7, 2, 1, "", "neg_sample_ratio"], [7, 2, 1, "", "num_entities"], [7, 2, 1, "", "num_relations"], [7, 2, 1, "", "train_set"]], "dicee.dataset_classes.OnevsAllDataset": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 2, 1, "", "collate_fn"], [7, 2, 1, "", "target_dim"], [7, 2, 1, "", "train_data"]], "dicee.dataset_classes.OnevsSample": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 2, 1, "id5", "collate_fn"], [7, 2, 1, "id4", "label_smoothing_rate"], [7, 2, 1, "id3", "neg_sample_ratio"], [7, 2, 1, "id1", "num_entities"], [7, 2, 1, "id2", "num_relations"], [7, 2, 1, "id0", "train_data"]], "dicee.dataset_classes.TriplePredictionDataset": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 3, 1, "", "collate_fn"], [7, 2, 1, "", "label_smoothing_rate"], [7, 2, 1, "", "length"], [7, 2, 1, "", "neg_sample_ratio"], [7, 2, 1, "", "num_entities"], [7, 2, 1, "", "num_relations"], [7, 2, 1, "", "train_set"]], "dicee.eval_static_funcs": [[8, 6, 1, "", "evaluate_link_prediction_performance"], [8, 6, 1, "", "evaluate_link_prediction_performance_with_bpe"], [8, 6, 1, "", "evaluate_link_prediction_performance_with_bpe_reciprocals"], [8, 6, 1, "", "evaluate_link_prediction_performance_with_reciprocals"], [8, 6, 1, "", "evaluate_lp_bpe_k_vs_all"]], "dicee.evaluator": [[9, 1, 1, "", "Evaluator"]], "dicee.evaluator.Evaluator": [[9, 2, 1, "", "args"], [9, 3, 1, "", "dummy_eval"], [9, 2, 1, "", "during_training"], [9, 2, 1, "", "ee_vocab"], [9, 2, 1, "", "er_vocab"], [9, 3, 1, "", "eval"], [9, 3, 1, "", "eval_rank_of_head_and_tail_byte_pair_encoded_entity"], [9, 3, 1, "", "eval_rank_of_head_and_tail_entity"], [9, 3, 1, "", "eval_with_bpe_vs_all"], [9, 3, 1, "", "eval_with_byte"], [9, 3, 1, "", "eval_with_data"], [9, 3, 1, "", "eval_with_vs_all"], [9, 3, 1, "", "evaluate_lp"], [9, 3, 1, "", "evaluate_lp_bpe_k_vs_all"], [9, 3, 1, "", "evaluate_lp_k_vs_all"], [9, 3, 1, "", "evaluate_lp_with_byte"], [9, 2, 1, "", "func_triple_to_bpe_representation"], [9, 2, 1, "", "is_continual_training"], [9, 2, 1, "", "num_entities"], [9, 2, 1, "", "num_relations"], [9, 2, 1, "", "re_vocab"], [9, 2, 1, "", "report"], [9, 3, 1, "", "vocab_preparation"]], "dicee.executer": [[10, 1, 1, "", "ContinuousExecute"], [10, 1, 1, "", "Execute"]], "dicee.executer.ContinuousExecute": [[10, 3, 1, "", "continual_start"]], "dicee.executer.Execute": [[10, 2, 1, "", "args"], [10, 3, 1, "", "dept_read_preprocess_index_serialize_data"], [10, 3, 1, "", "end"], [10, 2, 1, "", "evaluator"], [10, 2, 1, "", "is_continual_training"], [10, 2, 1, "", "knowledge_graph"], [10, 2, 1, "", "report"], [10, 3, 1, "", "save_trained_model"], [10, 3, 1, "", "setup_executor"], [10, 3, 1, "", "start"], [10, 2, 1, "", "start_time"], [10, 2, 1, "", "trained_model"], [10, 2, 1, "", "trainer"], [10, 3, 1, "", "write_report"]], "dicee.knowledge_graph": [[12, 1, 1, "", "KG"]], "dicee.knowledge_graph.KG": [[12, 3, 1, "", "__iter__"], [12, 3, 1, "", "__len__"], [12, 2, 1, "", "add_noise_rate"], [12, 2, 1, "", "add_reciprocal"], [12, 2, 1, "", "backend"], [12, 2, 1, "", "byte_pair_encoding"], [12, 2, 1, "", "dataset_dir"], [12, 3, 1, "", "describe"], [12, 2, 1, "", "description_of_input"], [12, 2, 1, "", "dummy_id"], [12, 2, 1, "", "enc"], [12, 5, 1, "", "entities_str"], [12, 2, 1, "", "entity_to_idx"], [12, 2, 1, "", "eval_model"], [12, 3, 1, "", "exists"], [12, 3, 1, "", "func_triple_to_bpe_representation"], [12, 2, 1, "", "idx_entity_to_bpe_shaped"], [12, 2, 1, "", "max_length_subword_tokens"], [12, 2, 1, "", "num_bpe_entities"], [12, 2, 1, "", "num_entities"], [12, 2, 1, "", "num_relations"], [12, 2, 1, "", "num_tokens"], [12, 2, 1, "", "ordered_bpe_entities"], [12, 2, 1, "", "ordered_shaped_bpe_tokens"], [12, 2, 1, "", "padding"], [12, 2, 1, "", "path_for_deserialization"], [12, 2, 1, "", "path_for_serialization"], [12, 2, 1, "", "path_single_kg"], [12, 2, 1, "", "read_only_few"], [12, 2, 1, "", "relation_to_idx"], [12, 5, 1, "", "relations_str"], [12, 2, 1, "", "sample_triples_ratio"], [12, 2, 1, "", "separator"], [12, 2, 1, "", "sparql_endpoint"], [12, 2, 1, "", "target_dim"], [12, 2, 1, "", "train_set_target"], [12, 2, 1, "", "train_target_indices"], [12, 2, 1, "", "training_technique"]], "dicee.knowledge_graph_embeddings": [[13, 1, 1, "", "KGE"]], "dicee.knowledge_graph_embeddings.KGE": [[13, 3, 1, "", "__str__"], [13, 3, 1, "", "answer_multi_hop_query"], [13, 3, 1, "", "create_vector_database"], [13, 3, 1, "", "deploy"], [13, 3, 1, "", "eval_lp_performance"], [13, 3, 1, "", "find_missing_triples"], [13, 3, 1, "", "generate"], [13, 3, 1, "", "get_transductive_entity_embeddings"], [13, 3, 1, "", "negnorm"], [13, 3, 1, "", "predict"], [13, 3, 1, "", "predict_missing_head_entity"], [13, 3, 1, "", "predict_missing_relations"], [13, 3, 1, "", "predict_missing_tail_entity"], [13, 3, 1, "", "predict_topk"], [13, 3, 1, "", "return_multi_hop_query_results"], [13, 3, 1, "", "single_hop_query_answering"], [13, 3, 1, "", "t_conorm"], [13, 3, 1, "", "t_norm"], [13, 3, 1, "", "tensor_t_norm"], [13, 3, 1, "", "to"], [13, 3, 1, "", "train"], [13, 3, 1, "", "train_k_vs_all"], [13, 3, 1, "", "train_triples"], [13, 3, 1, "", "triple_score"]], "dicee.models": [[19, 1, 1, "", "AConEx"], [19, 1, 1, "", "AConvO"], [19, 1, 1, "", "AConvQ"], [19, 1, 1, "id227", "BaseKGE"], [19, 1, 1, "", "BaseKGELightning"], [19, 1, 1, "", "ComplEx"], [19, 1, 1, "", "ConEx"], [19, 1, 1, "", "ConvO"], [19, 1, 1, "", "ConvQ"], [19, 1, 1, "", "DeCaL"], [19, 1, 1, "", "DistMult"], [19, 1, 1, "", "DualE"], [19, 1, 1, "", "FMult"], [19, 1, 1, "", "FMult2"], [19, 1, 1, "", "GFMult"], [19, 1, 1, "id176", "IdentityClass"], [19, 1, 1, "", "Keci"], [19, 1, 1, "", "KeciBase"], [19, 1, 1, "", "LFMult"], [19, 1, 1, "", "LFMult1"], [19, 1, 1, "", "OMult"], [19, 1, 1, "", "Pyke"], [19, 1, 1, "", "PykeenKGE"], [19, 1, 1, "", "QMult"], [19, 1, 1, "", "Shallom"], [19, 1, 1, "", "TransE"], [14, 0, 0, "-", "base_model"], [15, 0, 0, "-", "clifford"], [16, 0, 0, "-", "complex"], [17, 0, 0, "-", "dualE"], [18, 0, 0, "-", "function_space"], [20, 0, 0, "-", "octonion"], [19, 6, 1, "", "octonion_mul"], [19, 6, 1, "", "octonion_mul_norm"], [21, 0, 0, "-", "pykeen_models"], [22, 0, 0, "-", "quaternion"], [19, 6, 1, "", "quaternion_mul"], [19, 6, 1, "", "quaternion_mul_with_unit_norm"], [23, 0, 0, "-", "real"], [24, 0, 0, "-", "static_funcs"], [25, 0, 0, "-", "transformers"]], "dicee.models.AConEx": [[19, 2, 1, "", "bn_conv2d"], [19, 2, 1, "", "conv2d"], [19, 2, 1, "", "fc1"], [19, 2, 1, "", "fc_num_input"], [19, 2, 1, "", "feature_map_dropout"], [19, 3, 1, "", "forward_k_vs_all"], [19, 3, 1, "", "forward_k_vs_sample"], [19, 3, 1, "", "forward_triples"], [19, 2, 1, "", "name"], [19, 2, 1, "", "norm_fc1"], [19, 3, 1, "", "residual_convolution"]], "dicee.models.AConvO": [[19, 2, 1, "", "bn_conv2d"], [19, 2, 1, "", "conv2d"], [19, 2, 1, "", "fc1"], [19, 2, 1, "", "fc_num_input"], [19, 2, 1, "", "feature_map_dropout"], [19, 3, 1, "", "forward_k_vs_all"], [19, 3, 1, "", "forward_triples"], [19, 2, 1, "", "name"], [19, 2, 1, "", "norm_fc1"], [19, 3, 1, "", "octonion_normalizer"], [19, 3, 1, "", "residual_convolution"]], "dicee.models.AConvQ": [[19, 2, 1, "", "bn_conv1"], [19, 2, 1, "", "bn_conv2"], [19, 2, 1, "", "conv2d"], [19, 2, 1, "", "entity_embeddings"], [19, 2, 1, "", "fc1"], [19, 2, 1, "", "fc_num_input"], [19, 2, 1, "", "feature_map_dropout"], [19, 3, 1, "", "forward_k_vs_all"], [19, 3, 1, "", "forward_triples"], [19, 2, 1, "", "name"], [19, 2, 1, "", "relation_embeddings"], [19, 3, 1, "", "residual_convolution"]], "dicee.models.BaseKGE": [[19, 2, 1, "id234", "apply_unit_norm"], [19, 2, 1, "id228", "args"], [19, 2, 1, "id256", "block_size"], [19, 2, 1, "id254", "byte_pair_encoding"], [19, 2, 1, "id229", "embedding_dim"], [19, 2, 1, "id238", "feature_map_dropout_rate"], [19, 3, 1, "id260", "forward"], [19, 3, 1, "id257", "forward_byte_pair_encoded_k_vs_all"], [19, 3, 1, "id258", "forward_byte_pair_encoded_triple"], [19, 3, 1, "id262", "forward_k_vs_all"], [19, 3, 1, "id263", "forward_k_vs_sample"], [19, 3, 1, "id261", "forward_triples"], [19, 3, 1, "id267", "get_bpe_head_and_relation_representation"], [19, 3, 1, "id268", "get_embeddings"], [19, 3, 1, "id265", "get_head_relation_representation"], [19, 3, 1, "id266", "get_sentence_representation"], [19, 3, 1, "id264", "get_triple_representation"], [19, 2, 1, "id252", "hidden_dropout"], [19, 2, 1, "id236", "hidden_dropout_rate"], [19, 2, 1, "id248", "hidden_normalizer"], [19, 3, 1, "id259", "init_params_with_sanity_checking"], [19, 2, 1, "id250", "input_dp_ent_real"], [19, 2, 1, "id251", "input_dp_rel_real"], [19, 2, 1, "id235", "input_dropout_rate"], [19, 2, 1, "id239", "kernel_size"], [19, 2, 1, "id233", "learning_rate"], [19, 2, 1, "id242", "loss"], [19, 2, 1, "id253", "loss_history"], [19, 2, 1, "id255", "max_length_subword_tokens"], [19, 2, 1, "id245", "normalize_head_entity_embeddings"], [19, 2, 1, "id246", "normalize_relation_embeddings"], [19, 2, 1, "id247", "normalize_tail_entity_embeddings"], [19, 2, 1, "id244", "normalizer_class"], [19, 2, 1, "id230", "num_entities"], [19, 2, 1, "id240", "num_of_output_channels"], [19, 2, 1, "id231", "num_relations"], [19, 2, 1, "id232", "num_tokens"], [19, 2, 1, "id237", "optimizer_name"], [19, 2, 1, "id249", "param_init"], [19, 2, 1, "id243", "selected_optimizer"], [19, 2, 1, "id241", "weight_decay"]], "dicee.models.BaseKGELightning": [[19, 3, 1, "", "configure_optimizers"], [19, 3, 1, "", "loss_function"], [19, 3, 1, "", "mem_of_model"], [19, 3, 1, "", "on_train_epoch_end"], [19, 3, 1, "", "predict_dataloader"], [19, 3, 1, "", "test_dataloader"], [19, 3, 1, "", "test_epoch_end"], [19, 3, 1, "", "train_dataloader"], [19, 3, 1, "", "training_step"], [19, 2, 1, "", "training_step_outputs"], [19, 3, 1, "", "val_dataloader"]], "dicee.models.ComplEx": [[19, 3, 1, "", "forward_k_vs_all"], [19, 3, 1, "", "forward_k_vs_sample"], [19, 3, 1, "", "k_vs_all_score"], [19, 2, 1, "", "name"], [19, 3, 1, "", "score"]], "dicee.models.ConEx": [[19, 2, 1, "", "bn_conv2d"], [19, 2, 1, "", "conv2d"], [19, 2, 1, "", "fc1"], [19, 2, 1, "", "fc_num_input"], [19, 2, 1, "", "feature_map_dropout"], [19, 3, 1, "", "forward_k_vs_all"], [19, 3, 1, "", "forward_k_vs_sample"], [19, 3, 1, "", "forward_triples"], [19, 2, 1, "", "name"], [19, 2, 1, "", "norm_fc1"], [19, 3, 1, "", "residual_convolution"]], "dicee.models.ConvO": [[19, 2, 1, "", "bn_conv2d"], [19, 2, 1, "", "conv2d"], [19, 2, 1, "", "fc1"], [19, 2, 1, "", "fc_num_input"], [19, 2, 1, "", "feature_map_dropout"], [19, 3, 1, "", "forward_k_vs_all"], [19, 3, 1, "", "forward_triples"], [19, 2, 1, "", "name"], [19, 2, 1, "", "norm_fc1"], [19, 3, 1, "", "octonion_normalizer"], [19, 3, 1, "", "residual_convolution"]], "dicee.models.ConvQ": [[19, 2, 1, "", "bn_conv1"], [19, 2, 1, "", "bn_conv2"], [19, 2, 1, "", "conv2d"], [19, 2, 1, "", "entity_embeddings"], [19, 2, 1, "", "fc1"], [19, 2, 1, "", "fc_num_input"], [19, 2, 1, "", "feature_map_dropout"], [19, 3, 1, "", "forward_k_vs_all"], [19, 3, 1, "", "forward_triples"], [19, 2, 1, "", "name"], [19, 2, 1, "", "relation_embeddings"], [19, 3, 1, "", "residual_convolution"]], "dicee.models.DeCaL": [[19, 3, 1, "", "apply_coefficients"], [19, 3, 1, "", "cl_pqr"], [19, 3, 1, "", "compute_sigma_pp"], [19, 3, 1, "", "compute_sigma_pq"], [19, 3, 1, "", "compute_sigma_pr"], [19, 3, 1, "", "compute_sigma_qq"], [19, 3, 1, "", "compute_sigma_qr"], [19, 3, 1, "", "compute_sigma_rr"], [19, 3, 1, "", "compute_sigmas_multivect"], [19, 3, 1, "", "compute_sigmas_single"], [19, 3, 1, "", "construct_cl_multivector"], [19, 2, 1, "", "entity_embeddings"], [19, 3, 1, "", "forward_k_vs_all"], [19, 3, 1, "", "forward_triples"], [19, 2, 1, "", "name"], [19, 2, 1, "", "p"], [19, 2, 1, "", "q"], [19, 2, 1, "", "r"], [19, 2, 1, "", "re"], [19, 2, 1, "", "relation_embeddings"]], "dicee.models.DistMult": [[19, 3, 1, "", "forward_k_vs_all"], [19, 3, 1, "", "forward_k_vs_sample"], [19, 3, 1, "", "k_vs_all_score"], [19, 2, 1, "", "name"], [19, 3, 1, "", "score"]], "dicee.models.DualE": [[19, 3, 1, "", "T"], [19, 2, 1, "", "entity_embeddings"], [19, 3, 1, "", "forward_k_vs_all"], [19, 3, 1, "", "forward_triples"], [19, 3, 1, "", "kvsall_score"], [19, 2, 1, "", "name"], [19, 2, 1, "", "num_ent"], [19, 2, 1, "", "relation_embeddings"]], "dicee.models.FMult": [[19, 3, 1, "", "chain_func"], [19, 3, 1, "", "compute_func"], [19, 2, 1, "", "entity_embeddings"], [19, 3, 1, "", "forward_triples"], [19, 2, 1, "", "gamma"], [19, 2, 1, "", "k"], [19, 2, 1, "", "name"], [19, 2, 1, "", "num_sample"], [19, 2, 1, "", "relation_embeddings"], [19, 2, 1, "", "roots"], [19, 2, 1, "", "weights"]], "dicee.models.FMult2": [[19, 3, 1, "", "build_chain_funcs"], [19, 3, 1, "", "build_func"], [19, 3, 1, "", "compute_func"], [19, 2, 1, "", "discrete_points"], [19, 2, 1, "", "entity_embeddings"], [19, 3, 1, "", "forward_triples"], [19, 3, 1, "", "function"], [19, 2, 1, "", "k"], [19, 2, 1, "", "n"], [19, 2, 1, "", "n_layers"], [19, 2, 1, "", "name"], [19, 2, 1, "", "relation_embeddings"], [19, 2, 1, "", "score_func"], [19, 3, 1, "", "trapezoid"]], "dicee.models.GFMult": [[19, 3, 1, "", "chain_func"], [19, 3, 1, "", "compute_func"], [19, 2, 1, "", "entity_embeddings"], [19, 3, 1, "", "forward_triples"], [19, 2, 1, "", "k"], [19, 2, 1, "", "name"], [19, 2, 1, "", "num_sample"], [19, 2, 1, "", "relation_embeddings"], [19, 2, 1, "", "roots"], [19, 2, 1, "", "weights"]], "dicee.models.IdentityClass": [[19, 3, 1, "id178", "__call__"], [19, 2, 1, "id177", "args"], [19, 3, 1, "id179", "forward"]], "dicee.models.Keci": [[19, 3, 1, "", "apply_coefficients"], [19, 3, 1, "", "clifford_multiplication"], [19, 3, 1, "", "compute_sigma_pp"], [19, 3, 1, "", "compute_sigma_pq"], [19, 3, 1, "", "compute_sigma_qq"], [19, 3, 1, "", "construct_batch_selected_cl_multivector"], [19, 3, 1, "", "construct_cl_multivector"], [19, 3, 1, "", "forward_k_vs_all"], [19, 3, 1, "", "forward_k_vs_sample"], [19, 3, 1, "", "forward_k_vs_with_explicit"], [19, 3, 1, "", "forward_triples"], [19, 3, 1, "", "k_vs_all_score"], [19, 2, 1, "", "name"], [19, 2, 1, "", "p"], [19, 2, 1, "", "q"], [19, 2, 1, "", "r"], [19, 2, 1, "", "requires_grad_for_interactions"], [19, 3, 1, "", "score"]], "dicee.models.KeciBase": [[19, 2, 1, "", "name"], [19, 2, 1, "", "requires_grad_for_interactions"]], "dicee.models.LFMult": [[19, 3, 1, "", "comp_func"], [19, 3, 1, "", "construct_multi_coeff"], [19, 2, 1, "", "degree"], [19, 2, 1, "", "entity_embeddings"], [19, 3, 1, "", "forward_triples"], [19, 3, 1, "", "linear"], [19, 2, 1, "", "m"], [19, 2, 1, "", "name"], [19, 3, 1, "", "poly_NN"], [19, 3, 1, "", "polynomial"], [19, 3, 1, "", "pop"], [19, 2, 1, "", "relation_embeddings"], [19, 3, 1, "", "scalar_batch_NN"], [19, 3, 1, "", "tri_score"], [19, 3, 1, "", "vtp_score"], [19, 2, 1, "", "x_values"]], "dicee.models.LFMult1": [[19, 2, 1, "", "entity_embeddings"], [19, 3, 1, "", "forward_triples"], [19, 2, 1, "", "name"], [19, 2, 1, "", "relation_embeddings"], [19, 3, 1, "", "tri_score"], [19, 3, 1, "", "vtp_score"]], "dicee.models.OMult": [[19, 3, 1, "", "forward_k_vs_all"], [19, 3, 1, "", "k_vs_all_score"], [19, 2, 1, "", "name"], [19, 3, 1, "", "octonion_normalizer"], [19, 3, 1, "", "score"]], "dicee.models.Pyke": [[19, 2, 1, "", "dist_func"], [19, 3, 1, "", "forward_triples"], [19, 2, 1, "", "margin"], [19, 2, 1, "", "name"]], "dicee.models.PykeenKGE": [[19, 2, 1, "", "args"], [19, 2, 1, "", "entity_embeddings"], [19, 3, 1, "", "forward_k_vs_all"], [19, 3, 1, "", "forward_k_vs_sample"], [19, 3, 1, "", "forward_triples"], [19, 2, 1, "", "loss_history"], [19, 2, 1, "", "model"], [19, 2, 1, "", "model_kwargs"], [19, 2, 1, "", "name"], [19, 2, 1, "", "relation_embeddings"]], "dicee.models.QMult": [[19, 2, 1, "", "explicit"], [19, 3, 1, "", "forward_k_vs_all"], [19, 3, 1, "", "forward_k_vs_sample"], [19, 3, 1, "", "k_vs_all_score"], [19, 2, 1, "", "name"], [19, 3, 1, "", "quaternion_multiplication_followed_by_inner_product"], [19, 3, 1, "", "quaternion_normalizer"], [19, 3, 1, "", "score"]], "dicee.models.Shallom": [[19, 3, 1, "", "forward_k_vs_all"], [19, 3, 1, "", "forward_triples"], [19, 3, 1, "", "get_embeddings"], [19, 2, 1, "", "name"], [19, 2, 1, "", "shallom"]], "dicee.models.TransE": [[19, 3, 1, "", "forward_k_vs_all"], [19, 2, 1, "", "margin"], [19, 2, 1, "", "name"], [19, 3, 1, "", "score"]], "dicee.models.base_model": [[14, 1, 1, "", "BaseKGE"], [14, 1, 1, "", "BaseKGELightning"], [14, 1, 1, "", "IdentityClass"]], "dicee.models.base_model.BaseKGE": [[14, 2, 1, "", "apply_unit_norm"], [14, 2, 1, "", "args"], [14, 2, 1, "", "block_size"], [14, 2, 1, "", "byte_pair_encoding"], [14, 2, 1, "", "embedding_dim"], [14, 2, 1, "", "feature_map_dropout_rate"], [14, 3, 1, "", "forward"], [14, 3, 1, "", "forward_byte_pair_encoded_k_vs_all"], [14, 3, 1, "", "forward_byte_pair_encoded_triple"], [14, 3, 1, "", "forward_k_vs_all"], [14, 3, 1, "", "forward_k_vs_sample"], [14, 3, 1, "", "forward_triples"], [14, 3, 1, "", "get_bpe_head_and_relation_representation"], [14, 3, 1, "", "get_embeddings"], [14, 3, 1, "", "get_head_relation_representation"], [14, 3, 1, "", "get_sentence_representation"], [14, 3, 1, "", "get_triple_representation"], [14, 2, 1, "", "hidden_dropout"], [14, 2, 1, "", "hidden_dropout_rate"], [14, 2, 1, "", "hidden_normalizer"], [14, 3, 1, "", "init_params_with_sanity_checking"], [14, 2, 1, "", "input_dp_ent_real"], [14, 2, 1, "", "input_dp_rel_real"], [14, 2, 1, "", "input_dropout_rate"], [14, 2, 1, "", "kernel_size"], [14, 2, 1, "", "learning_rate"], [14, 2, 1, "", "loss"], [14, 2, 1, "", "loss_history"], [14, 2, 1, "", "max_length_subword_tokens"], [14, 2, 1, "", "normalize_head_entity_embeddings"], [14, 2, 1, "", "normalize_relation_embeddings"], [14, 2, 1, "", "normalize_tail_entity_embeddings"], [14, 2, 1, "", "normalizer_class"], [14, 2, 1, "", "num_entities"], [14, 2, 1, "", "num_of_output_channels"], [14, 2, 1, "", "num_relations"], [14, 2, 1, "", "num_tokens"], [14, 2, 1, "", "optimizer_name"], [14, 2, 1, "", "param_init"], [14, 2, 1, "", "selected_optimizer"], [14, 2, 1, "", "weight_decay"]], "dicee.models.base_model.BaseKGELightning": [[14, 3, 1, "", "configure_optimizers"], [14, 3, 1, "", "loss_function"], [14, 3, 1, "", "mem_of_model"], [14, 3, 1, "", "on_train_epoch_end"], [14, 3, 1, "", "predict_dataloader"], [14, 3, 1, "", "test_dataloader"], [14, 3, 1, "", "test_epoch_end"], [14, 3, 1, "", "train_dataloader"], [14, 3, 1, "", "training_step"], [14, 2, 1, "", "training_step_outputs"], [14, 3, 1, "", "val_dataloader"]], "dicee.models.base_model.IdentityClass": [[14, 3, 1, "", "__call__"], [14, 2, 1, "", "args"], [14, 3, 1, "", "forward"]], "dicee.models.clifford": [[15, 1, 1, "", "DeCaL"], [15, 1, 1, "", "Keci"], [15, 1, 1, "", "KeciBase"]], "dicee.models.clifford.DeCaL": [[15, 3, 1, "", "apply_coefficients"], [15, 3, 1, "", "cl_pqr"], [15, 3, 1, "", "compute_sigma_pp"], [15, 3, 1, "", "compute_sigma_pq"], [15, 3, 1, "", "compute_sigma_pr"], [15, 3, 1, "", "compute_sigma_qq"], [15, 3, 1, "", "compute_sigma_qr"], [15, 3, 1, "", "compute_sigma_rr"], [15, 3, 1, "", "compute_sigmas_multivect"], [15, 3, 1, "", "compute_sigmas_single"], [15, 3, 1, "", "construct_cl_multivector"], [15, 2, 1, "", "entity_embeddings"], [15, 3, 1, "", "forward_k_vs_all"], [15, 3, 1, "", "forward_triples"], [15, 2, 1, "", "name"], [15, 2, 1, "", "p"], [15, 2, 1, "", "q"], [15, 2, 1, "", "r"], [15, 2, 1, "", "re"], [15, 2, 1, "", "relation_embeddings"]], "dicee.models.clifford.Keci": [[15, 3, 1, "", "apply_coefficients"], [15, 3, 1, "", "clifford_multiplication"], [15, 3, 1, "", "compute_sigma_pp"], [15, 3, 1, "", "compute_sigma_pq"], [15, 3, 1, "", "compute_sigma_qq"], [15, 3, 1, "", "construct_batch_selected_cl_multivector"], [15, 3, 1, "", "construct_cl_multivector"], [15, 3, 1, "", "forward_k_vs_all"], [15, 3, 1, "", "forward_k_vs_sample"], [15, 3, 1, "", "forward_k_vs_with_explicit"], [15, 3, 1, "", "forward_triples"], [15, 3, 1, "", "k_vs_all_score"], [15, 2, 1, "", "name"], [15, 2, 1, "", "p"], [15, 2, 1, "", "q"], [15, 2, 1, "", "r"], [15, 2, 1, "", "requires_grad_for_interactions"], [15, 3, 1, "", "score"]], "dicee.models.clifford.KeciBase": [[15, 2, 1, "", "name"], [15, 2, 1, "", "requires_grad_for_interactions"]], "dicee.models.complex": [[16, 1, 1, "", "AConEx"], [16, 1, 1, "", "ComplEx"], [16, 1, 1, "", "ConEx"]], "dicee.models.complex.AConEx": [[16, 2, 1, "", "bn_conv2d"], [16, 2, 1, "", "conv2d"], [16, 2, 1, "", "fc1"], [16, 2, 1, "", "fc_num_input"], [16, 2, 1, "", "feature_map_dropout"], [16, 3, 1, "", "forward_k_vs_all"], [16, 3, 1, "", "forward_k_vs_sample"], [16, 3, 1, "", "forward_triples"], [16, 2, 1, "", "name"], [16, 2, 1, "", "norm_fc1"], [16, 3, 1, "", "residual_convolution"]], "dicee.models.complex.ComplEx": [[16, 3, 1, "", "forward_k_vs_all"], [16, 3, 1, "", "forward_k_vs_sample"], [16, 3, 1, "", "k_vs_all_score"], [16, 2, 1, "", "name"], [16, 3, 1, "", "score"]], "dicee.models.complex.ConEx": [[16, 2, 1, "", "bn_conv2d"], [16, 2, 1, "", "conv2d"], [16, 2, 1, "", "fc1"], [16, 2, 1, "", "fc_num_input"], [16, 2, 1, "", "feature_map_dropout"], [16, 3, 1, "", "forward_k_vs_all"], [16, 3, 1, "", "forward_k_vs_sample"], [16, 3, 1, "", "forward_triples"], [16, 2, 1, "", "name"], [16, 2, 1, "", "norm_fc1"], [16, 3, 1, "", "residual_convolution"]], "dicee.models.dualE": [[17, 1, 1, "", "DualE"]], "dicee.models.dualE.DualE": [[17, 3, 1, "", "T"], [17, 2, 1, "", "entity_embeddings"], [17, 3, 1, "", "forward_k_vs_all"], [17, 3, 1, "", "forward_triples"], [17, 3, 1, "", "kvsall_score"], [17, 2, 1, "", "name"], [17, 2, 1, "", "num_ent"], [17, 2, 1, "", "relation_embeddings"]], "dicee.models.function_space": [[18, 1, 1, "", "FMult"], [18, 1, 1, "", "FMult2"], [18, 1, 1, "", "GFMult"], [18, 1, 1, "", "LFMult"], [18, 1, 1, "", "LFMult1"]], "dicee.models.function_space.FMult": [[18, 3, 1, "", "chain_func"], [18, 3, 1, "", "compute_func"], [18, 2, 1, "", "entity_embeddings"], [18, 3, 1, "", "forward_triples"], [18, 2, 1, "", "gamma"], [18, 2, 1, "", "k"], [18, 2, 1, "", "name"], [18, 2, 1, "", "num_sample"], [18, 2, 1, "", "relation_embeddings"], [18, 2, 1, "", "roots"], [18, 2, 1, "", "weights"]], "dicee.models.function_space.FMult2": [[18, 3, 1, "", "build_chain_funcs"], [18, 3, 1, "", "build_func"], [18, 3, 1, "", "compute_func"], [18, 2, 1, "", "discrete_points"], [18, 2, 1, "", "entity_embeddings"], [18, 3, 1, "", "forward_triples"], [18, 3, 1, "", "function"], [18, 2, 1, "", "k"], [18, 2, 1, "", "n"], [18, 2, 1, "", "n_layers"], [18, 2, 1, "", "name"], [18, 2, 1, "", "relation_embeddings"], [18, 2, 1, "", "score_func"], [18, 3, 1, "", "trapezoid"]], "dicee.models.function_space.GFMult": [[18, 3, 1, "", "chain_func"], [18, 3, 1, "", "compute_func"], [18, 2, 1, "", "entity_embeddings"], [18, 3, 1, "", "forward_triples"], [18, 2, 1, "", "k"], [18, 2, 1, "", "name"], [18, 2, 1, "", "num_sample"], [18, 2, 1, "", "relation_embeddings"], [18, 2, 1, "", "roots"], [18, 2, 1, "", "weights"]], "dicee.models.function_space.LFMult": [[18, 3, 1, "", "comp_func"], [18, 3, 1, "", "construct_multi_coeff"], [18, 2, 1, "", "degree"], [18, 2, 1, "", "entity_embeddings"], [18, 3, 1, "", "forward_triples"], [18, 3, 1, "", "linear"], [18, 2, 1, "", "m"], [18, 2, 1, "", "name"], [18, 3, 1, "", "poly_NN"], [18, 3, 1, "", "polynomial"], [18, 3, 1, "", "pop"], [18, 2, 1, "", "relation_embeddings"], [18, 3, 1, "", "scalar_batch_NN"], [18, 3, 1, "", "tri_score"], [18, 3, 1, "", "vtp_score"], [18, 2, 1, "", "x_values"]], "dicee.models.function_space.LFMult1": [[18, 2, 1, "", "entity_embeddings"], [18, 3, 1, "", "forward_triples"], [18, 2, 1, "", "name"], [18, 2, 1, "", "relation_embeddings"], [18, 3, 1, "", "tri_score"], [18, 3, 1, "", "vtp_score"]], "dicee.models.octonion": [[20, 1, 1, "", "AConvO"], [20, 1, 1, "", "ConvO"], [20, 1, 1, "", "OMult"], [20, 6, 1, "", "octonion_mul"], [20, 6, 1, "", "octonion_mul_norm"]], "dicee.models.octonion.AConvO": [[20, 2, 1, "", "bn_conv2d"], [20, 2, 1, "", "conv2d"], [20, 2, 1, "", "fc1"], [20, 2, 1, "", "fc_num_input"], [20, 2, 1, "", "feature_map_dropout"], [20, 3, 1, "", "forward_k_vs_all"], [20, 3, 1, "", "forward_triples"], [20, 2, 1, "", "name"], [20, 2, 1, "", "norm_fc1"], [20, 3, 1, "", "octonion_normalizer"], [20, 3, 1, "", "residual_convolution"]], "dicee.models.octonion.ConvO": [[20, 2, 1, "", "bn_conv2d"], [20, 2, 1, "", "conv2d"], [20, 2, 1, "", "fc1"], [20, 2, 1, "", "fc_num_input"], [20, 2, 1, "", "feature_map_dropout"], [20, 3, 1, "", "forward_k_vs_all"], [20, 3, 1, "", "forward_triples"], [20, 2, 1, "", "name"], [20, 2, 1, "", "norm_fc1"], [20, 3, 1, "", "octonion_normalizer"], [20, 3, 1, "", "residual_convolution"]], "dicee.models.octonion.OMult": [[20, 3, 1, "", "forward_k_vs_all"], [20, 3, 1, "", "k_vs_all_score"], [20, 2, 1, "", "name"], [20, 3, 1, "", "octonion_normalizer"], [20, 3, 1, "", "score"]], "dicee.models.pykeen_models": [[21, 1, 1, "", "PykeenKGE"]], "dicee.models.pykeen_models.PykeenKGE": [[21, 2, 1, "", "args"], [21, 2, 1, "", "entity_embeddings"], [21, 3, 1, "", "forward_k_vs_all"], [21, 3, 1, "", "forward_k_vs_sample"], [21, 3, 1, "", "forward_triples"], [21, 2, 1, "", "loss_history"], [21, 2, 1, "", "model"], [21, 2, 1, "", "model_kwargs"], [21, 2, 1, "", "name"], [21, 2, 1, "", "relation_embeddings"]], "dicee.models.quaternion": [[22, 1, 1, "", "AConvQ"], [22, 1, 1, "", "ConvQ"], [22, 1, 1, "", "QMult"], [22, 6, 1, "", "quaternion_mul_with_unit_norm"]], "dicee.models.quaternion.AConvQ": [[22, 2, 1, "", "bn_conv1"], [22, 2, 1, "", "bn_conv2"], [22, 2, 1, "", "conv2d"], [22, 2, 1, "", "entity_embeddings"], [22, 2, 1, "", "fc1"], [22, 2, 1, "", "fc_num_input"], [22, 2, 1, "", "feature_map_dropout"], [22, 3, 1, "", "forward_k_vs_all"], [22, 3, 1, "", "forward_triples"], [22, 2, 1, "", "name"], [22, 2, 1, "", "relation_embeddings"], [22, 3, 1, "", "residual_convolution"]], "dicee.models.quaternion.ConvQ": [[22, 2, 1, "", "bn_conv1"], [22, 2, 1, "", "bn_conv2"], [22, 2, 1, "", "conv2d"], [22, 2, 1, "", "entity_embeddings"], [22, 2, 1, "", "fc1"], [22, 2, 1, "", "fc_num_input"], [22, 2, 1, "", "feature_map_dropout"], [22, 3, 1, "", "forward_k_vs_all"], [22, 3, 1, "", "forward_triples"], [22, 2, 1, "", "name"], [22, 2, 1, "", "relation_embeddings"], [22, 3, 1, "", "residual_convolution"]], "dicee.models.quaternion.QMult": [[22, 2, 1, "", "explicit"], [22, 3, 1, "", "forward_k_vs_all"], [22, 3, 1, "", "forward_k_vs_sample"], [22, 3, 1, "", "k_vs_all_score"], [22, 2, 1, "", "name"], [22, 3, 1, "", "quaternion_multiplication_followed_by_inner_product"], [22, 3, 1, "", "quaternion_normalizer"], [22, 3, 1, "", "score"]], "dicee.models.real": [[23, 1, 1, "", "DistMult"], [23, 1, 1, "", "Pyke"], [23, 1, 1, "", "Shallom"], [23, 1, 1, "", "TransE"]], "dicee.models.real.DistMult": [[23, 3, 1, "", "forward_k_vs_all"], [23, 3, 1, "", "forward_k_vs_sample"], [23, 3, 1, "", "k_vs_all_score"], [23, 2, 1, "", "name"], [23, 3, 1, "", "score"]], "dicee.models.real.Pyke": [[23, 2, 1, "", "dist_func"], [23, 3, 1, "", "forward_triples"], [23, 2, 1, "", "margin"], [23, 2, 1, "", "name"]], "dicee.models.real.Shallom": [[23, 3, 1, "", "forward_k_vs_all"], [23, 3, 1, "", "forward_triples"], [23, 3, 1, "", "get_embeddings"], [23, 2, 1, "", "name"], [23, 2, 1, "", "shallom"]], "dicee.models.real.TransE": [[23, 3, 1, "", "forward_k_vs_all"], [23, 2, 1, "", "margin"], [23, 2, 1, "", "name"], [23, 3, 1, "", "score"]], "dicee.models.static_funcs": [[24, 6, 1, "", "quaternion_mul"]], "dicee.models.transformers": [[25, 1, 1, "", "Block"], [25, 1, 1, "", "BytE"], [25, 1, 1, "", "CausalSelfAttention"], [25, 1, 1, "", "GPT"], [25, 1, 1, "", "GPTConfig"], [25, 1, 1, "", "LayerNorm"], [25, 1, 1, "", "MLP"]], "dicee.models.transformers.Block": [[25, 2, 1, "", "attn"], [25, 3, 1, "", "forward"], [25, 2, 1, "", "ln_1"], [25, 2, 1, "", "ln_2"], [25, 2, 1, "", "mlp"]], "dicee.models.transformers.BytE": [[25, 2, 1, "", "config"], [25, 3, 1, "", "forward"], [25, 3, 1, "", "generate"], [25, 2, 1, "", "lm_head"], [25, 3, 1, "", "loss_function"], [25, 2, 1, "", "name"], [25, 2, 1, "", "temperature"], [25, 2, 1, "", "topk"], [25, 3, 1, "", "training_step"], [25, 2, 1, "", "transformer"]], "dicee.models.transformers.CausalSelfAttention": [[25, 2, 1, "", "attn_dropout"], [25, 2, 1, "", "c_attn"], [25, 2, 1, "", "c_proj"], [25, 2, 1, "", "dropout"], [25, 2, 1, "", "flash"], [25, 3, 1, "", "forward"], [25, 2, 1, "", "n_embd"], [25, 2, 1, "", "n_head"], [25, 2, 1, "", "resid_dropout"]], "dicee.models.transformers.GPT": [[25, 2, 1, "", "config"], [25, 3, 1, "", "configure_optimizers"], [25, 3, 1, "", "crop_block_size"], [25, 3, 1, "", "estimate_mfu"], [25, 3, 1, "", "forward"], [25, 3, 1, "", "from_pretrained"], [25, 3, 1, "", "get_num_params"], [25, 2, 1, "", "lm_head"], [25, 2, 1, "", "transformer"]], "dicee.models.transformers.GPTConfig": [[25, 2, 1, "", "bias"], [25, 2, 1, "", "block_size"], [25, 2, 1, "", "dropout"], [25, 2, 1, "", "n_embd"], [25, 2, 1, "", "n_head"], [25, 2, 1, "", "n_layer"], [25, 2, 1, "", "vocab_size"]], "dicee.models.transformers.LayerNorm": [[25, 2, 1, "", "bias"], [25, 3, 1, "", "forward"], [25, 2, 1, "", "weight"]], "dicee.models.transformers.MLP": [[25, 2, 1, "", "c_fc"], [25, 2, 1, "", "c_proj"], [25, 2, 1, "", "dropout"], [25, 3, 1, "", "forward"], [25, 2, 1, "", "gelu"]], "dicee.query_generator": [[26, 1, 1, "", "QueryGenerator"]], "dicee.query_generator.QueryGenerator": [[26, 3, 1, "", "achieve_answer"], [26, 3, 1, "", "construct_graph"], [26, 2, 1, "", "ent2id"], [26, 2, 1, "", "ent_in"], [26, 2, 1, "", "ent_out"], [26, 3, 1, "", "fill_query"], [26, 2, 1, "", "gen_test"], [26, 2, 1, "", "gen_valid"], [26, 3, 1, "", "generate_queries"], [26, 3, 1, "", "get_queries"], [26, 3, 1, "", "ground_queries"], [26, 3, 1, "", "list2tuple"], [26, 3, 1, "", "load_queries"], [26, 3, 1, "", "load_queries_and_answers"], [26, 2, 1, "", "max_ans_num"], [26, 2, 1, "", "mode"], [26, 2, 1, "", "query_name_to_struct"], [26, 2, 1, "", "rel2id"], [26, 3, 1, "", "save_queries"], [26, 3, 1, "", "save_queries_and_answers"], [26, 2, 1, "", "seed"], [26, 3, 1, "", "set_global_seed"], [26, 2, 1, "", "test_path"], [26, 2, 1, "", "train_path"], [26, 3, 1, "", "tuple2list"], [26, 3, 1, "", "unmap"], [26, 3, 1, "", "unmap_query"], [26, 2, 1, "", "val_path"], [26, 3, 1, "", "write_links"]], "dicee.read_preprocess_save_load_kg": [[27, 1, 1, "", "LoadSaveToDisk"], [27, 1, 1, "", "PreprocessKG"], [27, 1, 1, "", "ReadFromDisk"], [28, 0, 0, "-", "preprocess"], [29, 0, 0, "-", "read_from_disk"], [30, 0, 0, "-", "save_load_disk"], [31, 0, 0, "-", "util"]], "dicee.read_preprocess_save_load_kg.LoadSaveToDisk": [[27, 2, 1, "", "kg"], [27, 3, 1, "", "load"], [27, 3, 1, "", "save"]], "dicee.read_preprocess_save_load_kg.PreprocessKG": [[27, 2, 1, "", "kg"], [27, 3, 1, "", "preprocess_with_byte_pair_encoding"], [27, 3, 1, "", "preprocess_with_byte_pair_encoding_with_padding"], [27, 3, 1, "", "preprocess_with_pandas"], [27, 3, 1, "", "preprocess_with_polars"], [27, 3, 1, "", "sequential_vocabulary_construction"], [27, 3, 1, "", "start"]], "dicee.read_preprocess_save_load_kg.ReadFromDisk": [[27, 3, 1, "", "add_noisy_triples_into_training"], [27, 2, 1, "", "kg"], [27, 3, 1, "", "start"]], "dicee.read_preprocess_save_load_kg.preprocess": [[28, 1, 1, "", "PreprocessKG"]], "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG": [[28, 2, 1, "", "kg"], [28, 3, 1, "", "preprocess_with_byte_pair_encoding"], [28, 3, 1, "", "preprocess_with_byte_pair_encoding_with_padding"], [28, 3, 1, "", "preprocess_with_pandas"], [28, 3, 1, "", "preprocess_with_polars"], [28, 3, 1, "", "sequential_vocabulary_construction"], [28, 3, 1, "", "start"]], "dicee.read_preprocess_save_load_kg.read_from_disk": [[29, 1, 1, "", "ReadFromDisk"]], "dicee.read_preprocess_save_load_kg.read_from_disk.ReadFromDisk": [[29, 3, 1, "", "add_noisy_triples_into_training"], [29, 2, 1, "", "kg"], [29, 3, 1, "", "start"]], "dicee.read_preprocess_save_load_kg.save_load_disk": [[30, 1, 1, "", "LoadSaveToDisk"]], "dicee.read_preprocess_save_load_kg.save_load_disk.LoadSaveToDisk": [[30, 2, 1, "", "kg"], [30, 3, 1, "", "load"], [30, 3, 1, "", "save"]], "dicee.read_preprocess_save_load_kg.util": [[31, 6, 1, "", "apply_reciprical_or_noise"], [31, 6, 1, "", "create_constraints"], [31, 6, 1, "", "create_recipriocal_triples"], [31, 6, 1, "", "dataset_sanity_checking"], [31, 6, 1, "", "get_ee_vocab"], [31, 6, 1, "", "get_er_vocab"], [31, 6, 1, "", "get_re_vocab"], [31, 6, 1, "", "load_numpy_ndarray"], [31, 6, 1, "", "load_pickle"], [31, 6, 1, "", "load_with_pandas"], [31, 6, 1, "", "pandas_dataframe_indexer"], [31, 6, 1, "", "polars_dataframe_indexer"], [31, 6, 1, "", "read_from_disk"], [31, 6, 1, "", "read_from_triple_store"], [31, 6, 1, "", "read_with_pandas"], [31, 6, 1, "", "read_with_polars"], [31, 6, 1, "", "save_numpy_ndarray"], [31, 6, 1, "", "save_pickle"], [31, 6, 1, "", "timeit"]], "dicee.sanity_checkers": [[32, 6, 1, "", "is_sparql_endpoint_alive"], [32, 6, 1, "", "sanity_checking_with_arguments"], [32, 6, 1, "", "validate_knowledge_graph"]], "dicee.scripts": [[34, 0, 0, "-", "index"], [35, 0, 0, "-", "run"], [36, 0, 0, "-", "serve"]], "dicee.scripts.index": [[34, 6, 1, "", "get_default_arguments"], [34, 6, 1, "", "main"]], "dicee.scripts.run": [[35, 6, 1, "", "get_default_arguments"], [35, 6, 1, "", "main"]], "dicee.scripts.serve": [[36, 1, 1, "", "NeuralSearcher"], [36, 4, 1, "", "app"], [36, 6, 1, "", "get_default_arguments"], [36, 6, 1, "", "main"], [36, 4, 1, "", "neural_searcher"], [36, 6, 1, "", "retrieve_embeddings"], [36, 6, 1, "", "root"], [36, 6, 1, "", "search_embeddings"]], "dicee.scripts.serve.NeuralSearcher": [[36, 2, 1, "", "collection_name"], [36, 3, 1, "", "get"], [36, 2, 1, "", "model"], [36, 2, 1, "", "qdrant_client"], [36, 3, 1, "", "search"]], "dicee.static_funcs": [[37, 6, 1, "", "add_noisy_triples"], [37, 6, 1, "", "continual_training_setup_executor"], [37, 6, 1, "", "create_experiment_folder"], [37, 6, 1, "", "create_recipriocal_triples"], [37, 6, 1, "", "deploy_head_entity_prediction"], [37, 6, 1, "", "deploy_relation_prediction"], [37, 6, 1, "", "deploy_tail_entity_prediction"], [37, 6, 1, "", "deploy_triple_prediction"], [37, 6, 1, "", "download_file"], [37, 6, 1, "", "download_files_from_url"], [37, 6, 1, "", "download_pretrained_model"], [37, 6, 1, "", "evaluate"], [37, 6, 1, "", "exponential_function"], [37, 6, 1, "", "from_pretrained_model_write_embeddings_into_csv"], [37, 6, 1, "", "get_ee_vocab"], [37, 6, 1, "", "get_er_vocab"], [37, 6, 1, "", "get_re_vocab"], [37, 6, 1, "", "intialize_model"], [37, 6, 1, "", "load_json"], [37, 6, 1, "", "load_model"], [37, 6, 1, "", "load_model_ensemble"], [37, 6, 1, "", "load_numpy"], [37, 6, 1, "", "load_pickle"], [37, 6, 1, "", "load_term_mapping"], [37, 6, 1, "", "numpy_data_type_changer"], [37, 6, 1, "", "random_prediction"], [37, 6, 1, "", "read_or_load_kg"], [37, 6, 1, "", "save_checkpoint_model"], [37, 6, 1, "", "save_embeddings"], [37, 6, 1, "", "save_numpy_ndarray"], [37, 6, 1, "", "save_pickle"], [37, 6, 1, "", "select_model"], [37, 6, 1, "", "store"], [37, 6, 1, "", "timeit"], [37, 6, 1, "", "vocab_to_parquet"], [37, 6, 1, "", "write_csv_from_model_parallel"]], "dicee.static_funcs_training": [[38, 6, 1, "", "efficient_zero_grad"], [38, 6, 1, "", "evaluate_bpe_lp"], [38, 6, 1, "", "evaluate_lp"], [38, 6, 1, "", "make_iterable_verbose"]], "dicee.static_preprocess_funcs": [[39, 6, 1, "", "create_constraints"], [39, 4, 1, "", "enable_log"], [39, 6, 1, "", "get_ee_vocab"], [39, 6, 1, "", "get_er_vocab"], [39, 6, 1, "", "get_re_vocab"], [39, 6, 1, "", "mapping_from_first_two_cols_to_third"], [39, 6, 1, "", "preprocesses_input_args"], [39, 6, 1, "", "timeit"]], "dicee.trainer": [[41, 1, 1, "", "DICE_Trainer"], [40, 0, 0, "-", "dice_trainer"], [42, 0, 0, "-", "model_parallelism"], [43, 0, 0, "-", "torch_trainer"], [44, 0, 0, "-", "torch_trainer_ddp"]], "dicee.trainer.DICE_Trainer": [[41, 2, 1, "", "args"], [41, 3, 1, "", "continual_start"], [41, 2, 1, "", "evaluator"], [41, 2, 1, "", "form_of_labelling"], [41, 3, 1, "", "init_dataloader"], [41, 3, 1, "", "init_dataset"], [41, 3, 1, "", "initialize_or_load_model"], [41, 3, 1, "", "initialize_trainer"], [41, 2, 1, "", "is_continual_training"], [41, 3, 1, "", "k_fold_cross_validation"], [41, 2, 1, "", "report"], [41, 3, 1, "", "start"], [41, 2, 1, "", "storage_path"], [41, 2, 1, "", "trainer"]], "dicee.trainer.dice_trainer": [[40, 1, 1, "", "DICE_Trainer"], [40, 1, 1, "", "EnsembleKGE"], [40, 6, 1, "", "get_callbacks"], [40, 6, 1, "", "initialize_trainer"], [40, 6, 1, "", "load_term_mapping"]], "dicee.trainer.dice_trainer.DICE_Trainer": [[40, 2, 1, "", "args"], [40, 3, 1, "", "continual_start"], [40, 2, 1, "", "evaluator"], [40, 2, 1, "", "form_of_labelling"], [40, 3, 1, "", "init_dataloader"], [40, 3, 1, "", "init_dataset"], [40, 3, 1, "", "initialize_or_load_model"], [40, 3, 1, "", "initialize_trainer"], [40, 2, 1, "", "is_continual_training"], [40, 3, 1, "", "k_fold_cross_validation"], [40, 2, 1, "", "report"], [40, 3, 1, "", "start"], [40, 2, 1, "", "storage_path"], [40, 2, 1, "", "trainer"]], "dicee.trainer.dice_trainer.EnsembleKGE": [[40, 3, 1, "", "__call__"], [40, 3, 1, "", "__getattr__"], [40, 3, 1, "", "__iter__"], [40, 3, 1, "", "__len__"], [40, 3, 1, "", "__str__"], [40, 2, 1, "", "models"], [40, 2, 1, "", "optimizers"]], "dicee.trainer.model_parallelism": [[42, 1, 1, "", "MP"]], "dicee.trainer.model_parallelism.MP": [[42, 3, 1, "", "extract_input_outputs"], [42, 3, 1, "", "fit"], [42, 3, 1, "", "get_ensemble"]], "dicee.trainer.torch_trainer": [[43, 1, 1, "", "TorchTrainer"], [43, 1, 1, "", "xMP"]], "dicee.trainer.torch_trainer.TorchTrainer": [[43, 3, 1, "", "extract_input_outputs_set_device"], [43, 3, 1, "", "fit"], [43, 3, 1, "", "forward_backward_update"], [43, 2, 1, "", "loss_function"], [43, 2, 1, "", "model"], [43, 2, 1, "", "optimizer"], [43, 2, 1, "", "process"], [43, 2, 1, "", "train_dataloaders"], [43, 2, 1, "", "training_step"]], "dicee.trainer.torch_trainer.xMP": [[43, 2, 1, "", "available_gpus"], [43, 3, 1, "", "extract_input_outputs_set_device"], [43, 3, 1, "", "fit"], [43, 3, 1, "", "forward_backward_update"], [43, 2, 1, "", "loss_function"], [43, 2, 1, "", "model"], [43, 2, 1, "", "optimizer"], [43, 2, 1, "", "process"], [43, 2, 1, "", "train_dataloaders"], [43, 2, 1, "", "training_step"]], "dicee.trainer.torch_trainer_ddp": [[44, 1, 1, "", "NodeTrainer"], [44, 1, 1, "", "TorchDDPTrainer"], [44, 6, 1, "", "make_iterable_verbose"]], "dicee.trainer.torch_trainer_ddp.NodeTrainer": [[44, 2, 1, "", "callbacks"], [44, 2, 1, "", "ctx"], [44, 3, 1, "", "extract_input_outputs"], [44, 2, 1, "", "global_rank"], [44, 2, 1, "", "local_rank"], [44, 2, 1, "", "loss_func"], [44, 2, 1, "", "loss_history"], [44, 2, 1, "", "model"], [44, 2, 1, "", "num_epochs"], [44, 2, 1, "", "optimizer"], [44, 2, 1, "", "scaler"], [44, 3, 1, "", "train"], [44, 2, 1, "", "train_dataset_loader"], [44, 2, 1, "", "trainer"]], "dicee.trainer.torch_trainer_ddp.TorchDDPTrainer": [[44, 3, 1, "", "fit"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "method", "Python method"], "4": ["py", "data", "Python data"], "5": ["py", "property", "Python property"], "6": ["py", "function", "Python function"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:attribute", "3": "py:method", "4": "py:data", "5": "py:property", "6": "py:function"}, "terms": {"": [0, 3, 5, 6, 7, 11, 14, 19, 35], "0": [0, 1, 3, 5, 6, 7, 11, 13, 18, 19, 20, 21, 22, 23, 25, 26, 31, 37, 44, 49, 50], "000000": 1, "001": [11, 13], "02": [0, 49], "023": 50, "047391": 1, "06": 1, "065": 0, "07": [0, 49], "09090": [11, 19, 23], "1": [0, 1, 6, 7, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 26, 31, 40, 41, 44, 49, 50], "10": [1, 6, 11, 13, 49, 50], "100": 49, "100000": 50, "1000000": [11, 26], "1002": 49, "1006": 49, "101": 49, "1019": 49, "102": 49, "1023": 1, "1024": [6, 25, 49], "1029": 49, "103": 49, "1032": 49, "1037": 49, "104": 49, "1042": 49, "1047": 49, "105": 49, "1051": 49, "1053": 49, "1055": 49, "106": 49, "1063": 1, "1064": 49, "1065": 49, "107": 49, "108": 49, "1084": 49, "109": 49, "1090": 1, "1093": 1, "1095": 49, "11": 49, "110": 49, "1102": 49, "1107": [1, 49], "111": 49, "112": 49, "113": 49, "1135": 49, "1139": 49, "114": 49, "1145": 49, "1149": 49, "115": 49, "116": 49, "1167": 49, "117": 49, "1176": 49, "1177": 49, "118": 49, "1186": 49, "1190": 1, "1194": 49, "12": [1, 25, 49], "120": 49, "1200": 49, "121": 49, "121181249": 0, "1212": 49, "1214": 49, "122": 49, "1227": 49, "123": 49, "1232": 49, "1234": 49, "125": 49, "1250": 49, "1252": 49, "126": 49, "1265": 49, "127": [0, 49], "128": 49, "13": 49, "131": 49, "133": 49, "133871": 1, "134": 49, "136": 49, "137": 49, "138": 49, "139": 49, "139366172": 0, "13946": 0, "13954": 0, "13th": 49, "14": 49, "140": 49, "141": 49, "1412": [11, 19, 23], "142": 49, "143": 49, "146": 49, "147": 49, "148": 49, "149": [0, 49], "149152137": 0, "15": 49, "150": 6, "151": 49, "152": 49, "155": 49, "156": 49, "157": 49, "1571": 1, "159": 49, "15th": 49, "16": [1, 11, 14, 15, 19, 49, 50], "161": 49, "1627": 1, "163": 49, "164": 49, "165": 49, "1653": 1, "1656": 1, "16657": [11, 17, 19], "1666": 1, "167": 49, "168": 49, "16850": [11, 17, 19], "17": 49, "170": 49, "172": 49, "1746": 1, "177": 49, "179": 49, "18": [1, 49], "180": 49, "182": 49, "184": 49, "185": 49, "186": 49, "187": 49, "188": 49, "189": 49, "19": 49, "190": 49, "192": 49, "193": 49, "194": 49, "195": 49, "196": 49, "197": 49, "198": 49, "199": 49, "1999": [0, 49], "1cecc7a77928ca8133fa24680a88d2f9": [11, 19, 23], "1p": 49, "1vsall": [7, 11, 49, 50], "2": [0, 1, 7, 10, 11, 13, 14, 15, 18, 19, 21, 22, 25, 31, 39, 40, 41, 49], "20": [11, 14, 15, 16, 19, 20, 22, 25, 49], "200": 49, "2002": [0, 49], "2004": 0, "200679": 1, "201": 49, "2013": [11, 19, 23], "2021": 49, "2022": [1, 49], "2023": 49, "20247486": 0, "203": 49, "204": 49, "205": 49, "206": 49, "20640": 1, "207": 49, "208": 49, "209": 49, "21": 49, "210": 49, "2101": [11, 19, 23], "211732": 1, "212": 49, "213": 49, "214": 49, "215": 49, "217": 49, "219": 49, "219531": 1, "22": [0, 1, 49], "220": 49, "221": 49, "223": 49, "224": 49, "226": 49, "226317": 1, "227": 49, "228": 49, "229": 49, "23": 49, "230": 49, "230564": 1, "234": 49, "235": 49, "236": 49, "237": [49, 50], "24": 49, "240": 49, "241": 49, "243": 49, "243103258": 0, "245": 49, "246": 49, "248": 49, "249": 49, "25": [1, 49], "250": [18, 19, 49], "251": 49, "252": 49, "254": 49, "256": 49, "257": 49, "258": 49, "259": 49, "260": 49, "262": 49, "263": 49, "265": 49, "266": 49, "267": 49, "268": 49, "269": 49, "27": [1, 49], "271": 49, "272": 49, "274": 49, "275": 49, "276": 49, "279": 49, "28": [7, 11, 49], "280": 49, "282": 49, "2828": 49, "286": 49, "287": 49, "287544": 1, "288": 49, "289": 49, "290": 49, "291": 49, "292": 49, "294": 49, "295": 49, "296": 49, "297": 49, "299": 49, "2p": [11, 13, 49], "3": [1, 6, 7, 10, 11, 14, 15, 18, 19, 21, 31, 37, 40, 41, 49], "30": 49, "301": 49, "302": 49, "303": 49, "3030": 49, "304": 49, "305": 49, "307": 49, "309": 49, "31": 49, "310": 49, "311": 49, "314": 49, "315": 49, "316": 49, "317": 49, "319": 49, "32": [1, 6, 11, 13, 49], "320": 49, "324": 49, "325": 49, "327": 49, "328": 49, "329": 49, "33": 49, "330": 49, "332": 49, "333": 49, "334": 49, "335": 49, "336": 49, "338": 49, "33rd": 49, "34": 49, "340": 49, "342": 49, "34356092": 0, "344": 49, "345": 49, "346": 49, "348": 49, "351": 49, "352": [0, 49], "353": 49, "354": 49, "355": 49, "356": 49, "357": 49, "358": 49, "36": 49, "360": 49, "362": 49, "363": 49, "364": 49, "366": 49, "367": 49, "368": 49, "368515": 1, "37": 49, "370": 49, "372": 49, "374": 49, "375": 49, "376": [0, 49], "38": 49, "381": 49, "384": 49, "386": 49, "387": 49, "388": 49, "389": 49, "39": 49, "390": 49, "392": 49, "393": 49, "398": 49, "399": 49, "3p": 49, "4": [1, 7, 10, 11, 19, 21, 23, 31, 49, 50], "40": [1, 49], "402": 0, "404": 49, "405": 49, "406": 49, "41": 49, "410": 49, "411": 49, "413": 49, "414": 49, "416": 49, "417": 49, "418": 49, "419": 49, "42": 49, "420": 49, "424": 49, "426": 49, "427": 49, "428": 49, "429": 49, "43": 49, "433": 49, "438": 49, "439": 49, "44": 49, "443": 49, "444": 49, "446": 49, "45": 49, "450": 49, "453": 49, "455": 49, "46": 49, "46062877": 0, "461": 49, "46107647": 0, "463": 0, "465": 49, "467": 49, "468": 49, "47": [1, 49], "470": 49, "472": 49, "474": [0, 49], "478": 49, "479": 49, "480": 49, "482": 49, "4829831": 49, "483": 49, "484": 49, "486": 49, "487": 49, "49": 49, "491": 49, "492": 49, "495": 49, "495965": 1, "498": 49, "499": 49, "4tfqax": 49, "5": [1, 7, 11, 14, 15, 16, 19, 20, 22, 25, 31, 49, 50], "50": [1, 18, 19, 49], "500": 49, "501": 49, "50121317": 0, "502": 49, "503": 49, "50304": 25, "5051694": 49, "508": 49, "509": 49, "51": [1, 49], "511": 49, "512": 49, "514": 49, "517": 49, "519": 49, "52": 49, "522": 49, "524": 49, "525": [0, 49], "526": 49, "527": 49, "528": 49, "53": 49, "533": 49, "536": 49, "538": 49, "539": 49, "54": 49, "542": 49, "543": 49, "54475293": 0, "547": 49, "549": 0, "55": 49, "550": 49, "555": 49, "556": 49, "557": 49, "559": [0, 49], "56": 49, "567": 49, "57": 49, "571": 49, "575": 49, "58": 49, "581": [0, 49], "582": 49, "585": 49, "586": 0, "589": 49, "59": 49, "591": [0, 49], "592": 49, "597": 0, "598": 49, "6": [1, 7, 11, 14, 19], "60": 49, "6010134": 49, "601478": 1, "607": 49, "60755075": 0, "61": 49, "610": 49, "614693": 1, "615": 49, "617": 49, "6181": 49, "62": 49, "625": 49, "627": 49, "63": 49, "630": 49, "631": 49, "631540": 1, "633": 49, "6333": [11, 13, 49], "6334": 49, "634447": 1, "636": 49, "64": [6, 49, 50], "644": 49, "647": 49, "65": 49, "652": 49, "656": 49, "657": 49, "6575": [11, 19, 23], "658": 49, "66": 49, "661": 49, "669": 49, "67": 49, "671": 49, "67126536": 49, "68": 49, "686": 49, "688": 49, "69": 49, "692": 49, "6932515337423313": 49, "6951588502269289": 49, "6t45": 49, "7": [7, 11, 49, 50], "70": 49, "700": 49, "704755": 1, "705": 49, "707": 49, "708": 49, "710": 49, "713": 49, "714": 49, "716": 0, "718": 49, "72": 49, "728": 49, "73": 49, "735188046": 0, "737": 49, "738": 0, "74": 49, "75": [1, 49], "753": 49, "754": 49, "76": 49, "768": [25, 50], "77": 49, "774": 49, "775281": 1, "78": 49, "79": 49, "799873202": 0, "8": [1, 7, 11, 19, 20, 22, 49, 50], "80": 49, "8000": 49, "8064032293278861": 49, "806948": 1, "8072362996241839": 49, "8072499937521418": 49, "809817": 1, "81": 49, "8155": 49, "82": 49, "823181": 1, "83": 49, "84": 49, "845": 49, "847": 0, "85": 49, "856": 49, "859": 49, "86": 49, "866": 1, "87": 49, "877": 0, "879": 1, "88": 49, "883685": 1, "884": 49, "88831385": 0, "89": 49, "895093": 1, "896": 1, "896592": 1, "898": 1, "9": [1, 7, 11, 49], "90": 49, "9039334341906202": 49, "9041411042944786": 49, "909": 49, "91": 49, "915": 1, "92": 49, "929": 1, "93": 49, "933": 49, "95": 49, "9518788343558282": 49, "96": 49, "966": 49, "97": 49, "9750378214826021": 49, "9753123402351737": 49, "9754601226993865": 49, "98": 49, "988": 0, "99": 49, "991": 0, "9912": 49, "9988496932515337": 49, "A": [3, 5, 6, 7, 9, 10, 11, 13, 14, 19, 21, 23, 25, 31, 44, 49, 50], "As": [11, 14, 15, 16, 19, 20, 22, 25], "At": [7, 11], "But": [14, 19], "For": [7, 11, 14, 15, 19, 25, 40, 41, 49, 50], "IFS": 0, "If": [11, 13, 14, 19, 49, 50], "In": [5, 7, 11, 14, 19, 25, 49], "It": [14, 19], "NOT": [7, 11], "Not": 6, "Of": [11, 37], "The": [5, 6, 7, 11, 13, 14, 19, 22, 25, 31, 49], "Then": [11, 15, 19], "There": [7, 11, 14, 19], "To": [7, 11, 14, 19, 25, 49, 50], "With": 49, "_": 49, "__call__": [14, 19, 40], "__getattr__": 40, "__getitem__": [7, 11], "__getitems__": [7, 11], "__init__": [7, 11, 14, 15, 16, 19, 20, 22, 25, 49], "__iter__": [6, 12, 40], "__len__": [7, 11, 12, 40], "__main__": 11, "__str__": [11, 13, 40], "__version__": 11, "_i": [7, 11], "a0": [11, 15, 19], "a100": 25, "a_i": [11, 18, 19], "a_k": [11, 18, 19], "aaai": [11, 17, 19], "ab": [11, 19, 23], "abc": 3, "about": [6, 7, 10, 11, 14, 19], "abov": [7, 11, 14, 15, 16, 19, 20, 22, 25], "absolut": [11, 19, 22], "abstract": [5, 7, 11, 13, 19, 21, 26, 42, 43, 44, 49], "abstractcallback": [3, 5], "abstractppecallback": 3, "abstracttrain": [3, 42, 43, 44], "accept": [0, 7, 11, 49], "access": [11, 14, 19, 37], "accord": [11, 15, 19], "accordingli": 5, "accumul": [11, 37], "accumulate_grad_batch": [11, 14, 19, 25], "accumulateepochlosscallback": 5, "accuraci": 1, "achiev": [11, 26, 49], "achieve_answ": [11, 26], "acm": 49, "aconex": [11, 16, 19, 49], "aconvo": [11, 19, 20], "aconvq": [11, 19, 22], "acquired_abnorm": 49, "activ": [1, 49], "actual": 25, "ad": [6, 9], "adam": [6, 49], "adapt": [5, 6], "adaptive_swa": [6, 49], "add": [7, 11, 14, 19, 27, 28, 31, 37, 50], "add_new_entity_embed": 3, "add_noise_r": [6, 11, 12, 37], "add_noisy_tripl": [11, 37], "add_noisy_triples_into_train": [27, 29], "add_recipr": 31, "add_reciproc": 12, "addit": [6, 11, 14, 16, 19, 20, 22, 25], "adjust": [7, 11], "adress": 0, "advanc": 50, "affiliatedclub": 0, "after": [9, 11, 13, 14, 19], "again": [10, 11], "aggregated_query_for_all_ent": [11, 13], "agnost": [45, 49], "alga": 49, "algebra": 49, "alic": 31, "all": [6, 7, 10, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 25, 49, 50], "all_bpe_shaped_ent": 38, "all_ent": [11, 19, 21], "allow": [11, 14, 15, 16, 18, 19, 20, 22, 25, 37, 49, 50], "allvsal": [7, 11, 49], "along": [11, 15, 19], "alpha": [3, 5], "alreadi": [11, 40, 41], "also": [7, 11, 14, 15, 16, 18, 19, 20, 22, 25, 49], "an": [0, 1, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 19, 20, 22, 25, 37, 44, 45], "analys": 4, "analyse_experi": 11, "anatomical_abnorm": 49, "ani": [7, 11, 14, 19, 25, 49, 50], "answer": [11, 13, 26, 37, 45], "answer_multi_hop_queri": [11, 13, 49], "anyth": [7, 11], "ap": [11, 15, 19], "apart": 49, "api": 49, "app": 36, "append": [11, 14, 15, 19], "appli": [6, 7, 11, 19, 21, 22, 49], "applic": 49, "apply_coeffici": [11, 15, 19], "apply_reciprical_or_nois": 31, "apply_semantic_constraint": 3, "apply_to_collect": [7, 11], "apply_unit_norm": [11, 14, 19], "approach": [49, 50], "approv": 49, "aq": [11, 15, 19], "ar": [0, 5, 6, 7, 9, 11, 14, 15, 19, 25, 31, 39, 49, 50], "arbitrari": [7, 11, 14, 19], "arg": [3, 4, 5, 7, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 32, 36, 37, 39, 40, 41, 42, 43, 44, 49], "argmax_": [11, 13], "argpars": 6, "argument": [6, 7, 9, 11, 35, 37, 39, 40, 41, 43, 44], "arrai": [7, 11], "art": 49, "articl": [11, 17, 19, 49], "arxiv": [11, 19, 23], "as_list": [11, 13], "as_numpi": [11, 13], "as_pytorch": [11, 13], "ascending_ord": [11, 37], "asian": 49, "assert": [11, 15, 19, 49], "assign": [7, 11, 14, 15, 16, 19, 20, 22, 25], "associ": [14, 19], "asw": 5, "aswa": [4, 5], "async": 36, "at_most": [11, 13], "attn": 25, "attn_dropout": 25, "attribut": [3, 6, 9, 14, 15, 16, 19, 20, 22, 25, 27, 29, 45], "author": 49, "automat": [6, 11, 14, 19, 25], "automatic_optim": [11, 14, 19, 25], "automaticali": 49, "avail": [6, 14, 19, 27, 29, 49], "available_gpu": 43, "averag": [5, 6, 11, 40, 41], "axel": 49, "b": [5, 11, 14, 15, 18, 19, 22, 25], "b_i": [11, 18, 19], "b_j": [11, 18, 19], "b_k": [11, 18, 19], "back": [11, 25], "backend": [6, 12, 31, 49], "backward": [14, 19, 43], "bad": [7, 11], "balasubramanian": 49, "bar": [11, 14, 19, 25], "base": [3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 39, 42, 43, 44, 50], "base_model": [11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 37, 40, 41, 49], "base_url": [11, 37], "baseinteractivekg": [3, 11, 13], "basekg": [11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 37, 40, 41], "basekgelightn": [11, 14, 19], "batch": [3, 5, 6, 7, 11, 14, 15, 18, 19, 20, 22, 25, 43], "batch_dim": [11, 19, 22], "batch_idx": [5, 11, 14, 19, 25], "batch_kronecker_product": 5, "batch_shaped_bpe_tripl": [7, 11], "batch_siz": [4, 5, 6, 7, 8, 11, 13, 15, 18, 19, 49, 50], "batchnorm1d": 6, "becom": 49, "been": [7, 11, 19, 22], "befor": [3, 7, 11, 14, 15, 16, 19, 20, 22, 25], "begin": [3, 5, 7, 11], "being": 6, "belong": [7, 11], "below": [7, 11, 14, 19], "benchmark": [49, 50], "benchmark_rich_background": 49, "beta": 25, "between": [6, 11, 14, 15, 18, 19, 31], "bfloat16": 25, "bh": [11, 18, 19], "bi": [11, 19, 22], "bia": 25, "billion": 49, "binari": [7, 11], "bit": [14, 19], "blob": 25, "block": [6, 25], "block_siz": [6, 7, 11, 14, 19, 25], "bn": [11, 19, 21], "bn_conv1": [11, 19, 22], "bn_conv2": [11, 19, 22], "bn_conv2d": [11, 16, 19, 20], "bob": 31, "boilerpl": 49, "booktitl": 49, "bool": [3, 6, 11, 12, 13, 14, 15, 16, 19, 20, 22, 25, 26, 31, 37, 40, 41], "boolean": [3, 11, 14, 15, 16, 19, 20, 22, 25], "both": [7, 11], "box": [7, 11], "bpe": 3, "bpe_head_ent_emb": [11, 15, 19, 20, 22], "bpe_negativesamplingdataset": [7, 11], "bpe_rel_ent_emb": [11, 15, 19, 20, 22], "br": [11, 18, 19], "broadcast": 5, "broader": 0, "brother": 49, "bt": [11, 18, 19], "build": [7, 11, 49], "build_chain_func": [18, 19], "build_func": [18, 19], "byte": [6, 11, 14, 19, 25], "byte_pair_encod": [4, 6, 7, 11, 12, 14, 19], "bz2": 50, "bzip2": 0, "c": [1, 11, 18, 19, 21, 22], "c10d": 49, "c_1": [11, 16, 19], "c_2": [11, 16, 19], "c_attn": 25, "c_fc": 25, "c_j": [11, 18, 19], "c_k": [11, 18, 19], "c_proj": 25, "cach": [14, 19], "caglar": 49, "calcul": [11, 14, 19, 25], "california_wo_label": 1, "call": [3, 5, 7, 11, 14, 15, 16, 19, 20, 21, 22, 25, 49], "callabl": 8, "callback": [3, 4, 6, 11, 14, 19, 40, 41, 42, 43, 44, 49], "can": [5, 7, 10, 11, 14, 15, 16, 19, 20, 21, 22, 25, 49, 50], "captur": [11, 15, 19], "carcinogenesi": 50, "case": [11, 14, 19, 25], "causalselfattent": 25, "cc": [11, 19, 23], "cd": [0, 11, 37, 49], "cdot": [11, 15, 19], "certif": 49, "chain_func": [18, 19], "challeng": 49, "charli": 31, "check": [7, 11, 39, 49, 50], "child": [11, 14, 15, 16, 19, 20, 22, 25], "choic": 6, "choos": [14, 19, 49], "chose": 49, "cite": 45, "cj": [11, 19, 22], "cl": [11, 15, 19, 37], "cl_": [11, 15, 19], "cl_pqr": [11, 15, 19], "class": [37, 45, 49], "classif": [7, 11], "classmethod": 25, "clear": [14, 19], "clifford": [6, 19, 49], "clifford_multipl": [11, 15, 19], "clone": [1, 49], "closur": [14, 19], "cluster": 49, "co": 49, "code": [11, 26, 49], "coeff": [11, 18, 19], "coeff_h": [11, 18, 19], "coeff_r": [11, 18, 19], "coeff_t": [11, 18, 19], "coeffici": [11, 15, 18, 19], "coefh": [11, 18, 19], "coefr": [11, 18, 19], "coeft": [11, 18, 19], "collact_fn": [7, 11], "collat": [7, 11], "collate_fn": [7, 11], "collect": [0, 7, 11, 14, 19, 26], "collect_fn": [7, 11], "collection_loc": 49, "collection_nam": [11, 13, 36, 49], "column": [1, 27, 28, 31], "com": [0, 1, 25, 49], "combin": [11, 18, 19, 49, 50], "command": [0, 49], "common": [11, 40, 41], "comp_func": [11, 18, 19], "complet": [11, 19, 20, 22, 25], "complex": [11, 18, 19, 45, 50], "compon": [5, 11, 15, 19], "composit": [11, 18, 19], "compress": 50, "comput": [0, 11, 13, 14, 15, 16, 18, 19, 20, 21, 22, 25, 38, 40, 41, 43, 49], "compute_converg": 5, "compute_func": [18, 19], "compute_mrr": 5, "compute_sigma_pp": [11, 15, 19], "compute_sigma_pq": [11, 15, 19], "compute_sigma_pr": [11, 15, 19], "compute_sigma_qq": [11, 15, 19], "compute_sigma_qr": [11, 15, 19], "compute_sigma_rr": [11, 15, 19], "compute_sigmas_multivect": [11, 15, 19], "compute_sigmas_singl": [11, 15, 19], "concaten": [7, 11], "conda": [1, 49], "condit": [11, 14, 19, 25, 27, 28], "conex": [11, 16, 19, 49, 50], "confer": [49, 50], "confid": [11, 13], "config": [3, 11, 25, 49], "configur": [11, 14, 19, 40, 41], "configure_optim": [14, 19, 25], "conform": 50, "consid": [11, 18, 19], "consist": [7, 11], "constraint": [11, 19, 22, 31, 39], "construct": [3, 7, 11, 15, 18, 19, 26, 27, 28, 37, 43], "construct_batch_selected_cl_multivector": [11, 15, 19], "construct_cl_multivector": [11, 15, 19], "construct_dataset": [7, 11], "construct_ensembl": [3, 11, 13], "construct_graph": [11, 26], "construct_input_and_output": 3, "construct_multi_coeff": [11, 18, 19], "contact": [49, 50], "contain": [3, 6, 7, 10, 11, 14, 15, 16, 19, 20, 22, 25, 31, 50], "context": 5, "continu": [6, 10, 49], "continual_learn": 6, "continual_start": [10, 11, 40, 41], "continual_training_setup_executor": [11, 37], "continuous_train": [10, 11], "continuousexecut": 10, "control": [11, 14, 19, 25], "conv1": [11, 14, 15, 16, 19, 20, 22, 25], "conv2": [11, 14, 15, 16, 19, 20, 22, 25], "conv2d": [11, 14, 15, 16, 19, 20, 22, 25], "converg": 5, "convert": [7, 11, 14, 15, 16, 19, 20, 22, 25, 26], "convo": [11, 19, 20, 49, 50], "convolut": [6, 11, 16, 19, 20, 22, 49, 50], "convq": [11, 19, 22, 49, 50], "core": [0, 11, 37], "correct": [7, 11, 14, 19], "correspond": [3, 6, 11, 13, 14, 16, 19, 31], "corrupt": [7, 11], "could": [7, 11, 14, 19], "count": [1, 25], "countri": 49, "countryembed": 49, "cover": 49, "coverag": 45, "cpu": [6, 7, 10, 11, 40, 41, 43, 49, 50], "creat": [1, 6, 7, 10, 11, 26, 37, 39, 45, 50], "create_constraint": [31, 39], "create_experiment_fold": [11, 37], "create_random_data": 5, "create_recipriocal_tripl": [11, 31, 37], "create_toy_data": 1, "create_vector_databas": [11, 13], "credal": 50, "crete": 31, "crop_block_s": 25, "cross": [7, 11, 40, 41, 50], "csv": [0, 1, 6, 11, 37], "ctx": 44, "cuda_visible_devic": 49, "curl": [0, 49], "current": [7, 10, 11, 49], "custom": [7, 11, 14, 19], "custombatch": [7, 11], "cv": 6, "cvdatamodul": [7, 11], "cyril": 49, "d": [7, 11, 13, 14, 15, 18, 19, 22, 25, 49], "daikiri_storag": 50, "dask": [0, 11, 31, 37, 50], "data": [0, 3, 6, 7, 10, 11, 14, 19, 23, 25, 26, 27, 28, 29, 31, 37, 39, 40, 41, 44, 46, 49], "data_modul": 5, "data_path": 31, "data_split": [7, 11], "databas": 45, "databu": 0, "datafram": [0, 11, 27, 28, 31, 37], "dataload": [7, 11, 14, 19, 25, 40, 41, 44], "dataloader_idx": [7, 11, 14, 19, 25], "dataset": [6, 7, 9, 11, 13, 14, 19, 27, 28, 40, 41, 44, 49, 50], "dataset_class": [11, 49], "dataset_dir": [6, 12, 49], "dataset_sanity_check": 31, "dave": 31, "dbpedia": 49, "dbpedia_03_2022": 0, "dbpedia_only_03_2022": [0, 50], "dc": 0, "ddf": 0, "ddp": [7, 11, 40, 41, 44, 49, 50], "ddp_fully_shard": 50, "de": 49, "decai": 6, "decal": [11, 15, 19], "decid": 5, "decod": [11, 14, 19, 25], "decomposit": [49, 50], "decreas": 50, "deepspe": [11, 14, 19, 25, 49], "def": [7, 11, 14, 15, 16, 19, 20, 22, 25], "default": [7, 11, 14, 19, 25, 38, 44, 49], "defaultdict": [11, 26], "defin": [7, 11], "definit": 25, "degre": [11, 18, 19], "delim_whitespac": 0, "demir": 49, "demir2021convolut": 49, "demir2021shallow": 49, "demir2022hardwar": 49, "demir2022kroneck": 49, "demir2023clifford": 49, "demir2023litcqd": 49, "demir21a": 49, "denomin": [11, 18, 19], "denot": [5, 7, 11, 13, 15, 19], "depend": [1, 11, 26], "deploi": [11, 13, 45], "deploy": 49, "deploy_head_entity_predict": [11, 37], "deploy_relation_predict": [11, 37], "deploy_tail_entity_predict": [11, 37], "deploy_triple_predict": [11, 37], "dept_read_preprocess_index_serialize_data": [10, 11], "desc": [38, 44], "descen": [11, 13], "describ": [12, 49], "descript": 35, "description_of_input": 12, "deseri": 31, "destination_fold": [11, 37], "detect": [11, 37, 49], "dev_typ": 0, "develop": 49, "deviat": 50, "devic": [7, 11, 13, 43], "device_typ": 25, "df": [0, 1, 31], "df_panda": 31, "df_polar": 31, "dfrac": [11, 18, 19], "diagon": [11, 15, 19], "dice": 1, "dice_train": [11, 41, 49], "diceeindex": 49, "diceembed": [11, 37, 49], "diceeserv": 49, "dict": [3, 7, 8, 10, 11, 14, 19, 20, 21, 25, 26, 31, 37, 38, 39, 40, 41], "dictionari": [11, 14, 19, 25, 43], "dictonari": [7, 11], "did": 0, "diego": 49, "differ": [7, 11, 15, 18, 19, 37], "dim": [11, 15, 19, 22], "dim128": [11, 37, 49], "dimens": [5, 11, 15, 19], "directli": 49, "directori": [6, 49], "discoveri": 49, "discrete_point": [18, 19], "disjunct": [11, 13], "disk": [3, 7, 10, 11, 26, 27, 29, 37], "dist_func": [11, 19, 23], "distanc": [11, 13], "distmult": [11, 19, 23, 49, 50], "distribut": [7, 11, 14, 19, 49], "distributed_backend": 50, "distributeddataparallel": [11, 40, 41, 44], "divisor": [11, 15, 19], "dk": [11, 19, 22], "do": [0, 7, 11, 14, 19, 25], "doc": [7, 11, 40, 41], "docker": 45, "document": [11, 26], "doe": 50, "doesn": 25, "domain": [31, 39], "don": [7, 11, 14, 19], "done": [0, 11, 13], "download": [7, 11, 14, 17, 19, 45], "download_data": [7, 11], "download_fil": [11, 37], "download_files_from_url": [11, 37], "download_pretrained_model": [11, 37], "downstream": 9, "drawn": [7, 11], "drive": 44, "drop": 1, "dropout": [6, 11, 19, 21, 25], "dt": 25, "dtype": [0, 1], "dual": [11, 19, 49], "due": 25, "dummi": 49, "dummy_ev": 9, "dummy_id": 12, "dummyfold": 50, "dure": [3, 5, 6, 10], "during_train": 9, "dx": [11, 18, 19], "dynam": [7, 11], "e": [1, 6, 7, 11, 13, 14, 15, 18, 19, 20, 22, 25, 27, 28, 37, 49, 50], "e1e1": [11, 15, 19], "e1e2": [11, 15, 19], "e1e3": [11, 15, 19], "e2e1": [11, 15, 19], "e2e2": [11, 15, 19], "e2e3": [11, 15, 19], "e3e1": [11, 15, 19], "e3e2": [11, 15, 19], "e3e3": [11, 15, 19], "e_1": [11, 15, 19], "e_1_h": [11, 17, 19], "e_1_t": [11, 17, 19], "e_2": [11, 15, 19], "e_2_h": [11, 17, 19], "e_2_t": [11, 17, 19], "e_3": [11, 15, 19], "e_3_h": [11, 17, 19], "e_3_t": [11, 17, 19], "e_4_h": [11, 17, 19], "e_4_t": [11, 17, 19], "e_5_h": [11, 17, 19], "e_5_t": [11, 17, 19], "e_6_h": [11, 17, 19], "e_6_t": [11, 17, 19], "e_7_h": [11, 17, 19], "e_7_t": [11, 17, 19], "e_8_h": [11, 17, 19], "e_8_t": [11, 17, 19], "e_i": [7, 11, 15, 19], "e_j": [11, 15, 19], "e_k": [11, 15, 19], "each": [3, 5, 7, 11, 13, 15, 18, 19, 25, 26, 38, 40, 41, 50], "eas": 49, "easi": [6, 11, 37], "easili": 49, "easy_answ": [11, 37], "edg": [11, 26], "editor": 49, "ee_vocab": 9, "effect": 49, "effici": [11, 37], "efficient_zero_grad": 38, "effort": 49, "ei": [11, 15, 19], "eighteenth": 49, "either": [7, 11, 13, 50], "ej": [11, 15, 19], "eje1": [11, 15, 19], "element": [5, 11, 18, 19], "elif": [7, 11], "ellipsi": [11, 13], "els": [7, 11, 19, 21], "elsevi": 49, "emb_": [11, 16, 19, 23], "emb_dim": [11, 15, 19], "emb_h": [11, 16, 19, 23], "emb_r": [11, 16, 19, 23], "emb_rel_e0": [11, 19, 20], "emb_rel_e1": [11, 19, 20], "emb_rel_e2": [11, 19, 20], "emb_rel_e3": [11, 19, 20], "emb_rel_e4": [11, 19, 20], "emb_rel_e5": [11, 19, 20], "emb_rel_e6": [11, 19, 20], "emb_rel_e7": [11, 19, 20], "embed": [3, 5, 6, 7, 10, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 37, 42, 43, 50], "embedding_dim": [1, 4, 6, 11, 14, 19, 21, 49, 50], "empti": 43, "en": [0, 11, 40, 41, 50], "enable_log": 39, "enc": 12, "encod": [6, 11, 14, 19, 25], "end": [3, 5, 10, 11, 14, 19], "endpoint": [6, 31, 49], "enforc": [14, 19], "engin": 0, "enorm": 44, "ensembl": [5, 11, 37], "ensemble_state_dict": 5, "ensemblekg": 40, "ensur": [1, 7, 11, 49], "ent2id": [11, 26], "ent_in": [11, 26], "ent_out": [11, 26], "entiti": [3, 5, 6, 7, 11, 13, 15, 18, 19, 20, 21, 22, 23, 31, 36, 38, 39, 49], "entities_str": 12, "entity_embed": [11, 15, 17, 18, 19, 21, 22], "entity_idx": [7, 11, 44], "entity_nam": 3, "entity_to_idx": [7, 11, 12, 37], "environ": [1, 7, 11], "ep": 5, "epfo": [11, 13], "epoch": [3, 5, 11, 13, 14, 19, 50], "epoch256": [11, 37, 49], "epoch_count": [3, 5], "epoch_mean": [14, 19], "epoch_ratio": 5, "epoch_to_start": 3, "eq": [11, 15, 19], "equal": 6, "equival": 49, "er_vocab": [8, 9, 38], "error": [0, 1], "esp": 5, "estim": [5, 25], "estimate_mfu": 25, "estimate_q": 5, "etc": [7, 11, 14, 15, 16, 19, 20, 22, 25, 50], "europ": 49, "european": 49, "ev": 31, "eval": [3, 5, 9, 10, 11, 25, 38], "eval_lp_perform": [11, 13], "eval_model": [6, 12, 31, 49], "eval_rank_of_head_and_tail_byte_pair_encoded_ent": 9, "eval_rank_of_head_and_tail_ent": 9, "eval_static_func": [11, 49], "eval_with_bpe_vs_al": 9, "eval_with_byt": 9, "eval_with_data": 9, "eval_with_vs_al": 9, "evalu": [6, 10, 11, 14, 15, 16, 18, 19, 20, 22, 25, 37, 38, 40, 41, 49, 50], "evaluate_bpe_lp": 38, "evaluate_link_prediction_perform": 8, "evaluate_link_prediction_performance_with_bp": 8, "evaluate_link_prediction_performance_with_bpe_reciproc": 8, "evaluate_link_prediction_performance_with_reciproc": 8, "evaluate_lp": [9, 38], "evaluate_lp_bpe_k_vs_al": [8, 9], "evaluate_lp_k_vs_al": 9, "evaluate_lp_with_byt": 9, "everi": [7, 11, 14, 18, 19], "every_x_epoch": 5, "exampl": [1, 7, 11, 14, 15, 16, 19, 20, 22, 25, 49], "except": 25, "execut": [0, 6, 7, 11, 49, 50], "executor": [9, 11, 37], "exist": [7, 11, 12, 49, 50], "expect": [7, 11], "experi": [1, 4, 6, 11, 37], "experimental_model_of_diseas": 49, "explicit": [11, 19, 21, 22], "exponential_funct": [11, 37], "extend": [7, 11, 35, 49], "extra": 49, "extract": [6, 31, 39], "extract_input_output": [42, 44], "extract_input_outputs_set_devic": 43, "f": [0, 5, 11, 13, 14, 15, 16, 18, 19, 20, 22, 25, 46], "f9f141": 49, "f9f158": 49, "f9m142": 49, "f9m157": 49, "f9m167": 49, "face": 49, "facilit": [6, 49], "factor": [7, 11], "fail": 49, "failur": 49, "fairscal": 49, "fals": [0, 3, 6, 7, 9, 10, 11, 12, 13, 14, 15, 19, 25, 26, 37, 39], "famili": [49, 50], "fancier": [11, 14, 19, 25], "fashion": 49, "father": 49, "favorit": 50, "fb15k": 50, "fc1": [11, 16, 19, 20, 22], "fc_num_input": [11, 16, 19, 20, 22], "featur": 6, "feature_map_dropout": [11, 16, 19, 20, 22], "feature_map_dropout_r": [6, 11, 14, 19], "feed": [11, 25, 50], "feel": 49, "fetch": [1, 7, 11], "few": 6, "ff": 49, "file": [6, 7, 10, 11, 19, 23, 25, 37, 49, 50], "file_path": [11, 31, 37, 40], "fill_queri": [11, 26], "filter": [9, 11, 13, 38], "final": [25, 31], "find": [11, 13], "find_missing_tripl": [11, 13], "finder": 6, "first": [6, 7, 11, 14, 18, 19, 49], "fit": [7, 11, 14, 19, 40, 41, 42, 43, 44], "flash": 25, "float": [5, 6, 7, 11, 12, 13, 25, 31, 37, 43], "float16": [7, 11], "float64": 1, "floattensor": [3, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 37], "flop": 25, "fmult": [18, 19], "fmult2": [18, 19], "fn_answer": [11, 26], "focus": 49, "fold": [6, 11, 40, 41, 50], "folder": [1, 6, 10, 49, 50], "folder_nam": [11, 37], "follow": [0, 7, 11, 14, 19, 49, 50], "footprint": [10, 11], "form": [7, 11, 44, 49], "form_of_label": [7, 9, 10, 11, 40, 41], "format": [0, 49], "formerteamm": 0, "forum": 49, "forward": [11, 14, 15, 16, 17, 19, 20, 22, 25, 43, 50], "forward_backward_upd": 43, "forward_byte_pair_encoded_k_vs_al": [11, 14, 19], "forward_byte_pair_encoded_tripl": [11, 14, 19], "forward_k_vs_al": [11, 14, 15, 16, 17, 19, 20, 21, 22, 23], "forward_k_vs_sampl": [11, 14, 15, 16, 19, 21, 22, 23], "forward_k_vs_with_explicit": [11, 15, 19], "forward_tripl": [11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], "found": [14, 19], "fp_answer": [11, 26], "framework": [1, 45, 49], "frank": 31, "free": [14, 19, 49], "frequenc": [5, 14, 19], "from": [0, 1, 5, 6, 7, 10, 11, 18, 19, 21, 26, 27, 29, 31, 37, 39, 40, 41, 43, 45], "from_pretrain": 25, "from_pretrained_model_write_embeddings_into_csv": [11, 37], "full": 25, "full_path": 3, "full_storage_path": [4, 11, 37], "fulldbpedia": 0, "fulli": [49, 50], "func": [11, 31, 37, 39], "func_triple_to_bpe_represent": [8, 9, 12], "funciton": [11, 15, 19], "function": [3, 9, 13, 14, 15, 16, 17, 18, 25, 45], "function_spac": [19, 49], "futur": 9, "fwdbwd_per_it": 25, "g": [0, 1, 6, 7, 11, 13, 14, 15, 19, 25, 27, 28, 37, 46, 49, 50], "gamma": [18, 19], "gan": [11, 14, 19, 25], "gelu": 25, "gen_num": [11, 26], "gen_test": [11, 26], "gen_valid": [11, 26], "gener": [1, 6, 7, 11, 13, 18, 19, 21, 25, 26, 40, 41, 49, 50], "generate_queri": [11, 26], "germani": 49, "get": [5, 11, 25, 26, 36, 49], "get_aswa_state_dict": 5, "get_bpe_head_and_relation_represent": [11, 14, 19], "get_bpe_token_represent": 3, "get_callback": 40, "get_default_argu": [4, 34, 35, 36], "get_ee_vocab": [11, 31, 37, 39], "get_embed": [11, 14, 19, 23], "get_ensembl": 42, "get_entity_embed": 3, "get_entity_index": 3, "get_er_vocab": [11, 31, 37, 39], "get_eval_report": 3, "get_head_relation_represent": [11, 14, 19, 21], "get_kronecker_triple_represent": 5, "get_num_param": 25, "get_padded_bpe_triple_represent": 3, "get_queri": [11, 26], "get_re_vocab": [11, 31, 37, 39], "get_relation_embed": 3, "get_relation_index": 3, "get_sentence_represent": [11, 14, 19], "get_transductive_entity_embed": [11, 13], "get_triple_represent": [11, 14, 19, 21], "gfmult": [18, 19], "gigant": 49, "git": [1, 49], "github": [1, 25, 49], "given": [3, 7, 11, 13, 19, 20, 21, 22, 37], "global_rank": [3, 7, 11, 44], "goal": 49, "gold": 0, "good": [7, 11], "gpt": 25, "gpt2": 25, "gptconfig": 25, "gpu": [6, 7, 11, 14, 19, 25, 40, 41, 43, 49, 50], "gradient": 44, "gradient_accumulation_step": 6, "gradio": 49, "grandfath": 49, "graph": [3, 5, 6, 7, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 32, 42, 43, 45], "great": [7, 11], "ground": [11, 26], "ground_queri": [11, 26], "group": [1, 49], "grow": 49, "gz": 50, "h": [0, 7, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 46, 49], "h0": [11, 15, 19], "h_": [11, 15, 19], "h_0": [11, 15, 19], "h_0r_0t_0": [11, 15, 19], "h_0r_it_i": [11, 15, 19], "h_i": [11, 15, 19], "h_ir_": [11, 15, 19], "h_ir_0t_i": [11, 15, 19], "h_ir_it_0": [11, 15, 19], "h_ir_j": [11, 15, 19], "h_ir_k": [11, 15, 19], "h_j": [11, 15, 19], "h_jr_": [11, 15, 19], "h_jr_i": [11, 15, 19], "h_jr_jt_0": [11, 15, 19], "h_jr_k": [11, 15, 19], "h_k": [11, 15, 19], "h_kr_": [11, 15, 19], "h_kr_i": [11, 15, 19], "h_kr_j": [11, 15, 19], "ha": [7, 11, 14, 19, 22, 25, 49], "handl": [14, 19], "happen": [14, 19], "hard": [5, 44], "hard_answ": [11, 37], "hardwar": [7, 11, 14, 19, 45, 49], "haschild": 49, "haspar": 49, "hassibl": 49, "have": [11, 14, 15, 16, 19, 20, 22, 25, 31, 49, 50], "head": [6, 7, 11, 13, 15, 19, 20, 21, 22, 38, 49], "head_ent": [3, 7, 11, 13], "head_ent_emb": [11, 16, 19, 20, 22, 23], "header": 0, "heindorf": 49, "henc": [7, 11, 15, 19], "here": [11, 14, 15, 19, 25], "hidden": 6, "hidden_dropout": [11, 14, 19], "hidden_dropout_r": [6, 11, 14, 19], "hidden_norm": [11, 14, 19], "highest": [11, 13], "hit": 49, "hk": [11, 15, 19], "hood": 49, "hook": [7, 11, 14, 19], "hop": [11, 13, 37, 49], "hor": [11, 18, 19], "hot": 46, "how": [7, 11, 14, 19, 45], "howev": [7, 11, 14, 19], "hp": [11, 15, 19], "hq": [11, 15, 19], "html": [7, 11, 40, 41, 49, 50], "http": [1, 7, 11, 17, 19, 23, 25, 37, 40, 41, 49, 50], "hug": 49, "huggingfac": [25, 49], "hypercomplex": 49, "hypernym": 0, "hypertext": 49, "i": [5, 6, 7, 10, 11, 13, 14, 15, 16, 18, 19, 20, 22, 25, 27, 28, 38, 49, 50], "icsc": 49, "id": [7, 11, 49], "id2ent": [11, 26], "id2rel": [11, 26], "ident": [11, 15, 19], "identityclass": [14, 19], "idx": [7, 11, 25], "idx_ent": 31, "idx_entity_to_bpe_shap": 12, "idx_hrt": [11, 14, 19], "idx_rel": 31, "idx_tripl": [11, 17, 18, 19], "ieee": 49, "im": [11, 13], "im_1": [11, 19, 22], "im_2": [11, 19, 22], "im_3": [11, 19, 22], "imag": 49, "imit": 0, "impact": 49, "implement": [6, 7, 11, 14, 15, 18, 19, 21, 25, 40, 41], "import": [0, 1, 11, 14, 15, 16, 19, 20, 22, 25, 49], "importantli": 49, "includ": [7, 11, 13, 14, 19, 25, 50], "incom": [11, 26], "incomplet": 49, "index": [3, 6, 7, 10, 11, 14, 17, 19, 25, 27, 28, 31, 33, 37, 40, 41], "index_col": 1, "index_tripl": 3, "indexed_tripl": [5, 11, 14, 19, 22], "indic": [7, 11, 13, 25, 31], "ineffici": [11, 15, 19], "infer": [11, 19, 23], "infin": 44, "info": [9, 10, 11, 31, 38], "inform": [7, 10, 11, 14, 19, 50], "inherit": [7, 11], "init_dataload": [11, 40, 41], "init_dataset": [11, 40, 41], "init_param": 6, "init_params_with_sanity_check": [11, 14, 19], "initi": [10, 11, 37, 40, 41], "initial_eval_set": 5, "initialize_distribut": [7, 11], "initialize_or_load_model": [11, 40, 41], "initialize_train": [11, 40, 41], "inner": [11, 15, 19], "inplac": 1, "inproceed": 49, "input": [5, 6, 7, 10, 13, 15, 18, 25, 27, 28, 31, 39, 40, 41, 43, 46], "input_dp_ent_r": [11, 14, 19], "input_dp_rel_r": [11, 14, 19], "input_dropout_r": [6, 11, 14, 19], "insert": [11, 37], "instal": 45, "instanc": [11, 14, 15, 19, 27, 28, 37, 43], "instead": [7, 11, 15, 19], "int": [3, 5, 6, 7, 11, 12, 13, 15, 19, 25, 26, 31, 37, 44], "int64": 0, "int_": [11, 18, 19], "integ": [3, 7, 11, 14, 18, 19, 27, 28], "integr": [7, 11], "interact": [3, 11, 13, 15, 19, 21], "interactionsn": [11, 15, 19], "interest": 0, "intermedi": [11, 13], "intern": [11, 14, 19, 25, 49], "interv": [14, 19], "intialize_model": [11, 37], "inttensor": [7, 11], "invers": [11, 31, 37], "io": [11, 40, 41, 50], "is_continual_train": [9, 10, 11, 37, 40, 41], "is_global_zero": 3, "is_seen": 3, "is_sparql_endpoint_al": 32, "isa": 49, "isinst": [7, 11], "item": [3, 11, 13], "iter": [7, 11, 13, 14, 19, 25, 38, 44], "iterable_object": [38, 44], "its": [3, 5, 7, 11, 14, 15, 19], "itself": [11, 13], "ivor": 49, "j": [11, 15, 18, 19], "join": 31, "joint": 49, "journal": 49, "json": [10, 11, 49], "julian": 49, "k": [11, 13, 15, 18, 19, 40, 41, 49], "k_fold_cross_valid": [11, 40, 41], "k_vs_all_scor": [11, 15, 16, 19, 20, 22, 23], "keci": [6, 11, 15, 19, 37, 49], "keci_uml": 49, "kecibas": [11, 15, 19], "kecifamilyrun": 49, "keep": 5, "kei": [7, 11, 14, 19, 25], "kernel": 6, "kernel_s": [6, 11, 14, 19], "keyword": [6, 14, 19], "kg": [5, 7, 9, 10, 11, 12, 13, 27, 28, 29, 30, 40, 41, 49], "kg_name": 1, "kge": [6, 8, 9, 11, 13, 40, 41, 49], "kgesavecallback": 5, "kinship": [11, 37, 49], "kix": [18, 19], "know": [7, 11, 14, 19, 31], "knowledg": [3, 5, 6, 7, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 27, 28, 29, 32, 42, 43, 45], "knowledge_graph": [9, 10, 11, 40, 41, 49], "knowledge_graph_embed": [8, 11, 49], "krone": [5, 49], "kroneck": [5, 49, 50], "kvsall": [6, 7, 11, 15, 17, 19, 37, 49, 50], "kvsall_scor": [11, 17, 19], "kvssampl": [7, 11], "kvssampledataset": [7, 11], "kwarg": [3, 5, 6, 7, 11, 14, 19, 25, 40, 42, 43, 44], "l": [14, 19, 46, 50], "l1": [7, 11], "l2": [11, 19, 22], "label": [1, 3, 7, 11, 13, 50], "label_smoothing_r": [6, 7, 11, 44], "lam": [11, 37], "lambda": [11, 13], "lambda_": [11, 13], "land": [11, 13, 49], "languag": 25, "larg": [45, 49, 50], "larger": 50, "last": 49, "last_dim": [11, 19, 21], "last_percent_to_consid": [3, 6], "launch": 45, "layer": [11, 18, 19, 25], "layernorm": [6, 25], "lbfg": [14, 19], "lead": [5, 49], "learn": [6, 10, 11, 14, 15, 18, 19, 23, 45, 50], "learning_r": [11, 14, 19, 25], "learningratemonitor": [14, 19], "leav": [38, 44], "left": 31, "len": [0, 11, 19, 21], "length": [0, 7, 11, 19, 22], "less": [7, 11], "let": [7, 11, 15, 19], "level": 5, "leverag": 50, "lf": 49, "lfmult": [11, 18, 19], "lfmult1": [18, 19], "licencearea": 0, "licens": 49, "lienen": 49, "lighn": 49, "lightn": [3, 7, 11, 14, 19, 40, 41, 50], "lightningdatamodul": [7, 11], "lightningmodul": [14, 19], "like": [11, 14, 19, 25, 49], "line": 49, "linear": [1, 7, 11, 18, 19], "linguist": 0, "link": [9, 11, 14, 19, 38, 45, 50], "list": [3, 7, 8, 9, 11, 12, 13, 14, 15, 19, 26, 38, 40, 41, 42, 43, 44], "list2tupl": [11, 26], "list_b": [18, 19], "list_data": [11, 26], "list_h_emb": [11, 15, 19], "list_r_emb": [11, 15, 19], "list_t_emb": [11, 15, 19], "list_vec": [18, 19], "list_w": [18, 19], "litcqd": 49, "litdatamodul": [7, 11], "liter": 49, "litmodel": [7, 11], "lives_in": 31, "ll": [11, 25], "llm": 6, "lm_head": [11, 25], "ln_1": 25, "ln_2": 25, "load": [6, 7, 10, 11, 26, 27, 30, 31, 37, 40, 41, 45, 46], "load_data": [7, 11], "load_json": [11, 37], "load_model": [11, 37], "load_model_ensembl": [11, 37], "load_numpi": [11, 37], "load_numpy_ndarrai": 31, "load_pickl": [11, 31, 37], "load_queri": [11, 26], "load_queries_and_answ": [11, 26], "load_term_map": [11, 37, 40], "load_with_panda": 31, "loadsavetodisk": [27, 30], "local": 49, "local_rank": [3, 7, 11, 44], "localhost": [11, 13, 49], "locat": [11, 13, 49, 50], "location_of": 49, "log": [14, 19], "logger": [11, 14, 19, 25], "logic": [7, 11, 26], "logist": 1, "logit": [11, 13], "longtensor": [3, 5, 7, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25], "look": 49, "loop": [11, 14, 15, 18, 19, 44], "loss": [5, 11, 14, 19, 25, 43, 46], "loss_func": 44, "loss_funct": [11, 14, 19, 25, 43], "loss_histori": [11, 14, 19, 21, 44], "lr": [4, 6, 11, 13, 14, 19, 49], "lr_schedul": [14, 19], "lr_scheduler_config": [14, 19], "lu": 49, "m": [7, 11, 15, 18, 19, 49], "machin": 49, "made": [11, 14, 15, 16, 19, 20, 22, 25], "mai": 50, "main": [1, 25, 31, 34, 35, 36, 49, 50], "mainli": 49, "maintain": 49, "make": [7, 11, 25], "make_iterable_verbos": [38, 44], "male": 49, "mani": [7, 11, 14, 19], "manifestation_of": 49, "manner": 49, "manual": [11, 14, 19, 25, 45], "manuscript": 49, "map": [6, 7, 11, 31, 39, 40, 41, 44], "mapping_from_first_two_cols_to_third": [11, 39], "margin": [11, 19, 23], "marri": 49, "master": 25, "math": [11, 15, 19], "mathbb": [11, 15, 19], "matric": 5, "matrix": [11, 15, 18, 19], "max": 1, "max_ans_num": [11, 26], "max_epoch": 5, "max_length_subword_token": [11, 12, 14, 19], "max_new_token": [11, 25], "max_num_of_class": [7, 11], "maxsiz": [11, 13], "mb": [14, 19], "mean": [1, 5, 11, 14, 19, 25, 38, 40, 41, 50], "media": 49, "mem_of_model": [14, 19], "memmap": [11, 40, 41], "memori": [10, 11, 14, 19, 26, 27, 28, 29, 37, 40, 41, 50], "method": [5, 7, 11, 14, 19, 26], "metric": [11, 14, 19, 25, 50], "metric_to_track": [14, 19], "metric_v": [14, 19], "mfu": 25, "michel": 49, "might": [14, 19], "min": [1, 11, 13, 49], "min_unique_val_per_column": 1, "mind": 50, "mini": [3, 5, 6, 7, 11, 43], "minradiu": 0, "miss": [11, 13, 38, 45], "mit": 49, "mkdir": [0, 1], "mlp": 25, "mlr": 49, "mode": [3, 10, 11, 14, 15, 16, 19, 20, 22, 25, 26], "model": [1, 3, 5, 6, 7, 8, 9, 10, 11, 13, 36, 37, 38, 40, 41, 42, 43, 44, 45], "model_kwarg": [11, 19, 21], "model_nam": [3, 4, 11, 13, 37], "model_parallel": [11, 40, 41, 50], "model_typ": 25, "modeling_gpt2": 25, "modifi": [7, 10, 11], "modin": 49, "modul": [11, 19], "monitor": [14, 19], "month": 49, "more": [7, 11, 14, 19, 49, 50], "moreov": [49, 50], "most": [11, 25, 37, 49, 50], "moussallem": 49, "move": [1, 4, 7, 11], "move_data_to_devic": [7, 11], "mp": [11, 40, 41, 42], "mrr": [11, 40, 41, 49, 50], "mrr_updated_ensemble_model": 5, "multi": [7, 11, 14, 19, 23, 25, 37, 40, 41, 43, 49], "multi_hop_query_answ": 49, "multiclassclassificationdataset": [7, 11], "multilabeldataset": [7, 11], "multipl": [7, 11, 14, 15, 18, 19, 24, 25, 50], "multipli": [11, 15, 18, 19], "multivector": [11, 15, 19], "mush": 5, "must": [7, 11, 14, 15, 16, 19, 20, 22, 25, 31, 50], "mutagenesi": 49, "mv": [0, 1, 50], "mxn": [11, 17, 19], "mylightningmodul": [14, 19], "n": [0, 1, 3, 7, 11, 13, 15, 17, 18, 19, 49, 50], "n3": 49, "n_embd": 25, "n_head": 25, "n_layer": [18, 19, 25], "na": 0, "name": [0, 3, 6, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 31, 37, 40, 49, 50], "namespac": [6, 11, 37, 49], "nccl_p2p_disabl": 49, "ndarrai": [7, 9, 11, 13, 14, 19, 23, 31, 37, 39], "ndim": 25, "nebula": 49, "necessari": [7, 10, 11, 14, 19, 49, 50], "ned": 3, "need": [7, 11, 13, 14, 19, 40, 41], "neg": [6, 7, 11, 13, 17, 19], "neg_norm": [11, 13], "neg_ratio": [6, 7, 11], "neg_sampl": [7, 11], "neg_sample_ratio": [7, 11, 13], "negat": [11, 13], "negnorm": [11, 13], "negsampl": [6, 49], "negsampledataset": [7, 11], "nest": [7, 11, 13, 14, 15, 16, 19, 20, 22, 25, 26], "net": 49, "network": [11, 14, 15, 16, 18, 19, 20, 22, 25], "neural": [11, 14, 15, 16, 18, 19, 20, 22, 23, 25, 49, 50], "neural_search": 36, "neuralsearch": 36, "neurip": [11, 19, 23], "new": [7, 11], "new_i": [7, 11], "newli": 49, "next": [11, 14, 19, 25], "ngomo": 49, "ngonga": 49, "nn": [7, 11, 14, 15, 16, 18, 19, 20, 22, 25, 40, 41, 44], "nnode": 49, "node": [7, 11, 43, 49], "node_rank": 49, "nodetrain": 44, "nois": 50, "noisi": [27, 28, 31], "non": [7, 11, 25], "non_embed": 25, "none": [0, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 35, 36, 37, 38, 40, 41, 43, 44], "nor": [7, 11], "norm": [11, 13, 19, 22, 49], "norm_fc1": [11, 16, 19, 20], "normal": [4, 6, 11, 14, 19, 21, 22, 25, 37], "normalize_head_entity_embed": [11, 14, 19], "normalize_relation_embed": [11, 14, 19], "normalize_tail_entity_embed": [11, 14, 19], "normalizer_class": [11, 14, 19], "northern_europ": 49, "note": [10, 11, 19, 21], "nov": 49, "now": 49, "np": [7, 11], "nproc_per_nod": 49, "nt": [0, 1, 49], "num": [11, 37], "num_bpe_ent": [7, 11, 12], "num_class": [7, 11], "num_cor": 6, "num_datapoint": [7, 11], "num_ent": [7, 9, 11, 12, 14, 17, 19, 21, 31, 38], "num_epoch": [1, 3, 4, 5, 6, 10, 44, 49, 50], "num_folds_for_cv": [6, 50], "num_of_data_point": [7, 11], "num_of_epoch": 5, "num_of_output_channel": [6, 11, 14, 19], "num_param": 4, "num_quantil": 1, "num_rel": [7, 9, 11, 12, 14, 19, 31], "num_sampl": [18, 19], "num_token": [11, 12, 14, 19], "num_work": [7, 11, 13], "number": [5, 6, 7, 11, 13, 14, 15, 18, 19, 25], "numer": 49, "numpi": [7, 9, 11, 13, 14, 19, 23, 31, 37, 39, 40, 41], "numpy_data_type_chang": [11, 37], "nvidia": 50, "nxm": [11, 17, 19], "o_1": [11, 19, 20], "o_2": [11, 19, 20], "object": [0, 6, 7, 9, 10, 11, 31, 37], "objectproperti": 49, "obtain": [7, 11, 40, 41, 50], "octonion": [11, 19, 49], "octonion_mul": [19, 20], "octonion_mul_norm": [19, 20], "octonion_norm": [11, 19, 20], "offici": 25, "often": [14, 19, 50], "oj": [11, 17, 19], "omult": [11, 19, 20, 49, 50], "on_epoch_end": 5, "on_fit_end": [3, 5], "on_fit_start": [3, 5], "on_init_end": 3, "on_init_start": 3, "on_train_batch_end": [3, 5], "on_train_batch_start": 5, "on_train_epoch_end": [3, 5, 14, 19], "onc": [7, 11], "one": [7, 11, 14, 19, 46, 49, 50], "onevsalldataset": [7, 11], "onevssampl": [7, 11], "onli": [0, 6, 7, 10, 11, 14, 19, 25, 31, 49], "only_scor": [11, 13], "ontologi": 49, "openai": 25, "openreview": 49, "oper": [6, 11, 13, 25], "opt1": [11, 14, 19, 25], "opt2": [11, 14, 19, 25], "optim": [6, 11, 13, 14, 19, 25, 40, 43, 44, 49], "optimizer_nam": [11, 14, 19], "optimizer_step": [14, 19], "option": [7, 11, 14, 19, 25], "oral": [7, 11, 13], "order": [11, 13], "ordered_bpe_ent": [7, 9, 11, 12, 14, 19], "ordered_shaped_bpe_ent": [7, 11], "ordered_shaped_bpe_token": 12, "org": [7, 11, 17, 19, 23, 37, 40, 41, 49], "organ": 49, "orignal_train": 50, "osi": 49, "other": [7, 11, 14, 15, 16, 19, 20, 22, 25, 49], "otin": [11, 13], "our": [11, 15, 19, 35, 49, 50], "out": [7, 11, 14, 19, 25], "outgo": [11, 26], "outlier": 44, "output": [5, 13, 14, 15, 18, 25, 43], "outsid": [31, 39], "over": [6, 11, 13, 18, 19], "overrid": [7, 11, 14, 19], "override_arg": 25, "overwrit": [7, 11], "owl": [0, 49], "p": [6, 11, 15, 19, 37, 49], "packag": [45, 49], "pad": 12, "page": 49, "pair": [6, 11, 14, 19], "panda": [1, 6, 11, 27, 28, 31, 37, 49], "pandas_dataframe_index": 31, "paper": [11, 18, 19, 23, 50], "parallel": [11, 18, 19, 40, 41, 44, 49], "param": [3, 6, 9, 11, 13, 14, 16, 19, 24, 25, 31, 37, 38, 39], "param_ensembl": 3, "param_init": [11, 14, 19], "paramet": [6, 7, 8, 9, 14, 16, 18, 20, 22, 23, 25, 37, 49], "paramref": [7, 11, 14, 19], "parent": [11, 14, 15, 16, 19, 20, 22, 25], "parquet": [0, 50], "pars": 0, "parsed_sort": 0, "part": [7, 11, 18, 19], "particular": 0, "pass": [6, 7, 11, 14, 17, 19, 25, 26], "path": [3, 5, 6, 7, 11, 13, 26, 37, 49], "path_dataset_fold": [1, 4, 50], "path_entity_embed": 1, "path_experiment_fold": 49, "path_for_deseri": 12, "path_for_seri": [11, 12, 37], "path_kg": 1, "path_model": 49, "path_of_experiment_fold": [11, 37], "path_of_pretrained_model_dir": 3, "path_single_kg": [6, 12, 49], "path_tabular_csv": 1, "path_to_store_single_run": [6, 49], "pattern": [7, 11, 14, 19], "pd": [1, 31], "pdf": [11, 19, 23, 49], "peak": 25, "peopl": 49, "per": [7, 11, 14, 15, 16, 19, 20, 22, 25], "perform": [5, 11, 15, 18, 19, 24, 40, 41, 49], "person": 49, "pertain": 1, "perturb": 5, "php": [11, 17, 19], "physic": [11, 19, 23], "physiologic_funct": 49, "pip": 49, "pip3": [1, 49], "pl": [31, 49], "pl_modul": 5, "pleas": [49, 50], "plugin": 50, "pmid": 0, "pmlr": 49, "point": [3, 7, 11, 18, 19], "polar": [6, 31, 49], "polars_dataframe_index": 31, "poly_nn": [11, 18, 19], "polynom": [11, 18, 19], "polynomi": [11, 18, 19], "pop": [11, 18, 19], "popular": 49, "port": [11, 13], "posit": [7, 11, 14, 19, 25, 38, 44], "possibl": [7, 11, 19, 20, 22], "pp": [11, 15, 19], "ppe": 6, "pq": [4, 11, 15, 19], "practition": 49, "pre": [11, 13, 49], "pre_trained_kg": [11, 37, 49], "precis": [14, 19, 50], "predict": [7, 9, 11, 13, 14, 19, 23, 25, 38, 45, 50], "predict_dataload": [7, 11, 14, 19], "predict_missing_head_ent": [11, 13], "predict_missing_rel": [11, 13], "predict_missing_tail_ent": [11, 13], "predict_topk": [11, 13, 49], "predictor": [11, 14, 19], "prepar": [1, 7, 11, 14, 19], "prepare_data": [7, 11, 14, 19], "prepare_data_per_nod": [7, 11], "preprocess": [10, 11, 27, 31, 46, 49], "preprocess_with_byte_pair_encod": [27, 28], "preprocess_with_byte_pair_encoding_with_pad": [27, 28], "preprocess_with_panda": [27, 28], "preprocess_with_polar": [27, 28], "preprocesses_input_arg": 39, "preprocesskg": [27, 28], "present": 50, "press": 49, "pretrain": [6, 11, 13, 40, 41, 45], "print": [0, 11, 15, 19, 49], "print_into": [11, 37], "printcallback": 5, "privat": [11, 26], "problem": [7, 11, 49], "procedur": 49, "proceed": [11, 19, 23, 49], "process": [6, 7, 11, 14, 19, 31, 43], "prod": [11, 13], "produc": [11, 14, 19, 25, 44], "product": [5, 11, 15, 18, 19], "progress": [11, 14, 19, 25], "project": [11, 37, 49], "properti": [3, 12], "protect": 0, "prov": 0, "provid": [6, 7, 11, 40, 41, 49], "pseudo": 50, "pseudolabellingcallback": 5, "pt": [11, 37], "publish": 49, "puerto_rico": 49, "pull": 49, "purl": 0, "put": 43, "pwd": 49, "py": [1, 25, 49, 50], "pyarrow": 0, "pyke": [11, 19, 23], "pykeen": [6, 11, 19, 21, 49], "pykeen_complex": [11, 19, 21], "pykeen_cp": [11, 19, 21], "pykeen_distmult": [11, 19, 21], "pykeen_hol": [11, 19, 21], "pykeen_model": [19, 49], "pykeen_model_kwarg": 6, "pykeen_mur": [11, 19, 21], "pykeen_qu": [11, 19, 21], "pykeenkg": [11, 19, 21], "pytest": 49, "python": [1, 49, 50], "pytorch": [3, 7, 11, 13, 14, 16, 19, 25, 37, 40, 41, 49, 50], "pytorch_lightn": [7, 11, 35], "pytorchlightn": 49, "q": [5, 6, 11, 15, 19, 36, 49], "q_1": [11, 19, 22, 24], "q_2": [11, 19, 22, 24], "qdrant": 45, "qdrant_client": 36, "qdrant_storag": 49, "qmult": [1, 11, 19, 22, 49, 50], "qmult_entity_embed": 1, "qq": [11, 15, 19], "qualiti": 50, "quaternion": [11, 17, 19, 24, 49], "quaternion_mul": [19, 24], "quaternion_mul_with_unit_norm": [19, 22], "quaternion_multiplication_followed_by_inner_product": [11, 19, 22], "quaternion_norm": [11, 19, 22], "queri": [0, 11, 13, 26, 37, 45], "query_gener": [11, 49], "query_nam": [11, 26], "query_name_to_struct": [11, 26], "query_scor": 49, "query_struct": [11, 26], "query_structur": [11, 26], "query_typ": [11, 13, 26, 49], "querygener": [11, 26], "question": 49, "quit": [11, 15, 19], "r": [0, 1, 7, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 46, 49], "r0": [11, 15, 19], "r_0": [11, 15, 19], "r_1": [11, 17, 19], "r_2": [11, 17, 19], "r_3": [11, 17, 19], "r_4": [11, 17, 19], "r_5": [11, 17, 19], "r_6": [11, 17, 19], "r_7": [11, 17, 19], "r_8": [11, 17, 19], "r_i": [11, 15, 19], "r_j": [11, 15, 19], "r_k": [11, 15, 19], "random": 6, "random_predict": [11, 37], "random_se": 6, "randomli": [5, 11, 37], "rang": [11, 15, 18, 19, 31, 39, 49], "rank": [11, 13, 38, 40, 41, 49, 50], "rate": [5, 6, 7, 11, 14, 19], "ratio": [5, 6, 7, 11], "raw": 50, "raw_test_set": 9, "raw_train_set": 9, "raw_valid_set": 9, "rdf": [0, 1, 49], "rdflib": [6, 49], "rdzv_backend": 49, "rdzv_endpoint": 49, "rdzv_id": 49, "re": [11, 15, 19, 22], "re_vocab": [8, 9, 38], "read": [0, 6, 10, 11, 27, 28, 29, 31, 40, 41, 49, 50], "read_csv": [0, 1], "read_from_disk": [27, 31, 49], "read_from_triple_stor": 31, "read_only_few": [6, 12, 31], "read_or_load_kg": [11, 37], "read_preprocess_save_load_kg": [11, 49], "read_with_panda": 31, "read_with_polar": 31, "readfromdisk": [27, 29], "readthedoc": [11, 40, 41, 50], "real": [11, 15, 19, 49], "realli": 49, "reason": 49, "recent": 49, "reciprioc": [27, 28], "reciproc": [9, 11, 31, 40, 41, 50], "recommend": [14, 19], "reduc": 50, "reducelronplateau": [14, 19], "refactor": [11, 13], "refer": [7, 11, 25, 49, 50], "regist": [11, 14, 15, 16, 19, 20, 22, 25], "regular": [11, 14, 15, 16, 19, 20, 22, 25, 50], "reject": 5, "rel2id": [11, 26], "rel_ent_emb": [11, 16, 19, 20, 22, 23], "relat": [3, 5, 6, 7, 10, 11, 13, 15, 18, 19, 20, 21, 22, 23, 31, 39, 49], "relation_embed": [11, 15, 17, 18, 19, 21, 22], "relation_idx": [7, 11, 44], "relation_to_idx": [7, 11, 12], "relations_str": 12, "releas": 25, "reli": [49, 50], "reload": [7, 11, 14, 19], "reload_dataloaders_every_n_epoch": [7, 11, 14, 19], "reload_dataset": [7, 11], "relu": [11, 14, 15, 16, 19, 20, 22, 25], "remov": [1, 27, 28, 49], "renam": [1, 11, 37], "renzhong": 49, "replac": [5, 31], "repo": 0, "report": [5, 9, 10, 11, 40, 41, 45], "repositori": [1, 49], "repres": [7, 11, 14, 15, 16, 18, 19, 20, 22, 25], "represent": [3, 6, 7, 11, 13, 19, 22, 37, 49], "request": [7, 11], "requir": [1, 7, 10, 11, 14, 19, 25, 50], "requires_grad_for_interact": [11, 15, 19], "research": [11, 37, 49, 50], "reshap": [11, 19, 21], "resid_dropout": 25, "residu": [11, 16, 19], "residual_convolut": [11, 16, 19, 20, 22], "resourc": 0, "respect": [11, 40, 41, 50], "rest": 49, "result": [7, 11, 15, 19, 31, 49, 50], "retrain": [10, 11, 13], "retriev": [7, 11, 15, 19, 21], "retrieve_embed": 36, "return": [7, 9, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 37, 38, 39, 40, 41, 43, 44], "return_multi_hop_query_result": [11, 13], "rk": [11, 15, 19], "rm": 49, "root": [18, 19, 36], "rp": [11, 15, 19], "rq": [11, 15, 19], "rtype": [3, 5, 10, 11, 15, 19, 27, 28, 29], "run": [14, 19, 33, 49], "running_model_state_dict": 5, "runtim": [4, 10, 11, 50], "s0": [11, 15, 19], "s1": [11, 15, 19, 49], "s2": [11, 15, 19], "s3": [11, 15, 19], "s4": [11, 15, 19], "s5": [11, 15, 19], "safe": [7, 11], "same": [0, 10, 11, 15, 19], "samea": 0, "sampl": [6, 7, 11, 13, 14, 17, 19], "sample_count": 3, "sample_ent": 3, "sample_rel": 3, "sample_triples_ratio": [6, 12, 31], "sampler": [7, 11, 14, 19], "saniti": 39, "sanity_check": [11, 49], "sanity_checking_with_argu": 32, "save": [3, 7, 10, 11, 26, 27, 30, 37], "save_checkpoint": 3, "save_checkpoint_model": [11, 37], "save_embed": [11, 37], "save_embeddings_as_csv": [1, 6, 11, 37], "save_experi": 4, "save_load_disk": [27, 49], "save_model_at_every_epoch": 6, "save_numpy_ndarrai": [11, 31, 37], "save_path": [11, 26], "save_pickl": [11, 31, 37], "save_queri": [11, 26], "save_queries_and_answ": [11, 26], "save_trained_model": [10, 11], "scalar": [11, 15, 19], "scalar_batch_nn": [11, 18, 19], "scale": [11, 15, 19, 45, 49], "scaler": [5, 44], "schedul": [14, 19], "score": [3, 6, 11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 37, 40, 41, 49], "score_func": [18, 19], "score_t": [11, 19, 21], "scoring_techniqu": [4, 6, 7, 11, 49, 50], "script": [4, 11, 49], "search": 36, "search_embed": 36, "second": [11, 14, 18, 19], "section": [7, 11, 14, 19], "sed": 0, "see": [1, 7, 11, 14, 19, 37, 49, 50], "seed": [6, 7, 10, 11, 26], "select": [3, 11, 13, 15, 19, 31, 43], "select_model": [11, 37], "selected_optim": [11, 14, 19], "self": [7, 11, 14, 15, 16, 19, 20, 21, 22, 25, 31, 40, 41, 50], "semant": 49, "send": [10, 11], "separ": [6, 12, 31, 50], "seq": 5, "sequenc": [5, 11, 14, 19, 25], "sequential_vocabulary_construct": [27, 28], "seri": 49, "serial": [10, 11, 27, 28], "serv": 33, "set": [3, 7, 11, 13, 14, 19, 26, 49], "set_global_se": [11, 26], "set_model_eval_mod": 3, "set_model_train_mod": 3, "setup": [7, 11, 14, 19, 40, 41], "setup_executor": [10, 11], "shallom": [11, 19, 23, 49, 50], "shallow": [11, 19, 23, 49], "shape": [3, 11, 14, 15, 17, 19, 20, 22, 25], "shard": 49, "share": [7, 11, 13, 25, 49], "should": [4, 7, 11, 13, 14, 15, 16, 19, 20, 22, 25], "shown": [14, 19], "sibl": 49, "sigma": [11, 18, 19], "sigma_": [11, 15, 19], "sigma_0": [11, 15, 19], "sigma_0t": [11, 15, 19], "sigma_p": [11, 15, 19], "sigma_pp": [11, 15, 19], "sigma_pq": [11, 15, 19], "sigma_pr": [11, 15, 19], "sigma_q": [11, 15, 19], "sigma_qq": [11, 15, 19], "sigma_qr": [11, 15, 19], "sigma_rr": [11, 15, 19], "sigmoid": [11, 13], "signal": 1, "similar": [14, 19, 49], "similarli": 49, "simpl": 6, "simpli": [14, 19, 25], "simultan": 50, "sinc": [7, 11, 49], "singl": [6, 7, 11, 14, 19, 25, 26, 27, 28, 43, 49, 50], "single_hop_query_answ": [11, 13], "size": [6, 7, 11, 14, 15, 18, 19, 20, 22, 49], "skip": [7, 11, 14, 19, 25], "sko": 0, "slice": 6, "slice_dim": [11, 19, 21], "slice_s": [11, 19, 21], "small_ent_in": [11, 26], "small_ent_out": [11, 26], "smi": 50, "smooth": [7, 11], "snapshot": 0, "so": [7, 11, 25], "social": 49, "softwar": [5, 49], "some": [6, 11, 14, 19, 25], "some_other_st": [7, 11], "some_st": [7, 11], "someth": [7, 11, 14, 19, 25, 50], "sort": [11, 13], "sourc": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 50], "southern_europ": 49, "space": [11, 18, 19], "sparql": 0, "sparql_endpoint": [6, 12, 32, 49], "special": [11, 14, 19, 25], "specif": [11, 14, 19, 25], "specifi": [7, 11, 14, 19], "speedup": [7, 11], "split": [1, 7, 11, 14, 15, 19, 40, 41, 50], "springer": 49, "sqrt": [11, 19, 22], "squar": [1, 6], "src": 25, "stabl": [7, 11, 40, 41, 50], "stack": [11, 14, 15, 19], "stage": [7, 11], "standalon": 49, "standard": [11, 13, 38, 49, 50], "start": [3, 10, 11, 27, 28, 29, 38, 40, 41, 43, 49], "start_tim": [5, 10, 11], "startswith": 0, "stat": [10, 11], "state": [7, 11, 14, 19, 49], "static": [3, 5, 11, 13, 14, 16, 19, 20, 22, 26], "static_func": [11, 19, 49], "static_funcs_train": [11, 49], "static_preprocess_func": [11, 49], "statist": [10, 11], "std": 1, "stefan": 49, "step": [11, 14, 19, 25, 46], "stmt": 49, "stochast": [5, 6], "stop": [11, 13, 14, 19], "storag": 49, "storage_path": [6, 11, 37, 40, 41, 50], "store": [5, 6, 7, 10, 11, 27, 28, 31, 37, 39, 44, 49, 50], "store_ensembl": 3, "str": [0, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 26, 31, 32, 36, 37, 40, 41, 42, 43], "str_entity_or_rel": 3, "str_object": [11, 37], "str_predic": [11, 37], "str_subject": [11, 37], "str_to_bpe_entity_to_idx": 8, "strategi": [3, 7, 11], "strict": [14, 19], "string": [3, 6, 7, 11, 13, 27, 28, 37], "struct": [11, 26], "structur": [7, 11, 14, 15, 16, 19, 20, 22, 25], "style": [7, 11], "subclass": [7, 10, 11, 14, 15, 16, 19, 20, 22, 25], "subject": [0, 31], "submodul": [14, 15, 16, 20, 22, 25, 45], "subquery_scor": [11, 13], "subsampl": [7, 11], "substitut": [11, 13], "subtract": 25, "subword_unit": [7, 11], "sugeno": [11, 13], "sum": [7, 11, 15, 18, 19], "sum_": [11, 15, 18, 19, 22], "super": [7, 11, 14, 15, 16, 19, 20, 22, 25], "supervis": 50, "support": [7, 11, 14, 19, 25, 49], "sure": [11, 25], "swa": 6, "switch": [11, 14, 19, 25], "sy": [11, 13], "syntax": [0, 49], "system": [7, 11], "t": [7, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 46, 49], "t_0": [11, 15, 19], "t_conorm": [11, 13], "t_norm": [11, 13], "tabularpath": 1, "tail": [0, 6, 7, 11, 13, 19, 21, 22, 38, 49], "tail_ent": [3, 7, 11, 13], "tail_ent_emb": [11, 16, 19, 20, 22, 23], "take": [11, 15, 18, 19, 25, 38], "taken": [11, 15, 19], "target": [7, 11, 25, 44], "target_dim": [7, 11, 12], "target_entity_idx": [11, 15, 16, 19, 21, 22, 23], "task": [9, 38], "tconorm": [11, 13], "teammat": 0, "techniqu": [6, 11, 18, 19, 49, 50], "temperatur": [11, 25], "tens_1": [11, 13], "tens_2": [11, 13], "tensor": [3, 5, 7, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 43], "tensor_t_norm": [11, 13], "tensorflow": 25, "term": [0, 11, 18, 19], "test": [6, 7, 9, 10, 11, 14, 19, 27, 28, 40, 41, 49, 50], "test_dataload": [7, 11, 14, 19], "test_epoch_end": [14, 19], "test_h1": 4, "test_h10": 4, "test_h3": 4, "test_mrr": 4, "test_path": [11, 26], "test_set": [7, 9, 11, 27, 29], "test_step": [14, 19], "text": [0, 11, 26], "than": [7, 11, 49, 50], "thei": 50, "them": [5, 7, 11, 14, 15, 16, 19, 20, 22, 25], "thi": [4, 7, 11, 14, 15, 16, 18, 19, 20, 21, 22, 25, 31, 37, 49, 50], "thing": [11, 14, 19, 25, 49], "three": [5, 11, 18, 19, 31, 49], "threshold": [11, 13], "through": [0, 49], "throw": 0, "thu": [14, 19], "tikhonov": 50, "time": [6, 10, 11, 25, 49], "timeit": [11, 31, 37, 39], "titl": 49, "tnorm": [11, 13, 49], "to_csv": 1, "to_df": 4, "to_parquet": 0, "todo": [7, 11, 13, 26, 37], "token": [3, 7, 11, 25], "too": [11, 14, 15, 16, 19, 20, 22, 25], "top": [11, 13], "top_ent": 49, "top_k": [11, 13, 25, 37, 49], "topk": [11, 13, 25, 49], "topk_ent": 49, "torch": [3, 5, 7, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 37, 40, 41, 43, 44], "torch_ordered_shaped_bpe_ent": [7, 11], "torch_train": [11, 40, 41, 49], "torch_trainer_ddp": [11, 40, 41, 49], "torchcputrain": 6, "torchddp": 49, "torchddptrain": [11, 40, 41, 44], "torchrun": 49, "torchtrain": [11, 40, 41, 43], "total": [7, 11, 49], "toward": 49, "toy_dataset_nam": 1, "tp_answer": [11, 26], "tpu": [7, 11, 14, 19, 25, 49], "track": [5, 49], "train": [0, 1, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 19, 20, 22, 25, 26, 27, 28, 40, 41, 42, 43, 44, 45], "train1": 50, "train2": 50, "train_": 0, "train_data": [7, 11], "train_dataload": [7, 11, 14, 19, 43], "train_dataset_load": 44, "train_h1": 4, "train_h10": 4, "train_h3": 4, "train_indices_target": [7, 11], "train_k_vs_al": [11, 13], "train_mrr": 4, "train_ontologi": 0, "train_path": [11, 26], "train_set": [7, 9, 11, 27, 29, 31, 37], "train_set_idx": [7, 11, 39], "train_set_target": 12, "train_split": 50, "train_target": [7, 11], "train_target_indic": [7, 11, 12], "train_tripl": [11, 13], "train_val": 6, "train_val_test": [6, 49], "trainabl": 6, "trained_model": [9, 10, 11, 37], "trainer": [3, 5, 6, 7, 10, 11, 14, 19, 35, 37, 49], "training_epoch_mean": [14, 19], "training_step": [11, 14, 19, 25, 43], "training_step_output": [14, 19], "training_techniqu": [6, 12], "trans": [11, 19, 23, 49], "transfer": [7, 11], "transfer_batch_to_devic": [7, 11], "transform": [11, 19, 49], "translat": [11, 19, 23], "transpos": [11, 17, 19], "trapezoid": [18, 19], "tree": [11, 14, 15, 16, 19, 20, 22, 25], "tri": [7, 11, 14, 19], "tri_scor": [11, 18, 19], "triangular": [11, 15, 19], "trigonometr": [18, 19], "trilinear": [11, 18, 19], "tripl": [3, 5, 6, 7, 8, 9, 11, 12, 13, 18, 19, 20, 21, 22, 26, 27, 28, 31, 37, 38, 39, 49, 50], "triple_idx": [9, 38], "triple_scor": [11, 13], "triplepredictiondataset": [7, 11], "true": [0, 1, 3, 6, 7, 11, 13, 14, 15, 19, 22, 25, 26, 37, 38, 44, 49], "tsang": 49, "tupl": [5, 7, 8, 14, 15, 16, 19, 23, 24, 26, 31, 37, 38, 39, 40, 41, 43], "tuple2list": [11, 26], "turtl": 49, "two": [5, 7, 11, 14, 15, 16, 18, 19, 49], "txt": [1, 6, 49, 50], "type": [0, 3, 5, 6, 7, 9, 11, 13, 37, 43, 44, 49], "u": [11, 18, 19, 49, 50], "uml": [49, 50], "under": [6, 11, 37, 49], "uniformli": 6, "union": [11, 13], "uniqu": [7, 11], "unit": [14, 19, 25], "unlabelled_s": 5, "unless": [7, 11, 14, 19], "unmap": [11, 26], "unmap_queri": [11, 26], "unnorm": [11, 13], "unzip": 49, "up": [14, 19], "upb": 49, "updat": [5, 10, 11, 14, 19, 43], "uri": [27, 28], "url": [3, 11, 13, 37, 49], "urlencod": 0, "us": [3, 6, 7, 11, 14, 18, 19, 21, 25, 31, 43, 44, 49, 50], "usag": [6, 11, 13, 50], "usecol": 0, "user": 49, "usncesdistrictid": 0, "util": [7, 11, 14, 19, 25, 27, 40, 41, 44, 49], "v": [11, 13, 49], "v157": 49, "val_aswa": 5, "val_dataload": [7, 11, 14, 19], "val_h1": 4, "val_h10": 4, "val_h3": 4, "val_loss": [14, 19], "val_mrr": 4, "val_path": [11, 26], "val_running_model": 5, "valid": [5, 6, 7, 10, 11, 14, 19, 26, 27, 28, 32, 40, 41, 49, 50], "valid_set": [7, 9, 11, 27, 29], "validate_knowledge_graph": 32, "validation_step": [14, 19], "valu": [6, 11, 14, 15, 16, 19, 22, 31], "value_count": 0, "variabl": [11, 13, 14, 15, 16, 19, 20, 22, 25], "variou": 9, "vec": [18, 19], "vectograph": 1, "vector": [6, 7, 11, 15, 18, 19, 22, 45], "verbos": [11, 37, 38, 44], "veri": [14, 19], "version": [11, 19, 21, 49], "via": [3, 7, 11, 13, 31, 49], "vineeth": 49, "virtual": 1, "vocab_prepar": 9, "vocab_s": 25, "vocab_to_idx": [11, 37], "vocab_to_parquet": [11, 37], "vocabulari": [27, 28], "volum": 49, "vtp_score": [11, 18, 19], "w": [11, 18, 19], "w3": [0, 49], "wai": [7, 11, 14, 15, 16, 19, 20, 22, 25], "wait": 9, "want": [11, 25, 49, 50], "warn": [14, 19, 49], "wasderivedfrom": 0, "watch": 50, "we": [0, 7, 10, 11, 15, 18, 19, 20, 21, 22, 25, 40, 41, 49, 50], "web": 49, "webservic": 45, "weight": [5, 6, 11, 18, 19, 21, 25, 37, 44], "weight_decai": [6, 11, 14, 19, 25], "well": 49, "western_europ": 49, "wget": [0, 49], "wh": [11, 18, 19], "what": [7, 11, 14, 19, 49], "when": [5, 7, 11, 14, 15, 16, 19, 20, 22, 25], "where": [7, 11, 13, 15, 19, 27, 28, 49], "wherea": [14, 19], "whether": [11, 14, 15, 16, 19, 20, 22, 25], "which": [7, 11, 14, 19, 25], "while": 0, "who": 49, "whom": 49, "whose": [14, 19], "why": 49, "wide": 49, "wiebesiek": 49, "wikipageusestempl": 0, "wikipagewikilink": 0, "wip": 6, "wise": [11, 18, 19], "wish": [7, 11, 49], "within": [7, 11, 13], "within_ent": 8, "without": [7, 11, 14, 15, 18, 19, 49], "wk": [18, 19], "wn18rr": 50, "work": [7, 11, 14, 19, 49], "works_with": 31, "world": 49, "would": [11, 15, 19, 25, 50], "wr": [11, 18, 19], "wrap": [7, 11], "write": 49, "write_csv_from_model_parallel": [11, 37], "write_link": [11, 26], "write_report": [10, 11], "wt": [11, 18, 19], "www": [0, 49], "x": [1, 3, 4, 5, 7, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 31, 37, 46, 49], "x_": [11, 15, 19], "x_batch": 43, "x_i": [11, 19, 22], "x_iy_": [11, 15, 19], "x_jy_": [11, 15, 19], "x_ky_": [11, 15, 19], "x_valu": [11, 18, 19], "xavier_norm": 6, "xml": 49, "xmp": 43, "y": [1, 7, 11, 14, 19, 25, 46], "y_batch": [11, 14, 19, 25, 43], "y_i": [7, 11, 15, 19], "y_idx": [7, 11, 14, 19], "y_j": [11, 15, 19], "y_k": [11, 15, 19], "y_vec": [7, 11], "yager": [11, 13], "yago3": 50, "year": 49, "yet": [11, 15, 19, 22, 49], "yhat_batch": [11, 14, 19, 25], "yield": [7, 11], "you": [7, 11, 14, 15, 16, 19, 20, 22, 25, 49, 50], "your": [7, 11, 14, 15, 16, 19, 20, 22, 25, 50], "yourself": [7, 11, 14, 19], "z": [11, 14, 19, 25, 42, 44, 49], "zero": [11, 15, 19], "zip": [0, 49, 50]}, "titles": ["Downloading and Preprocessing DBpedia 2022-03 for Knowledge Graph Embeddings", "Knowledge Graph Embedding Boost on Tabular Data", "dicee.__main__", "dicee.abstracts", "dicee.analyse_experiments", "dicee.callbacks", "dicee.config", "dicee.dataset_classes", "dicee.eval_static_funcs", "dicee.evaluator", "dicee.executer", "dicee", "dicee.knowledge_graph", "dicee.knowledge_graph_embeddings", "dicee.models.base_model", "dicee.models.clifford", "dicee.models.complex", "dicee.models.dualE", "dicee.models.function_space", "dicee.models", "dicee.models.octonion", "dicee.models.pykeen_models", "dicee.models.quaternion", "dicee.models.real", "dicee.models.static_funcs", "dicee.models.transformers", "dicee.query_generator", "dicee.read_preprocess_save_load_kg", "dicee.read_preprocess_save_load_kg.preprocess", "dicee.read_preprocess_save_load_kg.read_from_disk", "dicee.read_preprocess_save_load_kg.save_load_disk", "dicee.read_preprocess_save_load_kg.util", "dicee.sanity_checkers", "dicee.scripts", "dicee.scripts.index", "dicee.scripts.run", "dicee.scripts.serve", "dicee.static_funcs", "dicee.static_funcs_training", "dicee.static_preprocess_funcs", "dicee.trainer.dice_trainer", "dicee.trainer", "dicee.trainer.model_parallelism", "dicee.trainer.torch_trainer", "dicee.trainer.torch_trainer_ddp", "Welcome to DICE Embeddings!", "1vsAll Training Technique", "KvsAll Training Technique", "Negative Sampling Technique", "Dicee Manual", "Training"], "titleterms": {"03": 0, "10fold": 1, "1vsall": 46, "2022": 0, "__main__": 2, "abstract": 3, "all": 0, "an": 49, "analyse_experi": 4, "answer": 49, "attribut": [11, 36, 39], "avail": 50, "base_model": 14, "benchmark": 1, "binari": 1, "boost": 1, "california": 1, "callback": 5, "cite": 49, "class": [3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 36, 40, 41, 42, 43, 44], "classif": 1, "clifford": 15, "complex": [16, 49], "config": 6, "content": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45], "coverag": 49, "creat": 49, "cv": 1, "data": 1, "databas": 49, "dataset": 1, "dataset_class": 7, "dbpedia": 0, "deploi": 49, "detail": 1, "dice": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49], "dice_train": 40, "docker": 49, "download": [0, 49], "dual": 17, "embed": [0, 1, 45, 49], "eval_static_func": 8, "evalu": 9, "exampl": [31, 50], "execut": 10, "featur": 50, "file": 0, "filter": 0, "format": 50, "from": 49, "function": [4, 5, 7, 8, 11, 19, 20, 22, 24, 31, 32, 34, 35, 36, 37, 38, 39, 40, 44], "function_spac": 18, "graph": [0, 1, 49], "have": 0, "hous": 1, "how": 49, "http": 0, "index": 34, "input": [11, 17, 19, 50], "instal": [1, 49], "kg": 50, "kge": [1, 50], "knowledg": [0, 1, 49], "knowledge_graph": 12, "knowledge_graph_embed": 13, "kvsall": 47, "launch": 49, "learn": 49, "link": 49, "liter": 0, "load": 49, "manual": 49, "miss": 49, "model": [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 49, 50], "model_parallel": 42, "modul": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44], "neg": 48, "octonion": 20, "ontologi": 0, "org": 0, "output": [11, 17, 19], "packag": [11, 19, 27, 41], "paramet": [3, 5, 10, 11, 13, 15, 19, 27, 28, 29, 31, 40, 41, 42, 43], "predict": 49, "preprocess": [0, 28], "pretrain": 49, "properti": 0, "pykeen_model": 21, "qdrant": 49, "quaternion": 22, "queri": 49, "query_gener": 26, "read_from_disk": 29, "read_preprocess_save_load_kg": [27, 28, 29, 30, 31], "real": 23, "regress": 1, "relat": 0, "remov": 0, "report": 49, "result": 1, "retriev": 49, "return": [3, 11, 13, 31], "run": 35, "sampl": 48, "sanity_check": 32, "save_load_disk": 30, "script": [33, 34, 35, 36], "search": 49, "serv": 36, "shard": 50, "sourc": 49, "start": 0, "static_func": [24, 37], "static_funcs_train": 38, "static_preprocess_func": 39, "step": 31, "submodul": [11, 19, 27, 33, 41], "tabular": 1, "techniqu": [46, 47, 48], "templat": 0, "todo": 1, "torch_train": 43, "torch_trainer_ddp": 44, "train": [46, 47, 49, 50], "trainer": [40, 41, 42, 43, 44], "transform": 25, "tripl": 0, "tupl": [3, 11, 13], "ues": 0, "usag": [1, 31], "util": 31, "vector": 49, "webservic": 49, "welcom": 45, "wiki": 0, "wikipag": 0, "xmln": 0}}) \ No newline at end of file +Search.setIndex({"alltitles": {"10FOLD CV results on California housing dataset (regression).": [[1, "fold-cv-results-on-california-housing-dataset-regression"]], "10FOLD CV results on TODO (binary classification).": [[1, "fold-cv-results-on-todo-binary-classification"]], "1vsAll Training Technique": [[48, null]], "Answering Complex Queries": [[51, "answering-complex-queries"]], "Attributes": [[11, "attributes"], [38, "attributes"], [41, "attributes"]], "Available KGE Models": [[52, "available-kge-models"]], "Benchmarking": [[1, "benchmarking"]], "Classes": [[3, "classes"], [4, "classes"], [5, "classes"], [6, "classes"], [7, "classes"], [9, "classes"], [10, "classes"], [11, "classes"], [12, "classes"], [13, "classes"], [14, "classes"], [15, "classes"], [16, "classes"], [17, "classes"], [18, "classes"], [19, "classes"], [20, "classes"], [21, "classes"], [22, "classes"], [23, "classes"], [24, "classes"], [25, "classes"], [27, "classes"], [28, "classes"], [29, "classes"], [30, "classes"], [31, "classes"], [32, "classes"], [38, "classes"], [42, "classes"], [43, "classes"], [44, "classes"], [45, "classes"], [46, "classes"]], "Contents:": [[47, null]], "Coverage Report": [[51, "coverage-report"]], "Creating an Embedding Vector Database": [[51, "creating-an-embedding-vector-database"]], "Dicee Manual": [[51, null]], "Docker": [[51, "docker"]], "Download Knowledge Graphs": [[51, "download-knowledge-graphs"]], "Download files": [[0, "download-files"]], "Downloading Pretrained Models": [[51, "downloading-pretrained-models"]], "Downloading and Preprocessing DBpedia 2022-03 for Knowledge Graph Embeddings": [[0, null]], "Example Usage:": [[33, "example-usage"]], "Examples": [[52, "examples"]], "Examples for Sharded Training": [[52, "examples-for-sharded-training"]], "Filtering Triples": [[0, "filtering-triples"]], "Functions": [[4, "functions"], [5, "functions"], [7, "functions"], [8, "functions"], [11, "functions"], [14, "functions"], [21, "functions"], [22, "functions"], [24, "functions"], [26, "functions"], [33, "functions"], [34, "functions"], [36, "functions"], [37, "functions"], [38, "functions"], [39, "functions"], [40, "functions"], [41, "functions"], [42, "functions"], [44, "functions"], [46, "functions"]], "How to Deploy": [[51, "how-to-deploy"]], "How to Train": [[51, "how-to-train"]], "How to cite": [[51, "how-to-cite"]], "Input": [[11, "input"], [11, "id6"], [11, "id8"], [18, "input"], [18, "id1"], [18, "id3"], [21, "input"], [21, "id269"], [21, "id271"]], "Input KG Format": [[52, "input-kg-format"]], "Installation": [[1, "installation"], [51, "installation"]], "Installation from Source": [[51, "installation-from-source"]], "KGE 10Fold Detailed": [[1, "kge-10fold-detailed"]], "Knowledge Graph Embedding Boost on Tabular Data": [[1, null]], "Knowledge Graph Embedding Models": [[51, "knowledge-graph-embedding-models"]], "KvsAll Training Technique": [[49, null]], "Launching Webservice": [[51, "launching-webservice"]], "Learning Embeddings": [[51, "learning-embeddings"]], "Loading Embeddings into Qdrant Vector Database": [[51, "loading-embeddings-into-qdrant-vector-database"]], "Module Contents": [[3, "module-contents"], [4, "module-contents"], [5, "module-contents"], [6, "module-contents"], [7, "module-contents"], [8, "module-contents"], [9, "module-contents"], [10, "module-contents"], [12, "module-contents"], [13, "module-contents"], [14, "module-contents"], [15, "module-contents"], [16, "module-contents"], [17, "module-contents"], [18, "module-contents"], [19, "module-contents"], [20, "module-contents"], [22, "module-contents"], [23, "module-contents"], [24, "module-contents"], [25, "module-contents"], [26, "module-contents"], [27, "module-contents"], [28, "module-contents"], [30, "module-contents"], [31, "module-contents"], [32, "module-contents"], [33, "module-contents"], [34, "module-contents"], [36, "module-contents"], [37, "module-contents"], [38, "module-contents"], [39, "module-contents"], [40, "module-contents"], [41, "module-contents"], [42, "module-contents"], [44, "module-contents"], [45, "module-contents"], [46, "module-contents"]], "Negative Sampling Technique": [[50, null]], "Output": [[11, "output"], [11, "id7"], [11, "id9"], [18, "output"], [18, "id2"], [18, "id4"], [21, "output"], [21, "id270"], [21, "id272"]], "Package Contents": [[11, "package-contents"], [21, "package-contents"], [29, "package-contents"], [43, "package-contents"]], "Parameter": [[3, "parameter"], [3, "id1"], [3, "id2"], [3, "id3"], [3, "id4"], [3, "id5"], [3, "id6"], [3, "id7"], [3, "id8"], [3, "id9"], [3, "id10"], [3, "id11"], [3, "id12"], [3, "id13"], [3, "id14"], [3, "id15"], [3, "id16"], [3, "id17"], [3, "id18"], [3, "id19"], [3, "id20"], [3, "id21"], [5, "parameter"], [5, "id1"], [5, "id2"], [5, "id3"], [5, "id4"], [5, "id5"], [5, "id6"], [5, "id7"], [5, "id8"], [5, "id9"], [5, "id10"], [5, "id11"], [5, "id12"], [5, "id13"], [5, "id14"], [5, "id15"], [5, "id16"], [5, "id17"], [5, "id18"], [5, "id19"], [5, "id20"], [5, "id21"], [10, "parameter"], [10, "id1"], [10, "id2"], [10, "id3"], [10, "id4"], [11, "parameter"], [11, "id1"], [11, "id2"], [11, "id3"], [11, "id4"], [11, "id5"], [11, "id10"], [11, "id11"], [11, "id12"], [11, "id14"], [11, "id16"], [11, "id18"], [11, "id20"], [11, "id21"], [11, "id22"], [11, "id23"], [11, "id24"], [13, "parameter"], [13, "id1"], [13, "id3"], [13, "id5"], [13, "id7"], [13, "id9"], [16, "parameter"], [16, "id1"], [16, "id2"], [16, "id3"], [16, "id4"], [16, "id5"], [21, "parameter"], [21, "id180"], [21, "id181"], [21, "id182"], [21, "id183"], [21, "id184"], [29, "parameter"], [29, "id1"], [29, "id2"], [30, "parameter"], [30, "id1"], [31, "parameter"], [42, "parameter"], [43, "parameter"], [44, "parameter"]], "Parameters:": [[33, "parameters"], [33, "id1"]], "Predicting Missing Links": [[51, "predicting-missing-links"]], "Remove Wikipage Uese Template": [[0, "remove-wikipage-uese-template"]], "Remove all literals": [[0, "remove-all-literals"]], "Remove triples having a relation starting with http://dbpedia.org/ontology/wiki": [[0, "remove-triples-having-a-relation-starting-with-http-dbpedia-org-ontology-wiki"]], "Remove triples having a relation starting with http://dbpedia.org/property/wiki": [[0, "remove-triples-having-a-relation-starting-with-http-dbpedia-org-property-wiki"]], "Remove xmlns": [[0, "remove-xmlns"]], "Retrieve and Search": [[51, "retrieve-and-search"]], "Returns:": [[33, "returns"], [33, "id2"]], "Returns: Tuple": [[3, "returns-tuple"], [11, "returns-tuple"], [11, "id13"], [11, "id15"], [11, "id17"], [11, "id19"], [13, "returns-tuple"], [13, "id2"], [13, "id4"], [13, "id6"], [13, "id8"]], "Steps:": [[33, "steps"]], "Submodules": [[11, "submodules"], [21, "submodules"], [29, "submodules"], [35, "submodules"], [43, "submodules"]], "TABULAR & KGE 10Fold Detailed": [[1, "tabular-kge-10fold-detailed"]], "Tabular 10Fold Detailed": [[1, "tabular-10fold-detailed"]], "Training": [[52, null], [52, "id1"]], "Training Features:": [[52, "training-features"]], "Usage": [[1, "usage"]], "Welcome to DICE Embeddings!": [[47, null]], "dicee": [[11, null]], "dicee.__main__": [[2, null]], "dicee.abstracts": [[3, null]], "dicee.analyse_experiments": [[4, null]], "dicee.callbacks": [[5, null]], "dicee.config": [[6, null]], "dicee.dataset_classes": [[7, null]], "dicee.eval_static_funcs": [[8, null]], "dicee.evaluator": [[9, null]], "dicee.executer": [[10, null]], "dicee.knowledge_graph": [[12, null]], "dicee.knowledge_graph_embeddings": [[13, null]], "dicee.models": [[21, null]], "dicee.models.adopt": [[14, null]], "dicee.models.base_model": [[15, null]], "dicee.models.clifford": [[16, null]], "dicee.models.complex": [[17, null]], "dicee.models.dualE": [[18, null]], "dicee.models.ensemble": [[19, null]], "dicee.models.function_space": [[20, null]], "dicee.models.octonion": [[22, null]], "dicee.models.pykeen_models": [[23, null]], "dicee.models.quaternion": [[24, null]], "dicee.models.real": [[25, null]], "dicee.models.static_funcs": [[26, null]], "dicee.models.transformers": [[27, null]], "dicee.query_generator": [[28, null]], "dicee.read_preprocess_save_load_kg": [[29, null]], "dicee.read_preprocess_save_load_kg.preprocess": [[30, null]], "dicee.read_preprocess_save_load_kg.read_from_disk": [[31, null]], "dicee.read_preprocess_save_load_kg.save_load_disk": [[32, null]], "dicee.read_preprocess_save_load_kg.util": [[33, null]], "dicee.sanity_checkers": [[34, null]], "dicee.scripts": [[35, null]], "dicee.scripts.index": [[36, null]], "dicee.scripts.run": [[37, null]], "dicee.scripts.serve": [[38, null]], "dicee.static_funcs": [[39, null]], "dicee.static_funcs_training": [[40, null]], "dicee.static_preprocess_funcs": [[41, null]], "dicee.trainer": [[43, null]], "dicee.trainer.dice_trainer": [[42, null]], "dicee.trainer.model_parallelism": [[44, null]], "dicee.trainer.torch_trainer": [[45, null]], "dicee.trainer.torch_trainer_ddp": [[46, null]]}, "docnames": ["DBpedia_experiments/ReadMe", "KGEonTabular/README", "autoapi/dicee/__main__/index", "autoapi/dicee/abstracts/index", "autoapi/dicee/analyse_experiments/index", "autoapi/dicee/callbacks/index", "autoapi/dicee/config/index", "autoapi/dicee/dataset_classes/index", "autoapi/dicee/eval_static_funcs/index", "autoapi/dicee/evaluator/index", "autoapi/dicee/executer/index", "autoapi/dicee/index", "autoapi/dicee/knowledge_graph/index", "autoapi/dicee/knowledge_graph_embeddings/index", "autoapi/dicee/models/adopt/index", "autoapi/dicee/models/base_model/index", "autoapi/dicee/models/clifford/index", "autoapi/dicee/models/complex/index", "autoapi/dicee/models/dualE/index", "autoapi/dicee/models/ensemble/index", "autoapi/dicee/models/function_space/index", "autoapi/dicee/models/index", "autoapi/dicee/models/octonion/index", "autoapi/dicee/models/pykeen_models/index", "autoapi/dicee/models/quaternion/index", "autoapi/dicee/models/real/index", "autoapi/dicee/models/static_funcs/index", "autoapi/dicee/models/transformers/index", "autoapi/dicee/query_generator/index", "autoapi/dicee/read_preprocess_save_load_kg/index", "autoapi/dicee/read_preprocess_save_load_kg/preprocess/index", "autoapi/dicee/read_preprocess_save_load_kg/read_from_disk/index", "autoapi/dicee/read_preprocess_save_load_kg/save_load_disk/index", "autoapi/dicee/read_preprocess_save_load_kg/util/index", "autoapi/dicee/sanity_checkers/index", "autoapi/dicee/scripts/index", "autoapi/dicee/scripts/index/index", "autoapi/dicee/scripts/run/index", "autoapi/dicee/scripts/serve/index", "autoapi/dicee/static_funcs/index", "autoapi/dicee/static_funcs_training/index", "autoapi/dicee/static_preprocess_funcs/index", "autoapi/dicee/trainer/dice_trainer/index", "autoapi/dicee/trainer/index", "autoapi/dicee/trainer/model_parallelism/index", "autoapi/dicee/trainer/torch_trainer/index", "autoapi/dicee/trainer/torch_trainer_ddp/index", "index", "training_techniques/1vsall", "training_techniques/kvsall", "training_techniques/negative_sampling", "usage/main", "usage/training"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["DBpedia_experiments/ReadMe.md", "KGEonTabular/README.md", "autoapi/dicee/__main__/index.rst", "autoapi/dicee/abstracts/index.rst", "autoapi/dicee/analyse_experiments/index.rst", "autoapi/dicee/callbacks/index.rst", "autoapi/dicee/config/index.rst", "autoapi/dicee/dataset_classes/index.rst", "autoapi/dicee/eval_static_funcs/index.rst", "autoapi/dicee/evaluator/index.rst", "autoapi/dicee/executer/index.rst", "autoapi/dicee/index.rst", "autoapi/dicee/knowledge_graph/index.rst", "autoapi/dicee/knowledge_graph_embeddings/index.rst", "autoapi/dicee/models/adopt/index.rst", "autoapi/dicee/models/base_model/index.rst", "autoapi/dicee/models/clifford/index.rst", "autoapi/dicee/models/complex/index.rst", "autoapi/dicee/models/dualE/index.rst", "autoapi/dicee/models/ensemble/index.rst", "autoapi/dicee/models/function_space/index.rst", "autoapi/dicee/models/index.rst", "autoapi/dicee/models/octonion/index.rst", "autoapi/dicee/models/pykeen_models/index.rst", "autoapi/dicee/models/quaternion/index.rst", "autoapi/dicee/models/real/index.rst", "autoapi/dicee/models/static_funcs/index.rst", "autoapi/dicee/models/transformers/index.rst", "autoapi/dicee/query_generator/index.rst", "autoapi/dicee/read_preprocess_save_load_kg/index.rst", "autoapi/dicee/read_preprocess_save_load_kg/preprocess/index.rst", "autoapi/dicee/read_preprocess_save_load_kg/read_from_disk/index.rst", "autoapi/dicee/read_preprocess_save_load_kg/save_load_disk/index.rst", "autoapi/dicee/read_preprocess_save_load_kg/util/index.rst", "autoapi/dicee/sanity_checkers/index.rst", "autoapi/dicee/scripts/index.rst", "autoapi/dicee/scripts/index/index.rst", "autoapi/dicee/scripts/run/index.rst", "autoapi/dicee/scripts/serve/index.rst", "autoapi/dicee/static_funcs/index.rst", "autoapi/dicee/static_funcs_training/index.rst", "autoapi/dicee/static_preprocess_funcs/index.rst", "autoapi/dicee/trainer/dice_trainer/index.rst", "autoapi/dicee/trainer/index.rst", "autoapi/dicee/trainer/model_parallelism/index.rst", "autoapi/dicee/trainer/torch_trainer/index.rst", "autoapi/dicee/trainer/torch_trainer_ddp/index.rst", "index.rst", "training_techniques/1vsall.md", "training_techniques/kvsall.md", "training_techniques/negative_sampling.md", "usage/main.md", "usage/training.md"], "indexentries": {"__call__() (dicee.ensemblekge method)": [[11, "dicee.EnsembleKGE.__call__", false]], "__call__() (dicee.models.base_model.identityclass method)": [[15, "dicee.models.base_model.IdentityClass.__call__", false]], "__call__() (dicee.models.ensemble.ensemblekge method)": [[19, "dicee.models.ensemble.EnsembleKGE.__call__", false]], "__call__() (dicee.models.identityclass method)": [[21, "dicee.models.IdentityClass.__call__", false], [21, "id132", false], [21, "id178", false]], "__getitem__() (dicee.allvsall method)": [[11, "dicee.AllvsAll.__getitem__", false]], "__getitem__() (dicee.bpe_negativesamplingdataset method)": [[11, "dicee.BPE_NegativeSamplingDataset.__getitem__", false]], "__getitem__() (dicee.dataset_classes.allvsall method)": [[7, "dicee.dataset_classes.AllvsAll.__getitem__", false]], "__getitem__() (dicee.dataset_classes.bpe_negativesamplingdataset method)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset.__getitem__", false]], "__getitem__() (dicee.dataset_classes.kvsall method)": [[7, "dicee.dataset_classes.KvsAll.__getitem__", false]], "__getitem__() (dicee.dataset_classes.kvssampledataset method)": [[7, "dicee.dataset_classes.KvsSampleDataset.__getitem__", false]], "__getitem__() (dicee.dataset_classes.multiclassclassificationdataset method)": [[7, "dicee.dataset_classes.MultiClassClassificationDataset.__getitem__", false]], "__getitem__() (dicee.dataset_classes.multilabeldataset method)": [[7, "dicee.dataset_classes.MultiLabelDataset.__getitem__", false]], "__getitem__() (dicee.dataset_classes.negsampledataset method)": [[7, "dicee.dataset_classes.NegSampleDataset.__getitem__", false]], "__getitem__() (dicee.dataset_classes.onevsalldataset method)": [[7, "dicee.dataset_classes.OnevsAllDataset.__getitem__", false]], "__getitem__() (dicee.dataset_classes.onevssample method)": [[7, "dicee.dataset_classes.OnevsSample.__getitem__", false]], "__getitem__() (dicee.dataset_classes.triplepredictiondataset method)": [[7, "dicee.dataset_classes.TriplePredictionDataset.__getitem__", false]], "__getitem__() (dicee.kvsall method)": [[11, "dicee.KvsAll.__getitem__", false]], "__getitem__() (dicee.kvssampledataset method)": [[11, "dicee.KvsSampleDataset.__getitem__", false]], "__getitem__() (dicee.multiclassclassificationdataset method)": [[11, "dicee.MultiClassClassificationDataset.__getitem__", false]], "__getitem__() (dicee.multilabeldataset method)": [[11, "dicee.MultiLabelDataset.__getitem__", false]], "__getitem__() (dicee.negsampledataset method)": [[11, "dicee.NegSampleDataset.__getitem__", false]], "__getitem__() (dicee.onevsalldataset method)": [[11, "dicee.OnevsAllDataset.__getitem__", false]], "__getitem__() (dicee.onevssample method)": [[11, "dicee.OnevsSample.__getitem__", false]], "__getitem__() (dicee.triplepredictiondataset method)": [[11, "dicee.TriplePredictionDataset.__getitem__", false]], "__iter__() (dicee.config.namespace method)": [[6, "dicee.config.Namespace.__iter__", false]], "__iter__() (dicee.ensemblekge method)": [[11, "dicee.EnsembleKGE.__iter__", false]], "__iter__() (dicee.knowledge_graph.kg method)": [[12, "dicee.knowledge_graph.KG.__iter__", false]], "__iter__() (dicee.models.ensemble.ensemblekge method)": [[19, "dicee.models.ensemble.EnsembleKGE.__iter__", false]], "__len__() (dicee.allvsall method)": [[11, "dicee.AllvsAll.__len__", false]], "__len__() (dicee.bpe_negativesamplingdataset method)": [[11, "dicee.BPE_NegativeSamplingDataset.__len__", false]], "__len__() (dicee.dataset_classes.allvsall method)": [[7, "dicee.dataset_classes.AllvsAll.__len__", false]], "__len__() (dicee.dataset_classes.bpe_negativesamplingdataset method)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset.__len__", false]], "__len__() (dicee.dataset_classes.kvsall method)": [[7, "dicee.dataset_classes.KvsAll.__len__", false]], "__len__() (dicee.dataset_classes.kvssampledataset method)": [[7, "dicee.dataset_classes.KvsSampleDataset.__len__", false]], "__len__() (dicee.dataset_classes.multiclassclassificationdataset method)": [[7, "dicee.dataset_classes.MultiClassClassificationDataset.__len__", false]], "__len__() (dicee.dataset_classes.multilabeldataset method)": [[7, "dicee.dataset_classes.MultiLabelDataset.__len__", false]], "__len__() (dicee.dataset_classes.negsampledataset method)": [[7, "dicee.dataset_classes.NegSampleDataset.__len__", false]], "__len__() (dicee.dataset_classes.onevsalldataset method)": [[7, "dicee.dataset_classes.OnevsAllDataset.__len__", false]], "__len__() (dicee.dataset_classes.onevssample method)": [[7, "dicee.dataset_classes.OnevsSample.__len__", false]], "__len__() (dicee.dataset_classes.triplepredictiondataset method)": [[7, "dicee.dataset_classes.TriplePredictionDataset.__len__", false]], "__len__() (dicee.ensemblekge method)": [[11, "dicee.EnsembleKGE.__len__", false]], "__len__() (dicee.knowledge_graph.kg method)": [[12, "dicee.knowledge_graph.KG.__len__", false]], "__len__() (dicee.kvsall method)": [[11, "dicee.KvsAll.__len__", false]], "__len__() (dicee.kvssampledataset method)": [[11, "dicee.KvsSampleDataset.__len__", false]], "__len__() (dicee.models.ensemble.ensemblekge method)": [[19, "dicee.models.ensemble.EnsembleKGE.__len__", false]], "__len__() (dicee.multiclassclassificationdataset method)": [[11, "dicee.MultiClassClassificationDataset.__len__", false]], "__len__() (dicee.multilabeldataset method)": [[11, "dicee.MultiLabelDataset.__len__", false]], "__len__() (dicee.negsampledataset method)": [[11, "dicee.NegSampleDataset.__len__", false]], "__len__() (dicee.onevsalldataset method)": [[11, "dicee.OnevsAllDataset.__len__", false]], "__len__() (dicee.onevssample method)": [[11, "dicee.OnevsSample.__len__", false]], "__len__() (dicee.triplepredictiondataset method)": [[11, "dicee.TriplePredictionDataset.__len__", false]], "__setstate__() (dicee.models.adopt method)": [[21, "dicee.models.ADOPT.__setstate__", false]], "__setstate__() (dicee.models.adopt.adopt method)": [[14, "dicee.models.adopt.ADOPT.__setstate__", false]], "__str__() (dicee.ensemblekge method)": [[11, "dicee.EnsembleKGE.__str__", false]], "__str__() (dicee.kge method)": [[11, "dicee.KGE.__str__", false]], "__str__() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.__str__", false]], "__str__() (dicee.models.ensemble.ensemblekge method)": [[19, "dicee.models.ensemble.EnsembleKGE.__str__", false]], "__version__ (in module dicee)": [[11, "dicee.__version__", false]], "abstractcallback (class in dicee.abstracts)": [[3, "dicee.abstracts.AbstractCallback", false]], "abstractppecallback (class in dicee.abstracts)": [[3, "dicee.abstracts.AbstractPPECallback", false]], "abstracttrainer (class in dicee.abstracts)": [[3, "dicee.abstracts.AbstractTrainer", false]], "accumulateepochlosscallback (class in dicee.callbacks)": [[5, "dicee.callbacks.AccumulateEpochLossCallback", false]], "achieve_answer() (dicee.query_generator.querygenerator method)": [[28, "dicee.query_generator.QueryGenerator.achieve_answer", false]], "achieve_answer() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.achieve_answer", false]], "aconex (class in dicee)": [[11, "dicee.AConEx", false]], "aconex (class in dicee.models)": [[21, "dicee.models.AConEx", false]], "aconex (class in dicee.models.complex)": [[17, "dicee.models.complex.AConEx", false]], "aconvo (class in dicee)": [[11, "dicee.AConvO", false]], "aconvo (class in dicee.models)": [[21, "dicee.models.AConvO", false]], "aconvo (class in dicee.models.octonion)": [[22, "dicee.models.octonion.AConvO", false]], "aconvq (class in dicee)": [[11, "dicee.AConvQ", false]], "aconvq (class in dicee.models)": [[21, "dicee.models.AConvQ", false]], "aconvq (class in dicee.models.quaternion)": [[24, "dicee.models.quaternion.AConvQ", false]], "adaptive_swa (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.adaptive_swa", false]], "add_new_entity_embeddings() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.add_new_entity_embeddings", false]], "add_noise_rate (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.add_noise_rate", false]], "add_noise_rate (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.add_noise_rate", false]], "add_noisy_triples() (in module dicee)": [[11, "dicee.add_noisy_triples", false]], "add_noisy_triples() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.add_noisy_triples", false]], "add_noisy_triples_into_training() (dicee.read_preprocess_save_load_kg.read_from_disk.readfromdisk method)": [[31, "dicee.read_preprocess_save_load_kg.read_from_disk.ReadFromDisk.add_noisy_triples_into_training", false]], "add_noisy_triples_into_training() (dicee.read_preprocess_save_load_kg.readfromdisk method)": [[29, "dicee.read_preprocess_save_load_kg.ReadFromDisk.add_noisy_triples_into_training", false]], "add_reciprocal (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.add_reciprocal", false]], "adopt (class in dicee.models)": [[21, "dicee.models.ADOPT", false]], "adopt (class in dicee.models.adopt)": [[14, "dicee.models.adopt.ADOPT", false]], "adopt() (in module dicee.models.adopt)": [[14, "dicee.models.adopt.adopt", false]], "allvsall (class in dicee)": [[11, "dicee.AllvsAll", false]], "allvsall (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.AllvsAll", false]], "alphas (dicee.abstracts.abstractppecallback attribute)": [[3, "dicee.abstracts.AbstractPPECallback.alphas", false]], "alphas (dicee.callbacks.aswa attribute)": [[5, "dicee.callbacks.ASWA.alphas", false]], "analyse() (in module dicee.analyse_experiments)": [[4, "dicee.analyse_experiments.analyse", false]], "answer_multi_hop_query() (dicee.kge method)": [[11, "dicee.KGE.answer_multi_hop_query", false]], "answer_multi_hop_query() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.answer_multi_hop_query", false]], "app (in module dicee.scripts.serve)": [[38, "dicee.scripts.serve.app", false]], "apply_coefficients() (dicee.decal method)": [[11, "dicee.DeCaL.apply_coefficients", false]], "apply_coefficients() (dicee.keci method)": [[11, "dicee.Keci.apply_coefficients", false]], "apply_coefficients() (dicee.models.clifford.decal method)": [[16, "dicee.models.clifford.DeCaL.apply_coefficients", false]], "apply_coefficients() (dicee.models.clifford.keci method)": [[16, "dicee.models.clifford.Keci.apply_coefficients", false]], "apply_coefficients() (dicee.models.decal method)": [[21, "dicee.models.DeCaL.apply_coefficients", false]], "apply_coefficients() (dicee.models.keci method)": [[21, "dicee.models.Keci.apply_coefficients", false]], "apply_reciprical_or_noise() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.apply_reciprical_or_noise", false]], "apply_semantic_constraint (dicee.abstracts.baseinteractivekge attribute)": [[3, "dicee.abstracts.BaseInteractiveKGE.apply_semantic_constraint", false]], "apply_unit_norm (dicee.basekge attribute)": [[11, "dicee.BaseKGE.apply_unit_norm", false]], "apply_unit_norm (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.apply_unit_norm", false]], "apply_unit_norm (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.apply_unit_norm", false], [21, "id11", false], [21, "id141", false], [21, "id192", false], [21, "id234", false], [21, "id53", false], [21, "id95", false]], "args (dicee.basekge attribute)": [[11, "dicee.BaseKGE.args", false]], "args (dicee.dice_trainer attribute)": [[11, "dicee.DICE_Trainer.args", false]], "args (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.args", false]], "args (dicee.execute attribute)": [[11, "dicee.Execute.args", false]], "args (dicee.executer.execute attribute)": [[10, "dicee.executer.Execute.args", false]], "args (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.args", false]], "args (dicee.models.base_model.identityclass attribute)": [[15, "dicee.models.base_model.IdentityClass.args", false]], "args (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.args", false], [21, "id135", false], [21, "id186", false], [21, "id228", false], [21, "id47", false], [21, "id5", false], [21, "id89", false]], "args (dicee.models.identityclass attribute)": [[21, "dicee.models.IdentityClass.args", false], [21, "id131", false], [21, "id177", false]], "args (dicee.models.pykeen_models.pykeenkge attribute)": [[23, "dicee.models.pykeen_models.PykeenKGE.args", false]], "args (dicee.models.pykeenkge attribute)": [[21, "dicee.models.PykeenKGE.args", false]], "args (dicee.pykeenkge attribute)": [[11, "dicee.PykeenKGE.args", false]], "args (dicee.trainer.dice_trainer attribute)": [[43, "dicee.trainer.DICE_Trainer.args", false]], "args (dicee.trainer.dice_trainer.dice_trainer attribute)": [[42, "dicee.trainer.dice_trainer.DICE_Trainer.args", false]], "aswa (class in dicee.callbacks)": [[5, "dicee.callbacks.ASWA", false]], "aswa (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.aswa", false]], "attn (dicee.models.transformers.block attribute)": [[27, "dicee.models.transformers.Block.attn", false]], "attn_dropout (dicee.models.transformers.causalselfattention attribute)": [[27, "dicee.models.transformers.CausalSelfAttention.attn_dropout", false]], "attributes (dicee.abstracts.abstracttrainer attribute)": [[3, "dicee.abstracts.AbstractTrainer.attributes", false]], "backend (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.backend", false]], "backend (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.backend", false]], "baseinteractivekge (class in dicee.abstracts)": [[3, "dicee.abstracts.BaseInteractiveKGE", false]], "basekge (class in dicee)": [[11, "dicee.BaseKGE", false]], "basekge (class in dicee.models)": [[21, "dicee.models.BaseKGE", false], [21, "id0", false], [21, "id134", false], [21, "id185", false], [21, "id227", false], [21, "id46", false], [21, "id88", false]], "basekge (class in dicee.models.base_model)": [[15, "dicee.models.base_model.BaseKGE", false]], "basekgelightning (class in dicee.models)": [[21, "dicee.models.BaseKGELightning", false]], "basekgelightning (class in dicee.models.base_model)": [[15, "dicee.models.base_model.BaseKGELightning", false]], "batch_kronecker_product() (dicee.callbacks.krone static method)": [[5, "dicee.callbacks.KronE.batch_kronecker_product", false]], "batch_size (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.batch_size", false]], "batch_size (dicee.callbacks.pseudolabellingcallback attribute)": [[5, "dicee.callbacks.PseudoLabellingCallback.batch_size", false]], "batch_size (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.batch_size", false]], "batch_size (dicee.cvdatamodule attribute)": [[11, "dicee.CVDataModule.batch_size", false]], "batch_size (dicee.dataset_classes.cvdatamodule attribute)": [[7, "dicee.dataset_classes.CVDataModule.batch_size", false]], "bias (dicee.models.transformers.gptconfig attribute)": [[27, "dicee.models.transformers.GPTConfig.bias", false]], "bias (dicee.models.transformers.layernorm attribute)": [[27, "dicee.models.transformers.LayerNorm.bias", false]], "block (class in dicee.models.transformers)": [[27, "dicee.models.transformers.Block", false]], "block_size (dicee.basekge attribute)": [[11, "dicee.BaseKGE.block_size", false]], "block_size (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.block_size", false]], "block_size (dicee.dataset_classes.multiclassclassificationdataset attribute)": [[7, "dicee.dataset_classes.MultiClassClassificationDataset.block_size", false]], "block_size (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.block_size", false]], "block_size (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.block_size", false], [21, "id117", false], [21, "id163", false], [21, "id214", false], [21, "id256", false], [21, "id33", false], [21, "id75", false]], "block_size (dicee.models.transformers.gptconfig attribute)": [[27, "dicee.models.transformers.GPTConfig.block_size", false]], "block_size (dicee.multiclassclassificationdataset attribute)": [[11, "dicee.MultiClassClassificationDataset.block_size", false]], "bn_conv1 (dicee.aconvq attribute)": [[11, "dicee.AConvQ.bn_conv1", false]], "bn_conv1 (dicee.convq attribute)": [[11, "dicee.ConvQ.bn_conv1", false]], "bn_conv1 (dicee.models.aconvq attribute)": [[21, "dicee.models.AConvQ.bn_conv1", false]], "bn_conv1 (dicee.models.convq attribute)": [[21, "dicee.models.ConvQ.bn_conv1", false]], "bn_conv1 (dicee.models.quaternion.aconvq attribute)": [[24, "dicee.models.quaternion.AConvQ.bn_conv1", false]], "bn_conv1 (dicee.models.quaternion.convq attribute)": [[24, "dicee.models.quaternion.ConvQ.bn_conv1", false]], "bn_conv2 (dicee.aconvq attribute)": [[11, "dicee.AConvQ.bn_conv2", false]], "bn_conv2 (dicee.convq attribute)": [[11, "dicee.ConvQ.bn_conv2", false]], "bn_conv2 (dicee.models.aconvq attribute)": [[21, "dicee.models.AConvQ.bn_conv2", false]], "bn_conv2 (dicee.models.convq attribute)": [[21, "dicee.models.ConvQ.bn_conv2", false]], "bn_conv2 (dicee.models.quaternion.aconvq attribute)": [[24, "dicee.models.quaternion.AConvQ.bn_conv2", false]], "bn_conv2 (dicee.models.quaternion.convq attribute)": [[24, "dicee.models.quaternion.ConvQ.bn_conv2", false]], "bn_conv2d (dicee.aconex attribute)": [[11, "dicee.AConEx.bn_conv2d", false]], "bn_conv2d (dicee.aconvo attribute)": [[11, "dicee.AConvO.bn_conv2d", false]], "bn_conv2d (dicee.conex attribute)": [[11, "dicee.ConEx.bn_conv2d", false]], "bn_conv2d (dicee.convo attribute)": [[11, "dicee.ConvO.bn_conv2d", false]], "bn_conv2d (dicee.models.aconex attribute)": [[21, "dicee.models.AConEx.bn_conv2d", false]], "bn_conv2d (dicee.models.aconvo attribute)": [[21, "dicee.models.AConvO.bn_conv2d", false]], "bn_conv2d (dicee.models.complex.aconex attribute)": [[17, "dicee.models.complex.AConEx.bn_conv2d", false]], "bn_conv2d (dicee.models.complex.conex attribute)": [[17, "dicee.models.complex.ConEx.bn_conv2d", false]], "bn_conv2d (dicee.models.conex attribute)": [[21, "dicee.models.ConEx.bn_conv2d", false]], "bn_conv2d (dicee.models.convo attribute)": [[21, "dicee.models.ConvO.bn_conv2d", false]], "bn_conv2d (dicee.models.octonion.aconvo attribute)": [[22, "dicee.models.octonion.AConvO.bn_conv2d", false]], "bn_conv2d (dicee.models.octonion.convo attribute)": [[22, "dicee.models.octonion.ConvO.bn_conv2d", false]], "bpe_negativesamplingdataset (class in dicee)": [[11, "dicee.BPE_NegativeSamplingDataset", false]], "bpe_negativesamplingdataset (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset", false]], "build_chain_funcs() (dicee.models.fmult2 method)": [[21, "dicee.models.FMult2.build_chain_funcs", false]], "build_chain_funcs() (dicee.models.function_space.fmult2 method)": [[20, "dicee.models.function_space.FMult2.build_chain_funcs", false]], "build_func() (dicee.models.fmult2 method)": [[21, "dicee.models.FMult2.build_func", false]], "build_func() (dicee.models.function_space.fmult2 method)": [[20, "dicee.models.function_space.FMult2.build_func", false]], "byte (class in dicee)": [[11, "dicee.BytE", false]], "byte (class in dicee.models.transformers)": [[27, "dicee.models.transformers.BytE", false]], "byte_pair_encoding (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.byte_pair_encoding", false]], "byte_pair_encoding (dicee.basekge attribute)": [[11, "dicee.BaseKGE.byte_pair_encoding", false]], "byte_pair_encoding (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.byte_pair_encoding", false]], "byte_pair_encoding (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.byte_pair_encoding", false]], "byte_pair_encoding (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.byte_pair_encoding", false]], "byte_pair_encoding (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.byte_pair_encoding", false], [21, "id115", false], [21, "id161", false], [21, "id212", false], [21, "id254", false], [21, "id31", false], [21, "id73", false]], "c_attn (dicee.models.transformers.causalselfattention attribute)": [[27, "dicee.models.transformers.CausalSelfAttention.c_attn", false]], "c_fc (dicee.models.transformers.mlp attribute)": [[27, "dicee.models.transformers.MLP.c_fc", false]], "c_proj (dicee.models.transformers.causalselfattention attribute)": [[27, "dicee.models.transformers.CausalSelfAttention.c_proj", false]], "c_proj (dicee.models.transformers.mlp attribute)": [[27, "dicee.models.transformers.MLP.c_proj", false]], "callbacks (dicee.abstracts.abstracttrainer attribute)": [[3, "dicee.abstracts.AbstractTrainer.callbacks", false]], "callbacks (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.callbacks", false]], "callbacks (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.callbacks", false]], "callbacks (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[46, "dicee.trainer.torch_trainer_ddp.NodeTrainer.callbacks", false]], "causalselfattention (class in dicee.models.transformers)": [[27, "dicee.models.transformers.CausalSelfAttention", false]], "chain_func() (dicee.models.fmult method)": [[21, "dicee.models.FMult.chain_func", false]], "chain_func() (dicee.models.function_space.fmult method)": [[20, "dicee.models.function_space.FMult.chain_func", false]], "chain_func() (dicee.models.function_space.gfmult method)": [[20, "dicee.models.function_space.GFMult.chain_func", false]], "chain_func() (dicee.models.gfmult method)": [[21, "dicee.models.GFMult.chain_func", false]], "cl_pqr() (dicee.decal method)": [[11, "dicee.DeCaL.cl_pqr", false]], "cl_pqr() (dicee.models.clifford.decal method)": [[16, "dicee.models.clifford.DeCaL.cl_pqr", false]], "cl_pqr() (dicee.models.decal method)": [[21, "dicee.models.DeCaL.cl_pqr", false]], "clifford_multiplication() (dicee.keci method)": [[11, "dicee.Keci.clifford_multiplication", false]], "clifford_multiplication() (dicee.models.clifford.keci method)": [[16, "dicee.models.clifford.Keci.clifford_multiplication", false]], "clifford_multiplication() (dicee.models.keci method)": [[21, "dicee.models.Keci.clifford_multiplication", false]], "clip_lambda (dicee.models.adopt attribute)": [[21, "dicee.models.ADOPT.clip_lambda", false]], "clip_lambda (dicee.models.adopt.adopt attribute)": [[14, "dicee.models.adopt.ADOPT.clip_lambda", false]], "collate_fn (dicee.allvsall attribute)": [[11, "dicee.AllvsAll.collate_fn", false]], "collate_fn (dicee.dataset_classes.allvsall attribute)": [[7, "dicee.dataset_classes.AllvsAll.collate_fn", false]], "collate_fn (dicee.dataset_classes.kvsall attribute)": [[7, "dicee.dataset_classes.KvsAll.collate_fn", false]], "collate_fn (dicee.dataset_classes.kvssampledataset attribute)": [[7, "dicee.dataset_classes.KvsSampleDataset.collate_fn", false]], "collate_fn (dicee.dataset_classes.multiclassclassificationdataset attribute)": [[7, "dicee.dataset_classes.MultiClassClassificationDataset.collate_fn", false]], "collate_fn (dicee.dataset_classes.multilabeldataset attribute)": [[7, "dicee.dataset_classes.MultiLabelDataset.collate_fn", false]], "collate_fn (dicee.dataset_classes.onevsalldataset attribute)": [[7, "dicee.dataset_classes.OnevsAllDataset.collate_fn", false]], "collate_fn (dicee.dataset_classes.onevssample attribute)": [[7, "dicee.dataset_classes.OnevsSample.collate_fn", false], [7, "id5", false]], "collate_fn (dicee.kvsall attribute)": [[11, "dicee.KvsAll.collate_fn", false]], "collate_fn (dicee.kvssampledataset attribute)": [[11, "dicee.KvsSampleDataset.collate_fn", false]], "collate_fn (dicee.multiclassclassificationdataset attribute)": [[11, "dicee.MultiClassClassificationDataset.collate_fn", false]], "collate_fn (dicee.multilabeldataset attribute)": [[11, "dicee.MultiLabelDataset.collate_fn", false]], "collate_fn (dicee.onevsalldataset attribute)": [[11, "dicee.OnevsAllDataset.collate_fn", false]], "collate_fn (dicee.onevssample attribute)": [[11, "dicee.OnevsSample.collate_fn", false], [11, "id31", false]], "collate_fn() (dicee.bpe_negativesamplingdataset method)": [[11, "dicee.BPE_NegativeSamplingDataset.collate_fn", false]], "collate_fn() (dicee.dataset_classes.bpe_negativesamplingdataset method)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset.collate_fn", false]], "collate_fn() (dicee.dataset_classes.triplepredictiondataset method)": [[7, "dicee.dataset_classes.TriplePredictionDataset.collate_fn", false]], "collate_fn() (dicee.triplepredictiondataset method)": [[11, "dicee.TriplePredictionDataset.collate_fn", false]], "collection_name (dicee.scripts.serve.neuralsearcher attribute)": [[38, "dicee.scripts.serve.NeuralSearcher.collection_name", false]], "comp_func() (dicee.lfmult method)": [[11, "dicee.LFMult.comp_func", false]], "comp_func() (dicee.models.function_space.lfmult method)": [[20, "dicee.models.function_space.LFMult.comp_func", false]], "comp_func() (dicee.models.lfmult method)": [[21, "dicee.models.LFMult.comp_func", false]], "complex (class in dicee)": [[11, "dicee.ComplEx", false]], "complex (class in dicee.models)": [[21, "dicee.models.ComplEx", false]], "complex (class in dicee.models.complex)": [[17, "dicee.models.complex.ComplEx", false]], "compute_convergence() (in module dicee.callbacks)": [[5, "dicee.callbacks.compute_convergence", false]], "compute_func() (dicee.models.fmult method)": [[21, "dicee.models.FMult.compute_func", false]], "compute_func() (dicee.models.fmult2 method)": [[21, "dicee.models.FMult2.compute_func", false]], "compute_func() (dicee.models.function_space.fmult method)": [[20, "dicee.models.function_space.FMult.compute_func", false]], "compute_func() (dicee.models.function_space.fmult2 method)": [[20, "dicee.models.function_space.FMult2.compute_func", false]], "compute_func() (dicee.models.function_space.gfmult method)": [[20, "dicee.models.function_space.GFMult.compute_func", false]], "compute_func() (dicee.models.gfmult method)": [[21, "dicee.models.GFMult.compute_func", false]], "compute_mrr() (dicee.callbacks.aswa static method)": [[5, "dicee.callbacks.ASWA.compute_mrr", false]], "compute_sigma_pp() (dicee.decal method)": [[11, "dicee.DeCaL.compute_sigma_pp", false]], "compute_sigma_pp() (dicee.keci method)": [[11, "dicee.Keci.compute_sigma_pp", false]], "compute_sigma_pp() (dicee.models.clifford.decal method)": [[16, "dicee.models.clifford.DeCaL.compute_sigma_pp", false]], "compute_sigma_pp() (dicee.models.clifford.keci method)": [[16, "dicee.models.clifford.Keci.compute_sigma_pp", false]], "compute_sigma_pp() (dicee.models.decal method)": [[21, "dicee.models.DeCaL.compute_sigma_pp", false]], "compute_sigma_pp() (dicee.models.keci method)": [[21, "dicee.models.Keci.compute_sigma_pp", false]], "compute_sigma_pq() (dicee.decal method)": [[11, "dicee.DeCaL.compute_sigma_pq", false]], "compute_sigma_pq() (dicee.keci method)": [[11, "dicee.Keci.compute_sigma_pq", false]], "compute_sigma_pq() (dicee.models.clifford.decal method)": [[16, "dicee.models.clifford.DeCaL.compute_sigma_pq", false]], "compute_sigma_pq() (dicee.models.clifford.keci method)": [[16, "dicee.models.clifford.Keci.compute_sigma_pq", false]], "compute_sigma_pq() (dicee.models.decal method)": [[21, "dicee.models.DeCaL.compute_sigma_pq", false]], "compute_sigma_pq() (dicee.models.keci method)": [[21, "dicee.models.Keci.compute_sigma_pq", false]], "compute_sigma_pr() (dicee.decal method)": [[11, "dicee.DeCaL.compute_sigma_pr", false]], "compute_sigma_pr() (dicee.models.clifford.decal method)": [[16, "dicee.models.clifford.DeCaL.compute_sigma_pr", false]], "compute_sigma_pr() (dicee.models.decal method)": [[21, "dicee.models.DeCaL.compute_sigma_pr", false]], "compute_sigma_qq() (dicee.decal method)": [[11, "dicee.DeCaL.compute_sigma_qq", false]], "compute_sigma_qq() (dicee.keci method)": [[11, "dicee.Keci.compute_sigma_qq", false]], "compute_sigma_qq() (dicee.models.clifford.decal method)": [[16, "dicee.models.clifford.DeCaL.compute_sigma_qq", false]], "compute_sigma_qq() (dicee.models.clifford.keci method)": [[16, "dicee.models.clifford.Keci.compute_sigma_qq", false]], "compute_sigma_qq() (dicee.models.decal method)": [[21, "dicee.models.DeCaL.compute_sigma_qq", false]], "compute_sigma_qq() (dicee.models.keci method)": [[21, "dicee.models.Keci.compute_sigma_qq", false]], "compute_sigma_qr() (dicee.decal method)": [[11, "dicee.DeCaL.compute_sigma_qr", false]], "compute_sigma_qr() (dicee.models.clifford.decal method)": [[16, "dicee.models.clifford.DeCaL.compute_sigma_qr", false]], "compute_sigma_qr() (dicee.models.decal method)": [[21, "dicee.models.DeCaL.compute_sigma_qr", false]], "compute_sigma_rr() (dicee.decal method)": [[11, "dicee.DeCaL.compute_sigma_rr", false]], "compute_sigma_rr() (dicee.models.clifford.decal method)": [[16, "dicee.models.clifford.DeCaL.compute_sigma_rr", false]], "compute_sigma_rr() (dicee.models.decal method)": [[21, "dicee.models.DeCaL.compute_sigma_rr", false]], "compute_sigmas_multivect() (dicee.decal method)": [[11, "dicee.DeCaL.compute_sigmas_multivect", false]], "compute_sigmas_multivect() (dicee.models.clifford.decal method)": [[16, "dicee.models.clifford.DeCaL.compute_sigmas_multivect", false]], "compute_sigmas_multivect() (dicee.models.decal method)": [[21, "dicee.models.DeCaL.compute_sigmas_multivect", false]], "compute_sigmas_single() (dicee.decal method)": [[11, "dicee.DeCaL.compute_sigmas_single", false]], "compute_sigmas_single() (dicee.models.clifford.decal method)": [[16, "dicee.models.clifford.DeCaL.compute_sigmas_single", false]], "compute_sigmas_single() (dicee.models.decal method)": [[21, "dicee.models.DeCaL.compute_sigmas_single", false]], "conex (class in dicee)": [[11, "dicee.ConEx", false]], "conex (class in dicee.models)": [[21, "dicee.models.ConEx", false]], "conex (class in dicee.models.complex)": [[17, "dicee.models.complex.ConEx", false]], "config (dicee.byte attribute)": [[11, "dicee.BytE.config", false]], "config (dicee.models.transformers.byte attribute)": [[27, "dicee.models.transformers.BytE.config", false]], "config (dicee.models.transformers.gpt attribute)": [[27, "dicee.models.transformers.GPT.config", false]], "configs (dicee.abstracts.baseinteractivekge attribute)": [[3, "dicee.abstracts.BaseInteractiveKGE.configs", false]], "configure_optimizers() (dicee.models.base_model.basekgelightning method)": [[15, "dicee.models.base_model.BaseKGELightning.configure_optimizers", false]], "configure_optimizers() (dicee.models.basekgelightning method)": [[21, "dicee.models.BaseKGELightning.configure_optimizers", false]], "configure_optimizers() (dicee.models.transformers.gpt method)": [[27, "dicee.models.transformers.GPT.configure_optimizers", false]], "construct_batch_selected_cl_multivector() (dicee.keci method)": [[11, "dicee.Keci.construct_batch_selected_cl_multivector", false]], "construct_batch_selected_cl_multivector() (dicee.models.clifford.keci method)": [[16, "dicee.models.clifford.Keci.construct_batch_selected_cl_multivector", false]], "construct_batch_selected_cl_multivector() (dicee.models.keci method)": [[21, "dicee.models.Keci.construct_batch_selected_cl_multivector", false]], "construct_cl_multivector() (dicee.decal method)": [[11, "dicee.DeCaL.construct_cl_multivector", false]], "construct_cl_multivector() (dicee.keci method)": [[11, "dicee.Keci.construct_cl_multivector", false]], "construct_cl_multivector() (dicee.models.clifford.decal method)": [[16, "dicee.models.clifford.DeCaL.construct_cl_multivector", false]], "construct_cl_multivector() (dicee.models.clifford.keci method)": [[16, "dicee.models.clifford.Keci.construct_cl_multivector", false]], "construct_cl_multivector() (dicee.models.decal method)": [[21, "dicee.models.DeCaL.construct_cl_multivector", false]], "construct_cl_multivector() (dicee.models.keci method)": [[21, "dicee.models.Keci.construct_cl_multivector", false]], "construct_dataset() (in module dicee)": [[11, "dicee.construct_dataset", false]], "construct_dataset() (in module dicee.dataset_classes)": [[7, "dicee.dataset_classes.construct_dataset", false]], "construct_ensemble (dicee.abstracts.baseinteractivekge attribute)": [[3, "dicee.abstracts.BaseInteractiveKGE.construct_ensemble", false]], "construct_graph() (dicee.query_generator.querygenerator method)": [[28, "dicee.query_generator.QueryGenerator.construct_graph", false]], "construct_graph() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.construct_graph", false]], "construct_input_and_output() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.construct_input_and_output", false]], "construct_multi_coeff() (dicee.lfmult method)": [[11, "dicee.LFMult.construct_multi_coeff", false]], "construct_multi_coeff() (dicee.models.function_space.lfmult method)": [[20, "dicee.models.function_space.LFMult.construct_multi_coeff", false]], "construct_multi_coeff() (dicee.models.lfmult method)": [[21, "dicee.models.LFMult.construct_multi_coeff", false]], "continual_learning (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.continual_learning", false]], "continual_start() (dicee.dice_trainer method)": [[11, "dicee.DICE_Trainer.continual_start", false]], "continual_start() (dicee.executer.continuousexecute method)": [[10, "dicee.executer.ContinuousExecute.continual_start", false]], "continual_start() (dicee.trainer.dice_trainer method)": [[43, "dicee.trainer.DICE_Trainer.continual_start", false]], "continual_start() (dicee.trainer.dice_trainer.dice_trainer method)": [[42, "dicee.trainer.dice_trainer.DICE_Trainer.continual_start", false]], "continual_training_setup_executor() (in module dicee)": [[11, "dicee.continual_training_setup_executor", false]], "continual_training_setup_executor() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.continual_training_setup_executor", false]], "continuousexecute (class in dicee.executer)": [[10, "dicee.executer.ContinuousExecute", false]], "conv2d (dicee.aconex attribute)": [[11, "dicee.AConEx.conv2d", false]], "conv2d (dicee.aconvo attribute)": [[11, "dicee.AConvO.conv2d", false]], "conv2d (dicee.aconvq attribute)": [[11, "dicee.AConvQ.conv2d", false]], "conv2d (dicee.conex attribute)": [[11, "dicee.ConEx.conv2d", false]], "conv2d (dicee.convo attribute)": [[11, "dicee.ConvO.conv2d", false]], "conv2d (dicee.convq attribute)": [[11, "dicee.ConvQ.conv2d", false]], "conv2d (dicee.models.aconex attribute)": [[21, "dicee.models.AConEx.conv2d", false]], "conv2d (dicee.models.aconvo attribute)": [[21, "dicee.models.AConvO.conv2d", false]], "conv2d (dicee.models.aconvq attribute)": [[21, "dicee.models.AConvQ.conv2d", false]], "conv2d (dicee.models.complex.aconex attribute)": [[17, "dicee.models.complex.AConEx.conv2d", false]], "conv2d (dicee.models.complex.conex attribute)": [[17, "dicee.models.complex.ConEx.conv2d", false]], "conv2d (dicee.models.conex attribute)": [[21, "dicee.models.ConEx.conv2d", false]], "conv2d (dicee.models.convo attribute)": [[21, "dicee.models.ConvO.conv2d", false]], "conv2d (dicee.models.convq attribute)": [[21, "dicee.models.ConvQ.conv2d", false]], "conv2d (dicee.models.octonion.aconvo attribute)": [[22, "dicee.models.octonion.AConvO.conv2d", false]], "conv2d (dicee.models.octonion.convo attribute)": [[22, "dicee.models.octonion.ConvO.conv2d", false]], "conv2d (dicee.models.quaternion.aconvq attribute)": [[24, "dicee.models.quaternion.AConvQ.conv2d", false]], "conv2d (dicee.models.quaternion.convq attribute)": [[24, "dicee.models.quaternion.ConvQ.conv2d", false]], "convo (class in dicee)": [[11, "dicee.ConvO", false]], "convo (class in dicee.models)": [[21, "dicee.models.ConvO", false]], "convo (class in dicee.models.octonion)": [[22, "dicee.models.octonion.ConvO", false]], "convq (class in dicee)": [[11, "dicee.ConvQ", false]], "convq (class in dicee.models)": [[21, "dicee.models.ConvQ", false]], "convq (class in dicee.models.quaternion)": [[24, "dicee.models.quaternion.ConvQ", false]], "create_constraints() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.create_constraints", false]], "create_constraints() (in module dicee.static_preprocess_funcs)": [[41, "dicee.static_preprocess_funcs.create_constraints", false]], "create_experiment_folder() (in module dicee)": [[11, "dicee.create_experiment_folder", false]], "create_experiment_folder() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.create_experiment_folder", false]], "create_random_data() (dicee.callbacks.pseudolabellingcallback method)": [[5, "dicee.callbacks.PseudoLabellingCallback.create_random_data", false]], "create_recipriocal_triples() (in module dicee)": [[11, "dicee.create_recipriocal_triples", false]], "create_recipriocal_triples() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.create_recipriocal_triples", false]], "create_recipriocal_triples() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.create_recipriocal_triples", false]], "create_vector_database() (dicee.kge method)": [[11, "dicee.KGE.create_vector_database", false]], "create_vector_database() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.create_vector_database", false]], "crop_block_size() (dicee.models.transformers.gpt method)": [[27, "dicee.models.transformers.GPT.crop_block_size", false]], "ctx (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[46, "dicee.trainer.torch_trainer_ddp.NodeTrainer.ctx", false]], "cvdatamodule (class in dicee)": [[11, "dicee.CVDataModule", false]], "cvdatamodule (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.CVDataModule", false]], "data_module (dicee.callbacks.pseudolabellingcallback attribute)": [[5, "dicee.callbacks.PseudoLabellingCallback.data_module", false]], "dataset_dir (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.dataset_dir", false]], "dataset_dir (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.dataset_dir", false]], "dataset_sanity_checking() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.dataset_sanity_checking", false]], "decal (class in dicee)": [[11, "dicee.DeCaL", false]], "decal (class in dicee.models)": [[21, "dicee.models.DeCaL", false]], "decal (class in dicee.models.clifford)": [[16, "dicee.models.clifford.DeCaL", false]], "decide() (dicee.callbacks.aswa method)": [[5, "dicee.callbacks.ASWA.decide", false]], "degree (dicee.lfmult attribute)": [[11, "dicee.LFMult.degree", false]], "degree (dicee.models.function_space.lfmult attribute)": [[20, "dicee.models.function_space.LFMult.degree", false]], "degree (dicee.models.lfmult attribute)": [[21, "dicee.models.LFMult.degree", false]], "deploy() (dicee.kge method)": [[11, "dicee.KGE.deploy", false]], "deploy() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.deploy", false]], "deploy_head_entity_prediction() (in module dicee)": [[11, "dicee.deploy_head_entity_prediction", false]], "deploy_head_entity_prediction() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.deploy_head_entity_prediction", false]], "deploy_relation_prediction() (in module dicee)": [[11, "dicee.deploy_relation_prediction", false]], "deploy_relation_prediction() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.deploy_relation_prediction", false]], "deploy_tail_entity_prediction() (in module dicee)": [[11, "dicee.deploy_tail_entity_prediction", false]], "deploy_tail_entity_prediction() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.deploy_tail_entity_prediction", false]], "deploy_triple_prediction() (in module dicee)": [[11, "dicee.deploy_triple_prediction", false]], "deploy_triple_prediction() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.deploy_triple_prediction", false]], "dept_read_preprocess_index_serialize_data() (dicee.execute method)": [[11, "dicee.Execute.dept_read_preprocess_index_serialize_data", false]], "dept_read_preprocess_index_serialize_data() (dicee.executer.execute method)": [[10, "dicee.executer.Execute.dept_read_preprocess_index_serialize_data", false]], "describe() (dicee.knowledge_graph.kg method)": [[12, "dicee.knowledge_graph.KG.describe", false]], "description_of_input (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.description_of_input", false]], "dice_trainer (class in dicee)": [[11, "dicee.DICE_Trainer", false]], "dice_trainer (class in dicee.trainer)": [[43, "dicee.trainer.DICE_Trainer", false]], "dice_trainer (class in dicee.trainer.dice_trainer)": [[42, "dicee.trainer.dice_trainer.DICE_Trainer", false]], "dicee": [[11, "module-dicee", false]], "dicee.__main__": [[2, "module-dicee.__main__", false]], "dicee.abstracts": [[3, "module-dicee.abstracts", false]], "dicee.analyse_experiments": [[4, "module-dicee.analyse_experiments", false]], "dicee.callbacks": [[5, "module-dicee.callbacks", false]], "dicee.config": [[6, "module-dicee.config", false]], "dicee.dataset_classes": [[7, "module-dicee.dataset_classes", false]], "dicee.eval_static_funcs": [[8, "module-dicee.eval_static_funcs", false]], "dicee.evaluator": [[9, "module-dicee.evaluator", false]], "dicee.executer": [[10, "module-dicee.executer", false]], "dicee.knowledge_graph": [[12, "module-dicee.knowledge_graph", false]], "dicee.knowledge_graph_embeddings": [[13, "module-dicee.knowledge_graph_embeddings", false]], "dicee.models": [[21, "module-dicee.models", false]], "dicee.models.adopt": [[14, "module-dicee.models.adopt", false]], "dicee.models.base_model": [[15, "module-dicee.models.base_model", false]], "dicee.models.clifford": [[16, "module-dicee.models.clifford", false]], "dicee.models.complex": [[17, "module-dicee.models.complex", false]], "dicee.models.duale": [[18, "module-dicee.models.dualE", false]], "dicee.models.ensemble": [[19, "module-dicee.models.ensemble", false]], "dicee.models.function_space": [[20, "module-dicee.models.function_space", false]], "dicee.models.octonion": [[22, "module-dicee.models.octonion", false]], "dicee.models.pykeen_models": [[23, "module-dicee.models.pykeen_models", false]], "dicee.models.quaternion": [[24, "module-dicee.models.quaternion", false]], "dicee.models.real": [[25, "module-dicee.models.real", false]], "dicee.models.static_funcs": [[26, "module-dicee.models.static_funcs", false]], "dicee.models.transformers": [[27, "module-dicee.models.transformers", false]], "dicee.query_generator": [[28, "module-dicee.query_generator", false]], "dicee.read_preprocess_save_load_kg": [[29, "module-dicee.read_preprocess_save_load_kg", false]], "dicee.read_preprocess_save_load_kg.preprocess": [[30, "module-dicee.read_preprocess_save_load_kg.preprocess", false]], "dicee.read_preprocess_save_load_kg.read_from_disk": [[31, "module-dicee.read_preprocess_save_load_kg.read_from_disk", false]], "dicee.read_preprocess_save_load_kg.save_load_disk": [[32, "module-dicee.read_preprocess_save_load_kg.save_load_disk", false]], "dicee.read_preprocess_save_load_kg.util": [[33, "module-dicee.read_preprocess_save_load_kg.util", false]], "dicee.sanity_checkers": [[34, "module-dicee.sanity_checkers", false]], "dicee.scripts": [[35, "module-dicee.scripts", false]], "dicee.scripts.index": [[36, "module-dicee.scripts.index", false]], "dicee.scripts.run": [[37, "module-dicee.scripts.run", false]], "dicee.scripts.serve": [[38, "module-dicee.scripts.serve", false]], "dicee.static_funcs": [[39, "module-dicee.static_funcs", false]], "dicee.static_funcs_training": [[40, "module-dicee.static_funcs_training", false]], "dicee.static_preprocess_funcs": [[41, "module-dicee.static_preprocess_funcs", false]], "dicee.trainer": [[43, "module-dicee.trainer", false]], "dicee.trainer.dice_trainer": [[42, "module-dicee.trainer.dice_trainer", false]], "dicee.trainer.model_parallelism": [[44, "module-dicee.trainer.model_parallelism", false]], "dicee.trainer.torch_trainer": [[45, "module-dicee.trainer.torch_trainer", false]], "dicee.trainer.torch_trainer_ddp": [[46, "module-dicee.trainer.torch_trainer_ddp", false]], "discrete_points (dicee.models.fmult2 attribute)": [[21, "dicee.models.FMult2.discrete_points", false]], "discrete_points (dicee.models.function_space.fmult2 attribute)": [[20, "dicee.models.function_space.FMult2.discrete_points", false]], "dist_func (dicee.models.pyke attribute)": [[21, "dicee.models.Pyke.dist_func", false]], "dist_func (dicee.models.real.pyke attribute)": [[25, "dicee.models.real.Pyke.dist_func", false]], "dist_func (dicee.pyke attribute)": [[11, "dicee.Pyke.dist_func", false]], "distmult (class in dicee)": [[11, "dicee.DistMult", false]], "distmult (class in dicee.models)": [[21, "dicee.models.DistMult", false]], "distmult (class in dicee.models.real)": [[25, "dicee.models.real.DistMult", false]], "download_file() (in module dicee)": [[11, "dicee.download_file", false]], "download_file() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.download_file", false]], "download_files_from_url() (in module dicee)": [[11, "dicee.download_files_from_url", false]], "download_files_from_url() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.download_files_from_url", false]], "download_pretrained_model() (in module dicee)": [[11, "dicee.download_pretrained_model", false]], "download_pretrained_model() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.download_pretrained_model", false]], "dropout (dicee.models.transformers.causalselfattention attribute)": [[27, "dicee.models.transformers.CausalSelfAttention.dropout", false]], "dropout (dicee.models.transformers.gptconfig attribute)": [[27, "dicee.models.transformers.GPTConfig.dropout", false]], "dropout (dicee.models.transformers.mlp attribute)": [[27, "dicee.models.transformers.MLP.dropout", false]], "duale (class in dicee)": [[11, "dicee.DualE", false]], "duale (class in dicee.models)": [[21, "dicee.models.DualE", false]], "duale (class in dicee.models.duale)": [[18, "dicee.models.dualE.DualE", false]], "dummy_eval() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.dummy_eval", false]], "dummy_id (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.dummy_id", false]], "during_training (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.during_training", false]], "ee_vocab (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.ee_vocab", false]], "efficient_zero_grad() (in module dicee.static_funcs_training)": [[40, "dicee.static_funcs_training.efficient_zero_grad", false]], "embedding_dim (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.embedding_dim", false]], "embedding_dim (dicee.basekge attribute)": [[11, "dicee.BaseKGE.embedding_dim", false]], "embedding_dim (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.embedding_dim", false]], "embedding_dim (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.embedding_dim", false]], "embedding_dim (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.embedding_dim", false], [21, "id136", false], [21, "id187", false], [21, "id229", false], [21, "id48", false], [21, "id6", false], [21, "id90", false]], "enable_log (in module dicee.static_preprocess_funcs)": [[41, "dicee.static_preprocess_funcs.enable_log", false]], "enc (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.enc", false]], "end() (dicee.execute method)": [[11, "dicee.Execute.end", false]], "end() (dicee.executer.execute method)": [[10, "dicee.executer.Execute.end", false]], "ensemblekge (class in dicee)": [[11, "dicee.EnsembleKGE", false]], "ensemblekge (class in dicee.models.ensemble)": [[19, "dicee.models.ensemble.EnsembleKGE", false]], "ent2id (dicee.query_generator.querygenerator attribute)": [[28, "dicee.query_generator.QueryGenerator.ent2id", false]], "ent2id (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.ent2id", false]], "ent_in (dicee.query_generator.querygenerator attribute)": [[28, "dicee.query_generator.QueryGenerator.ent_in", false]], "ent_in (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.ent_in", false]], "ent_out (dicee.query_generator.querygenerator attribute)": [[28, "dicee.query_generator.QueryGenerator.ent_out", false]], "ent_out (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.ent_out", false]], "entities_str (dicee.knowledge_graph.kg property)": [[12, "dicee.knowledge_graph.KG.entities_str", false]], "entity_embeddings (dicee.aconvq attribute)": [[11, "dicee.AConvQ.entity_embeddings", false]], "entity_embeddings (dicee.convq attribute)": [[11, "dicee.ConvQ.entity_embeddings", false]], "entity_embeddings (dicee.decal attribute)": [[11, "dicee.DeCaL.entity_embeddings", false]], "entity_embeddings (dicee.duale attribute)": [[11, "dicee.DualE.entity_embeddings", false]], "entity_embeddings (dicee.lfmult attribute)": [[11, "dicee.LFMult.entity_embeddings", false]], "entity_embeddings (dicee.models.aconvq attribute)": [[21, "dicee.models.AConvQ.entity_embeddings", false]], "entity_embeddings (dicee.models.clifford.decal attribute)": [[16, "dicee.models.clifford.DeCaL.entity_embeddings", false]], "entity_embeddings (dicee.models.convq attribute)": [[21, "dicee.models.ConvQ.entity_embeddings", false]], "entity_embeddings (dicee.models.decal attribute)": [[21, "dicee.models.DeCaL.entity_embeddings", false]], "entity_embeddings (dicee.models.duale attribute)": [[21, "dicee.models.DualE.entity_embeddings", false]], "entity_embeddings (dicee.models.duale.duale attribute)": [[18, "dicee.models.dualE.DualE.entity_embeddings", false]], "entity_embeddings (dicee.models.fmult attribute)": [[21, "dicee.models.FMult.entity_embeddings", false]], "entity_embeddings (dicee.models.fmult2 attribute)": [[21, "dicee.models.FMult2.entity_embeddings", false]], "entity_embeddings (dicee.models.function_space.fmult attribute)": [[20, "dicee.models.function_space.FMult.entity_embeddings", false]], "entity_embeddings (dicee.models.function_space.fmult2 attribute)": [[20, "dicee.models.function_space.FMult2.entity_embeddings", false]], "entity_embeddings (dicee.models.function_space.gfmult attribute)": [[20, "dicee.models.function_space.GFMult.entity_embeddings", false]], "entity_embeddings (dicee.models.function_space.lfmult attribute)": [[20, "dicee.models.function_space.LFMult.entity_embeddings", false]], "entity_embeddings (dicee.models.function_space.lfmult1 attribute)": [[20, "dicee.models.function_space.LFMult1.entity_embeddings", false]], "entity_embeddings (dicee.models.gfmult attribute)": [[21, "dicee.models.GFMult.entity_embeddings", false]], "entity_embeddings (dicee.models.lfmult attribute)": [[21, "dicee.models.LFMult.entity_embeddings", false]], "entity_embeddings (dicee.models.lfmult1 attribute)": [[21, "dicee.models.LFMult1.entity_embeddings", false]], "entity_embeddings (dicee.models.pykeen_models.pykeenkge attribute)": [[23, "dicee.models.pykeen_models.PykeenKGE.entity_embeddings", false]], "entity_embeddings (dicee.models.pykeenkge attribute)": [[21, "dicee.models.PykeenKGE.entity_embeddings", false]], "entity_embeddings (dicee.models.quaternion.aconvq attribute)": [[24, "dicee.models.quaternion.AConvQ.entity_embeddings", false]], "entity_embeddings (dicee.models.quaternion.convq attribute)": [[24, "dicee.models.quaternion.ConvQ.entity_embeddings", false]], "entity_embeddings (dicee.pykeenkge attribute)": [[11, "dicee.PykeenKGE.entity_embeddings", false]], "entity_to_idx (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.entity_to_idx", false]], "epoch_count (dicee.abstracts.abstractppecallback attribute)": [[3, "dicee.abstracts.AbstractPPECallback.epoch_count", false]], "epoch_count (dicee.callbacks.aswa attribute)": [[5, "dicee.callbacks.ASWA.epoch_count", false]], "epoch_counter (dicee.callbacks.eval attribute)": [[5, "dicee.callbacks.Eval.epoch_counter", false]], "epoch_counter (dicee.callbacks.kgesavecallback attribute)": [[5, "dicee.callbacks.KGESaveCallback.epoch_counter", false]], "epoch_ratio (dicee.callbacks.eval attribute)": [[5, "dicee.callbacks.Eval.epoch_ratio", false]], "er_vocab (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.er_vocab", false]], "estimate_mfu() (dicee.models.transformers.gpt method)": [[27, "dicee.models.transformers.GPT.estimate_mfu", false]], "estimate_q() (in module dicee.callbacks)": [[5, "dicee.callbacks.estimate_q", false]], "eval (class in dicee.callbacks)": [[5, "dicee.callbacks.Eval", false]], "eval() (dicee.ensemblekge method)": [[11, "dicee.EnsembleKGE.eval", false]], "eval() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.eval", false]], "eval() (dicee.models.ensemble.ensemblekge method)": [[19, "dicee.models.ensemble.EnsembleKGE.eval", false]], "eval_lp_performance() (dicee.kge method)": [[11, "dicee.KGE.eval_lp_performance", false]], "eval_lp_performance() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.eval_lp_performance", false]], "eval_model (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.eval_model", false]], "eval_model (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.eval_model", false]], "eval_rank_of_head_and_tail_byte_pair_encoded_entity() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.eval_rank_of_head_and_tail_byte_pair_encoded_entity", false]], "eval_rank_of_head_and_tail_entity() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.eval_rank_of_head_and_tail_entity", false]], "eval_with_bpe_vs_all() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.eval_with_bpe_vs_all", false]], "eval_with_byte() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.eval_with_byte", false]], "eval_with_data() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.eval_with_data", false]], "eval_with_vs_all() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.eval_with_vs_all", false]], "evaluate() (in module dicee)": [[11, "dicee.evaluate", false]], "evaluate() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.evaluate", false]], "evaluate_bpe_lp() (in module dicee.static_funcs_training)": [[40, "dicee.static_funcs_training.evaluate_bpe_lp", false]], "evaluate_link_prediction_performance() (in module dicee.eval_static_funcs)": [[8, "dicee.eval_static_funcs.evaluate_link_prediction_performance", false]], "evaluate_link_prediction_performance_with_bpe() (in module dicee.eval_static_funcs)": [[8, "dicee.eval_static_funcs.evaluate_link_prediction_performance_with_bpe", false]], "evaluate_link_prediction_performance_with_bpe_reciprocals() (in module dicee.eval_static_funcs)": [[8, "dicee.eval_static_funcs.evaluate_link_prediction_performance_with_bpe_reciprocals", false]], "evaluate_link_prediction_performance_with_reciprocals() (in module dicee.eval_static_funcs)": [[8, "dicee.eval_static_funcs.evaluate_link_prediction_performance_with_reciprocals", false]], "evaluate_lp() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.evaluate_lp", false]], "evaluate_lp() (in module dicee.static_funcs_training)": [[40, "dicee.static_funcs_training.evaluate_lp", false]], "evaluate_lp_bpe_k_vs_all() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.evaluate_lp_bpe_k_vs_all", false]], "evaluate_lp_bpe_k_vs_all() (in module dicee.eval_static_funcs)": [[8, "dicee.eval_static_funcs.evaluate_lp_bpe_k_vs_all", false]], "evaluate_lp_k_vs_all() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.evaluate_lp_k_vs_all", false]], "evaluate_lp_with_byte() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.evaluate_lp_with_byte", false]], "evaluator (class in dicee.evaluator)": [[9, "dicee.evaluator.Evaluator", false]], "evaluator (dicee.dice_trainer attribute)": [[11, "dicee.DICE_Trainer.evaluator", false]], "evaluator (dicee.execute attribute)": [[11, "dicee.Execute.evaluator", false]], "evaluator (dicee.executer.execute attribute)": [[10, "dicee.executer.Execute.evaluator", false]], "evaluator (dicee.trainer.dice_trainer attribute)": [[43, "dicee.trainer.DICE_Trainer.evaluator", false]], "evaluator (dicee.trainer.dice_trainer.dice_trainer attribute)": [[42, "dicee.trainer.dice_trainer.DICE_Trainer.evaluator", false]], "every_x_epoch (dicee.callbacks.kgesavecallback attribute)": [[5, "dicee.callbacks.KGESaveCallback.every_x_epoch", false]], "example_input_array (dicee.ensemblekge property)": [[11, "dicee.EnsembleKGE.example_input_array", false]], "example_input_array (dicee.models.ensemble.ensemblekge property)": [[19, "dicee.models.ensemble.EnsembleKGE.example_input_array", false]], "execute (class in dicee)": [[11, "dicee.Execute", false]], "execute (class in dicee.executer)": [[10, "dicee.executer.Execute", false]], "exists() (dicee.knowledge_graph.kg method)": [[12, "dicee.knowledge_graph.KG.exists", false]], "experiment (class in dicee.analyse_experiments)": [[4, "dicee.analyse_experiments.Experiment", false]], "explicit (dicee.models.qmult attribute)": [[21, "dicee.models.QMult.explicit", false]], "explicit (dicee.models.quaternion.qmult attribute)": [[24, "dicee.models.quaternion.QMult.explicit", false]], "explicit (dicee.qmult attribute)": [[11, "dicee.QMult.explicit", false]], "exponential_function() (in module dicee)": [[11, "dicee.exponential_function", false]], "exponential_function() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.exponential_function", false]], "extract_input_outputs() (dicee.trainer.torch_trainer_ddp.nodetrainer method)": [[46, "dicee.trainer.torch_trainer_ddp.NodeTrainer.extract_input_outputs", false]], "extract_input_outputs() (in module dicee.trainer.model_parallelism)": [[44, "dicee.trainer.model_parallelism.extract_input_outputs", false]], "extract_input_outputs_set_device() (dicee.trainer.torch_trainer.torchtrainer method)": [[45, "dicee.trainer.torch_trainer.TorchTrainer.extract_input_outputs_set_device", false]], "f (dicee.callbacks.krone attribute)": [[5, "dicee.callbacks.KronE.f", false]], "fc1 (dicee.aconex attribute)": [[11, "dicee.AConEx.fc1", false]], "fc1 (dicee.aconvo attribute)": [[11, "dicee.AConvO.fc1", false]], "fc1 (dicee.aconvq attribute)": [[11, "dicee.AConvQ.fc1", false]], "fc1 (dicee.conex attribute)": [[11, "dicee.ConEx.fc1", false]], "fc1 (dicee.convo attribute)": [[11, "dicee.ConvO.fc1", false]], "fc1 (dicee.convq attribute)": [[11, "dicee.ConvQ.fc1", false]], "fc1 (dicee.models.aconex attribute)": [[21, "dicee.models.AConEx.fc1", false]], "fc1 (dicee.models.aconvo attribute)": [[21, "dicee.models.AConvO.fc1", false]], "fc1 (dicee.models.aconvq attribute)": [[21, "dicee.models.AConvQ.fc1", false]], "fc1 (dicee.models.complex.aconex attribute)": [[17, "dicee.models.complex.AConEx.fc1", false]], "fc1 (dicee.models.complex.conex attribute)": [[17, "dicee.models.complex.ConEx.fc1", false]], "fc1 (dicee.models.conex attribute)": [[21, "dicee.models.ConEx.fc1", false]], "fc1 (dicee.models.convo attribute)": [[21, "dicee.models.ConvO.fc1", false]], "fc1 (dicee.models.convq attribute)": [[21, "dicee.models.ConvQ.fc1", false]], "fc1 (dicee.models.octonion.aconvo attribute)": [[22, "dicee.models.octonion.AConvO.fc1", false]], "fc1 (dicee.models.octonion.convo attribute)": [[22, "dicee.models.octonion.ConvO.fc1", false]], "fc1 (dicee.models.quaternion.aconvq attribute)": [[24, "dicee.models.quaternion.AConvQ.fc1", false]], "fc1 (dicee.models.quaternion.convq attribute)": [[24, "dicee.models.quaternion.ConvQ.fc1", false]], "fc_num_input (dicee.aconex attribute)": [[11, "dicee.AConEx.fc_num_input", false]], "fc_num_input (dicee.aconvo attribute)": [[11, "dicee.AConvO.fc_num_input", false]], "fc_num_input (dicee.aconvq attribute)": [[11, "dicee.AConvQ.fc_num_input", false]], "fc_num_input (dicee.conex attribute)": [[11, "dicee.ConEx.fc_num_input", false]], "fc_num_input (dicee.convo attribute)": [[11, "dicee.ConvO.fc_num_input", false]], "fc_num_input (dicee.convq attribute)": [[11, "dicee.ConvQ.fc_num_input", false]], "fc_num_input (dicee.models.aconex attribute)": [[21, "dicee.models.AConEx.fc_num_input", false]], "fc_num_input (dicee.models.aconvo attribute)": [[21, "dicee.models.AConvO.fc_num_input", false]], "fc_num_input (dicee.models.aconvq attribute)": [[21, "dicee.models.AConvQ.fc_num_input", false]], "fc_num_input (dicee.models.complex.aconex attribute)": [[17, "dicee.models.complex.AConEx.fc_num_input", false]], "fc_num_input (dicee.models.complex.conex attribute)": [[17, "dicee.models.complex.ConEx.fc_num_input", false]], "fc_num_input (dicee.models.conex attribute)": [[21, "dicee.models.ConEx.fc_num_input", false]], "fc_num_input (dicee.models.convo attribute)": [[21, "dicee.models.ConvO.fc_num_input", false]], "fc_num_input (dicee.models.convq attribute)": [[21, "dicee.models.ConvQ.fc_num_input", false]], "fc_num_input (dicee.models.octonion.aconvo attribute)": [[22, "dicee.models.octonion.AConvO.fc_num_input", false]], "fc_num_input (dicee.models.octonion.convo attribute)": [[22, "dicee.models.octonion.ConvO.fc_num_input", false]], "fc_num_input (dicee.models.quaternion.aconvq attribute)": [[24, "dicee.models.quaternion.AConvQ.fc_num_input", false]], "fc_num_input (dicee.models.quaternion.convq attribute)": [[24, "dicee.models.quaternion.ConvQ.fc_num_input", false]], "feature_map_dropout (dicee.aconex attribute)": [[11, "dicee.AConEx.feature_map_dropout", false]], "feature_map_dropout (dicee.aconvo attribute)": [[11, "dicee.AConvO.feature_map_dropout", false]], "feature_map_dropout (dicee.aconvq attribute)": [[11, "dicee.AConvQ.feature_map_dropout", false]], "feature_map_dropout (dicee.conex attribute)": [[11, "dicee.ConEx.feature_map_dropout", false]], "feature_map_dropout (dicee.convo attribute)": [[11, "dicee.ConvO.feature_map_dropout", false]], "feature_map_dropout (dicee.convq attribute)": [[11, "dicee.ConvQ.feature_map_dropout", false]], "feature_map_dropout (dicee.models.aconex attribute)": [[21, "dicee.models.AConEx.feature_map_dropout", false]], "feature_map_dropout (dicee.models.aconvo attribute)": [[21, "dicee.models.AConvO.feature_map_dropout", false]], "feature_map_dropout (dicee.models.aconvq attribute)": [[21, "dicee.models.AConvQ.feature_map_dropout", false]], "feature_map_dropout (dicee.models.complex.aconex attribute)": [[17, "dicee.models.complex.AConEx.feature_map_dropout", false]], "feature_map_dropout (dicee.models.complex.conex attribute)": [[17, "dicee.models.complex.ConEx.feature_map_dropout", false]], "feature_map_dropout (dicee.models.conex attribute)": [[21, "dicee.models.ConEx.feature_map_dropout", false]], "feature_map_dropout (dicee.models.convo attribute)": [[21, "dicee.models.ConvO.feature_map_dropout", false]], "feature_map_dropout (dicee.models.convq attribute)": [[21, "dicee.models.ConvQ.feature_map_dropout", false]], "feature_map_dropout (dicee.models.octonion.aconvo attribute)": [[22, "dicee.models.octonion.AConvO.feature_map_dropout", false]], "feature_map_dropout (dicee.models.octonion.convo attribute)": [[22, "dicee.models.octonion.ConvO.feature_map_dropout", false]], "feature_map_dropout (dicee.models.quaternion.aconvq attribute)": [[24, "dicee.models.quaternion.AConvQ.feature_map_dropout", false]], "feature_map_dropout (dicee.models.quaternion.convq attribute)": [[24, "dicee.models.quaternion.ConvQ.feature_map_dropout", false]], "feature_map_dropout_rate (dicee.basekge attribute)": [[11, "dicee.BaseKGE.feature_map_dropout_rate", false]], "feature_map_dropout_rate (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.feature_map_dropout_rate", false]], "feature_map_dropout_rate (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.feature_map_dropout_rate", false]], "feature_map_dropout_rate (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.feature_map_dropout_rate", false], [21, "id145", false], [21, "id15", false], [21, "id196", false], [21, "id238", false], [21, "id57", false], [21, "id99", false]], "fill_query() (dicee.query_generator.querygenerator method)": [[28, "dicee.query_generator.QueryGenerator.fill_query", false]], "fill_query() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.fill_query", false]], "find_good_batch_size() (in module dicee.trainer.model_parallelism)": [[44, "dicee.trainer.model_parallelism.find_good_batch_size", false]], "find_missing_triples() (dicee.kge method)": [[11, "dicee.KGE.find_missing_triples", false]], "find_missing_triples() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.find_missing_triples", false]], "fit() (dicee.trainer.model_parallelism.tensorparallel method)": [[44, "dicee.trainer.model_parallelism.TensorParallel.fit", false]], "fit() (dicee.trainer.torch_trainer.torchtrainer method)": [[45, "dicee.trainer.torch_trainer.TorchTrainer.fit", false]], "fit() (dicee.trainer.torch_trainer_ddp.torchddptrainer method)": [[46, "dicee.trainer.torch_trainer_ddp.TorchDDPTrainer.fit", false]], "flash (dicee.models.transformers.causalselfattention attribute)": [[27, "dicee.models.transformers.CausalSelfAttention.flash", false]], "fmult (class in dicee.models)": [[21, "dicee.models.FMult", false]], "fmult (class in dicee.models.function_space)": [[20, "dicee.models.function_space.FMult", false]], "fmult2 (class in dicee.models)": [[21, "dicee.models.FMult2", false]], "fmult2 (class in dicee.models.function_space)": [[20, "dicee.models.function_space.FMult2", false]], "form_of_labelling (dicee.dice_trainer attribute)": [[11, "dicee.DICE_Trainer.form_of_labelling", false]], "form_of_labelling (dicee.trainer.dice_trainer attribute)": [[43, "dicee.trainer.DICE_Trainer.form_of_labelling", false]], "form_of_labelling (dicee.trainer.dice_trainer.dice_trainer attribute)": [[42, "dicee.trainer.dice_trainer.DICE_Trainer.form_of_labelling", false]], "forward() (dicee.basekge method)": [[11, "dicee.BaseKGE.forward", false]], "forward() (dicee.byte method)": [[11, "dicee.BytE.forward", false]], "forward() (dicee.models.base_model.basekge method)": [[15, "dicee.models.base_model.BaseKGE.forward", false]], "forward() (dicee.models.base_model.identityclass static method)": [[15, "dicee.models.base_model.IdentityClass.forward", false]], "forward() (dicee.models.basekge method)": [[21, "dicee.models.BaseKGE.forward", false], [21, "id121", false], [21, "id167", false], [21, "id218", false], [21, "id260", false], [21, "id37", false], [21, "id79", false]], "forward() (dicee.models.identityclass static method)": [[21, "dicee.models.IdentityClass.forward", false], [21, "id133", false], [21, "id179", false]], "forward() (dicee.models.transformers.block method)": [[27, "dicee.models.transformers.Block.forward", false]], "forward() (dicee.models.transformers.byte method)": [[27, "dicee.models.transformers.BytE.forward", false]], "forward() (dicee.models.transformers.causalselfattention method)": [[27, "dicee.models.transformers.CausalSelfAttention.forward", false]], "forward() (dicee.models.transformers.gpt method)": [[27, "dicee.models.transformers.GPT.forward", false]], "forward() (dicee.models.transformers.layernorm method)": [[27, "dicee.models.transformers.LayerNorm.forward", false]], "forward() (dicee.models.transformers.mlp method)": [[27, "dicee.models.transformers.MLP.forward", false]], "forward_backward_update() (dicee.trainer.torch_trainer.torchtrainer method)": [[45, "dicee.trainer.torch_trainer.TorchTrainer.forward_backward_update", false]], "forward_backward_update_loss() (in module dicee.trainer.model_parallelism)": [[44, "dicee.trainer.model_parallelism.forward_backward_update_loss", false]], "forward_byte_pair_encoded_k_vs_all() (dicee.basekge method)": [[11, "dicee.BaseKGE.forward_byte_pair_encoded_k_vs_all", false]], "forward_byte_pair_encoded_k_vs_all() (dicee.models.base_model.basekge method)": [[15, "dicee.models.base_model.BaseKGE.forward_byte_pair_encoded_k_vs_all", false]], "forward_byte_pair_encoded_k_vs_all() (dicee.models.basekge method)": [[21, "dicee.models.BaseKGE.forward_byte_pair_encoded_k_vs_all", false], [21, "id118", false], [21, "id164", false], [21, "id215", false], [21, "id257", false], [21, "id34", false], [21, "id76", false]], "forward_byte_pair_encoded_triple() (dicee.basekge method)": [[11, "dicee.BaseKGE.forward_byte_pair_encoded_triple", false]], "forward_byte_pair_encoded_triple() (dicee.models.base_model.basekge method)": [[15, "dicee.models.base_model.BaseKGE.forward_byte_pair_encoded_triple", false]], "forward_byte_pair_encoded_triple() (dicee.models.basekge method)": [[21, "dicee.models.BaseKGE.forward_byte_pair_encoded_triple", false], [21, "id119", false], [21, "id165", false], [21, "id216", false], [21, "id258", false], [21, "id35", false], [21, "id77", false]], "forward_k_vs_all() (dicee.aconex method)": [[11, "dicee.AConEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.aconvo method)": [[11, "dicee.AConvO.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.aconvq method)": [[11, "dicee.AConvQ.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.basekge method)": [[11, "dicee.BaseKGE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.complex method)": [[11, "dicee.ComplEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.conex method)": [[11, "dicee.ConEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.convo method)": [[11, "dicee.ConvO.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.convq method)": [[11, "dicee.ConvQ.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.decal method)": [[11, "dicee.DeCaL.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.distmult method)": [[11, "dicee.DistMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.duale method)": [[11, "dicee.DualE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.keci method)": [[11, "dicee.Keci.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.aconex method)": [[21, "dicee.models.AConEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.aconvo method)": [[21, "dicee.models.AConvO.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.aconvq method)": [[21, "dicee.models.AConvQ.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.base_model.basekge method)": [[15, "dicee.models.base_model.BaseKGE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.basekge method)": [[21, "dicee.models.BaseKGE.forward_k_vs_all", false], [21, "id123", false], [21, "id169", false], [21, "id220", false], [21, "id262", false], [21, "id39", false], [21, "id81", false]], "forward_k_vs_all() (dicee.models.clifford.decal method)": [[16, "dicee.models.clifford.DeCaL.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.clifford.keci method)": [[16, "dicee.models.clifford.Keci.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.complex method)": [[21, "dicee.models.ComplEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.complex.aconex method)": [[17, "dicee.models.complex.AConEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.complex.complex method)": [[17, "dicee.models.complex.ComplEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.complex.conex method)": [[17, "dicee.models.complex.ConEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.conex method)": [[21, "dicee.models.ConEx.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.convo method)": [[21, "dicee.models.ConvO.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.convq method)": [[21, "dicee.models.ConvQ.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.decal method)": [[21, "dicee.models.DeCaL.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.distmult method)": [[21, "dicee.models.DistMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.duale method)": [[21, "dicee.models.DualE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.duale.duale method)": [[18, "dicee.models.dualE.DualE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.keci method)": [[21, "dicee.models.Keci.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.octonion.aconvo method)": [[22, "dicee.models.octonion.AConvO.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.octonion.convo method)": [[22, "dicee.models.octonion.ConvO.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.octonion.omult method)": [[22, "dicee.models.octonion.OMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.omult method)": [[21, "dicee.models.OMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.pykeen_models.pykeenkge method)": [[23, "dicee.models.pykeen_models.PykeenKGE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.pykeenkge method)": [[21, "dicee.models.PykeenKGE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.qmult method)": [[21, "dicee.models.QMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.quaternion.aconvq method)": [[24, "dicee.models.quaternion.AConvQ.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.quaternion.convq method)": [[24, "dicee.models.quaternion.ConvQ.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.quaternion.qmult method)": [[24, "dicee.models.quaternion.QMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.real.distmult method)": [[25, "dicee.models.real.DistMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.real.shallom method)": [[25, "dicee.models.real.Shallom.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.real.transe method)": [[25, "dicee.models.real.TransE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.shallom method)": [[21, "dicee.models.Shallom.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.models.transe method)": [[21, "dicee.models.TransE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.omult method)": [[11, "dicee.OMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.pykeenkge method)": [[11, "dicee.PykeenKGE.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.qmult method)": [[11, "dicee.QMult.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.shallom method)": [[11, "dicee.Shallom.forward_k_vs_all", false]], "forward_k_vs_all() (dicee.transe method)": [[11, "dicee.TransE.forward_k_vs_all", false]], "forward_k_vs_sample() (dicee.aconex method)": [[11, "dicee.AConEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.basekge method)": [[11, "dicee.BaseKGE.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.complex method)": [[11, "dicee.ComplEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.conex method)": [[11, "dicee.ConEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.distmult method)": [[11, "dicee.DistMult.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.keci method)": [[11, "dicee.Keci.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.aconex method)": [[21, "dicee.models.AConEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.base_model.basekge method)": [[15, "dicee.models.base_model.BaseKGE.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.basekge method)": [[21, "dicee.models.BaseKGE.forward_k_vs_sample", false], [21, "id124", false], [21, "id170", false], [21, "id221", false], [21, "id263", false], [21, "id40", false], [21, "id82", false]], "forward_k_vs_sample() (dicee.models.clifford.keci method)": [[16, "dicee.models.clifford.Keci.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.complex method)": [[21, "dicee.models.ComplEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.complex.aconex method)": [[17, "dicee.models.complex.AConEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.complex.complex method)": [[17, "dicee.models.complex.ComplEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.complex.conex method)": [[17, "dicee.models.complex.ConEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.conex method)": [[21, "dicee.models.ConEx.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.distmult method)": [[21, "dicee.models.DistMult.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.keci method)": [[21, "dicee.models.Keci.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.pykeen_models.pykeenkge method)": [[23, "dicee.models.pykeen_models.PykeenKGE.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.pykeenkge method)": [[21, "dicee.models.PykeenKGE.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.qmult method)": [[21, "dicee.models.QMult.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.quaternion.qmult method)": [[24, "dicee.models.quaternion.QMult.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.models.real.distmult method)": [[25, "dicee.models.real.DistMult.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.pykeenkge method)": [[11, "dicee.PykeenKGE.forward_k_vs_sample", false]], "forward_k_vs_sample() (dicee.qmult method)": [[11, "dicee.QMult.forward_k_vs_sample", false]], "forward_k_vs_with_explicit() (dicee.keci method)": [[11, "dicee.Keci.forward_k_vs_with_explicit", false]], "forward_k_vs_with_explicit() (dicee.models.clifford.keci method)": [[16, "dicee.models.clifford.Keci.forward_k_vs_with_explicit", false]], "forward_k_vs_with_explicit() (dicee.models.keci method)": [[21, "dicee.models.Keci.forward_k_vs_with_explicit", false]], "forward_triples() (dicee.aconex method)": [[11, "dicee.AConEx.forward_triples", false]], "forward_triples() (dicee.aconvo method)": [[11, "dicee.AConvO.forward_triples", false]], "forward_triples() (dicee.aconvq method)": [[11, "dicee.AConvQ.forward_triples", false]], "forward_triples() (dicee.basekge method)": [[11, "dicee.BaseKGE.forward_triples", false]], "forward_triples() (dicee.conex method)": [[11, "dicee.ConEx.forward_triples", false]], "forward_triples() (dicee.convo method)": [[11, "dicee.ConvO.forward_triples", false]], "forward_triples() (dicee.convq method)": [[11, "dicee.ConvQ.forward_triples", false]], "forward_triples() (dicee.decal method)": [[11, "dicee.DeCaL.forward_triples", false]], "forward_triples() (dicee.duale method)": [[11, "dicee.DualE.forward_triples", false]], "forward_triples() (dicee.keci method)": [[11, "dicee.Keci.forward_triples", false]], "forward_triples() (dicee.lfmult method)": [[11, "dicee.LFMult.forward_triples", false]], "forward_triples() (dicee.models.aconex method)": [[21, "dicee.models.AConEx.forward_triples", false]], "forward_triples() (dicee.models.aconvo method)": [[21, "dicee.models.AConvO.forward_triples", false]], "forward_triples() (dicee.models.aconvq method)": [[21, "dicee.models.AConvQ.forward_triples", false]], "forward_triples() (dicee.models.base_model.basekge method)": [[15, "dicee.models.base_model.BaseKGE.forward_triples", false]], "forward_triples() (dicee.models.basekge method)": [[21, "dicee.models.BaseKGE.forward_triples", false], [21, "id122", false], [21, "id168", false], [21, "id219", false], [21, "id261", false], [21, "id38", false], [21, "id80", false]], "forward_triples() (dicee.models.clifford.decal method)": [[16, "dicee.models.clifford.DeCaL.forward_triples", false]], "forward_triples() (dicee.models.clifford.keci method)": [[16, "dicee.models.clifford.Keci.forward_triples", false]], "forward_triples() (dicee.models.complex.aconex method)": [[17, "dicee.models.complex.AConEx.forward_triples", false]], "forward_triples() (dicee.models.complex.conex method)": [[17, "dicee.models.complex.ConEx.forward_triples", false]], "forward_triples() (dicee.models.conex method)": [[21, "dicee.models.ConEx.forward_triples", false]], "forward_triples() (dicee.models.convo method)": [[21, "dicee.models.ConvO.forward_triples", false]], "forward_triples() (dicee.models.convq method)": [[21, "dicee.models.ConvQ.forward_triples", false]], "forward_triples() (dicee.models.decal method)": [[21, "dicee.models.DeCaL.forward_triples", false]], "forward_triples() (dicee.models.duale method)": [[21, "dicee.models.DualE.forward_triples", false]], "forward_triples() (dicee.models.duale.duale method)": [[18, "dicee.models.dualE.DualE.forward_triples", false]], "forward_triples() (dicee.models.fmult method)": [[21, "dicee.models.FMult.forward_triples", false]], "forward_triples() (dicee.models.fmult2 method)": [[21, "dicee.models.FMult2.forward_triples", false]], "forward_triples() (dicee.models.function_space.fmult method)": [[20, "dicee.models.function_space.FMult.forward_triples", false]], "forward_triples() (dicee.models.function_space.fmult2 method)": [[20, "dicee.models.function_space.FMult2.forward_triples", false]], "forward_triples() (dicee.models.function_space.gfmult method)": [[20, "dicee.models.function_space.GFMult.forward_triples", false]], "forward_triples() (dicee.models.function_space.lfmult method)": [[20, "dicee.models.function_space.LFMult.forward_triples", false]], "forward_triples() (dicee.models.function_space.lfmult1 method)": [[20, "dicee.models.function_space.LFMult1.forward_triples", false]], "forward_triples() (dicee.models.gfmult method)": [[21, "dicee.models.GFMult.forward_triples", false]], "forward_triples() (dicee.models.keci method)": [[21, "dicee.models.Keci.forward_triples", false]], "forward_triples() (dicee.models.lfmult method)": [[21, "dicee.models.LFMult.forward_triples", false]], "forward_triples() (dicee.models.lfmult1 method)": [[21, "dicee.models.LFMult1.forward_triples", false]], "forward_triples() (dicee.models.octonion.aconvo method)": [[22, "dicee.models.octonion.AConvO.forward_triples", false]], "forward_triples() (dicee.models.octonion.convo method)": [[22, "dicee.models.octonion.ConvO.forward_triples", false]], "forward_triples() (dicee.models.pyke method)": [[21, "dicee.models.Pyke.forward_triples", false]], "forward_triples() (dicee.models.pykeen_models.pykeenkge method)": [[23, "dicee.models.pykeen_models.PykeenKGE.forward_triples", false]], "forward_triples() (dicee.models.pykeenkge method)": [[21, "dicee.models.PykeenKGE.forward_triples", false]], "forward_triples() (dicee.models.quaternion.aconvq method)": [[24, "dicee.models.quaternion.AConvQ.forward_triples", false]], "forward_triples() (dicee.models.quaternion.convq method)": [[24, "dicee.models.quaternion.ConvQ.forward_triples", false]], "forward_triples() (dicee.models.real.pyke method)": [[25, "dicee.models.real.Pyke.forward_triples", false]], "forward_triples() (dicee.models.real.shallom method)": [[25, "dicee.models.real.Shallom.forward_triples", false]], "forward_triples() (dicee.models.shallom method)": [[21, "dicee.models.Shallom.forward_triples", false]], "forward_triples() (dicee.pyke method)": [[11, "dicee.Pyke.forward_triples", false]], "forward_triples() (dicee.pykeenkge method)": [[11, "dicee.PykeenKGE.forward_triples", false]], "forward_triples() (dicee.shallom method)": [[11, "dicee.Shallom.forward_triples", false]], "frequency (dicee.callbacks.perturb attribute)": [[5, "dicee.callbacks.Perturb.frequency", false]], "from_pretrained() (dicee.models.transformers.gpt class method)": [[27, "dicee.models.transformers.GPT.from_pretrained", false]], "from_pretrained_model_write_embeddings_into_csv() (in module dicee)": [[11, "dicee.from_pretrained_model_write_embeddings_into_csv", false]], "from_pretrained_model_write_embeddings_into_csv() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.from_pretrained_model_write_embeddings_into_csv", false]], "full_storage_path (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.full_storage_path", false]], "func_triple_to_bpe_representation (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.func_triple_to_bpe_representation", false]], "func_triple_to_bpe_representation() (dicee.knowledge_graph.kg method)": [[12, "dicee.knowledge_graph.KG.func_triple_to_bpe_representation", false]], "function() (dicee.models.fmult2 method)": [[21, "dicee.models.FMult2.function", false]], "function() (dicee.models.function_space.fmult2 method)": [[20, "dicee.models.function_space.FMult2.function", false]], "gamma (dicee.models.fmult attribute)": [[21, "dicee.models.FMult.gamma", false]], "gamma (dicee.models.function_space.fmult attribute)": [[20, "dicee.models.function_space.FMult.gamma", false]], "gelu (dicee.models.transformers.mlp attribute)": [[27, "dicee.models.transformers.MLP.gelu", false]], "gen_test (dicee.query_generator.querygenerator attribute)": [[28, "dicee.query_generator.QueryGenerator.gen_test", false]], "gen_test (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.gen_test", false]], "gen_valid (dicee.query_generator.querygenerator attribute)": [[28, "dicee.query_generator.QueryGenerator.gen_valid", false]], "gen_valid (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.gen_valid", false]], "generate() (dicee.byte method)": [[11, "dicee.BytE.generate", false]], "generate() (dicee.kge method)": [[11, "dicee.KGE.generate", false]], "generate() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.generate", false]], "generate() (dicee.models.transformers.byte method)": [[27, "dicee.models.transformers.BytE.generate", false]], "generate_queries() (dicee.query_generator.querygenerator method)": [[28, "dicee.query_generator.QueryGenerator.generate_queries", false]], "generate_queries() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.generate_queries", false]], "get() (dicee.scripts.serve.neuralsearcher method)": [[38, "dicee.scripts.serve.NeuralSearcher.get", false]], "get_aswa_state_dict() (dicee.callbacks.aswa method)": [[5, "dicee.callbacks.ASWA.get_aswa_state_dict", false]], "get_bpe_head_and_relation_representation() (dicee.basekge method)": [[11, "dicee.BaseKGE.get_bpe_head_and_relation_representation", false]], "get_bpe_head_and_relation_representation() (dicee.models.base_model.basekge method)": [[15, "dicee.models.base_model.BaseKGE.get_bpe_head_and_relation_representation", false]], "get_bpe_head_and_relation_representation() (dicee.models.basekge method)": [[21, "dicee.models.BaseKGE.get_bpe_head_and_relation_representation", false], [21, "id128", false], [21, "id174", false], [21, "id225", false], [21, "id267", false], [21, "id44", false], [21, "id86", false]], "get_bpe_token_representation() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.get_bpe_token_representation", false]], "get_callbacks() (in module dicee.trainer.dice_trainer)": [[42, "dicee.trainer.dice_trainer.get_callbacks", false]], "get_default_arguments() (in module dicee.analyse_experiments)": [[4, "dicee.analyse_experiments.get_default_arguments", false]], "get_default_arguments() (in module dicee.scripts.index)": [[36, "dicee.scripts.index.get_default_arguments", false]], "get_default_arguments() (in module dicee.scripts.run)": [[37, "dicee.scripts.run.get_default_arguments", false]], "get_default_arguments() (in module dicee.scripts.serve)": [[38, "dicee.scripts.serve.get_default_arguments", false]], "get_ee_vocab() (in module dicee)": [[11, "dicee.get_ee_vocab", false]], "get_ee_vocab() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.get_ee_vocab", false]], "get_ee_vocab() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.get_ee_vocab", false]], "get_ee_vocab() (in module dicee.static_preprocess_funcs)": [[41, "dicee.static_preprocess_funcs.get_ee_vocab", false]], "get_embeddings() (dicee.basekge method)": [[11, "dicee.BaseKGE.get_embeddings", false]], "get_embeddings() (dicee.models.base_model.basekge method)": [[15, "dicee.models.base_model.BaseKGE.get_embeddings", false]], "get_embeddings() (dicee.models.basekge method)": [[21, "dicee.models.BaseKGE.get_embeddings", false], [21, "id129", false], [21, "id175", false], [21, "id226", false], [21, "id268", false], [21, "id45", false], [21, "id87", false]], "get_embeddings() (dicee.models.real.shallom method)": [[25, "dicee.models.real.Shallom.get_embeddings", false]], "get_embeddings() (dicee.models.shallom method)": [[21, "dicee.models.Shallom.get_embeddings", false]], "get_embeddings() (dicee.shallom method)": [[11, "dicee.Shallom.get_embeddings", false]], "get_ensemble() (dicee.trainer.model_parallelism.tensorparallel method)": [[44, "dicee.trainer.model_parallelism.TensorParallel.get_ensemble", false]], "get_entity_embeddings() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.get_entity_embeddings", false]], "get_entity_index() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.get_entity_index", false]], "get_er_vocab() (in module dicee)": [[11, "dicee.get_er_vocab", false]], "get_er_vocab() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.get_er_vocab", false]], "get_er_vocab() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.get_er_vocab", false]], "get_er_vocab() (in module dicee.static_preprocess_funcs)": [[41, "dicee.static_preprocess_funcs.get_er_vocab", false]], "get_eval_report() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.get_eval_report", false]], "get_head_relation_representation() (dicee.basekge method)": [[11, "dicee.BaseKGE.get_head_relation_representation", false]], "get_head_relation_representation() (dicee.models.base_model.basekge method)": [[15, "dicee.models.base_model.BaseKGE.get_head_relation_representation", false]], "get_head_relation_representation() (dicee.models.basekge method)": [[21, "dicee.models.BaseKGE.get_head_relation_representation", false], [21, "id126", false], [21, "id172", false], [21, "id223", false], [21, "id265", false], [21, "id42", false], [21, "id84", false]], "get_kronecker_triple_representation() (dicee.callbacks.krone method)": [[5, "dicee.callbacks.KronE.get_kronecker_triple_representation", false]], "get_num_params() (dicee.models.transformers.gpt method)": [[27, "dicee.models.transformers.GPT.get_num_params", false]], "get_padded_bpe_triple_representation() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.get_padded_bpe_triple_representation", false]], "get_queries() (dicee.query_generator.querygenerator method)": [[28, "dicee.query_generator.QueryGenerator.get_queries", false]], "get_queries() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.get_queries", false]], "get_re_vocab() (in module dicee)": [[11, "dicee.get_re_vocab", false]], "get_re_vocab() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.get_re_vocab", false]], "get_re_vocab() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.get_re_vocab", false]], "get_re_vocab() (in module dicee.static_preprocess_funcs)": [[41, "dicee.static_preprocess_funcs.get_re_vocab", false]], "get_relation_embeddings() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.get_relation_embeddings", false]], "get_relation_index() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.get_relation_index", false]], "get_sentence_representation() (dicee.basekge method)": [[11, "dicee.BaseKGE.get_sentence_representation", false]], "get_sentence_representation() (dicee.models.base_model.basekge method)": [[15, "dicee.models.base_model.BaseKGE.get_sentence_representation", false]], "get_sentence_representation() (dicee.models.basekge method)": [[21, "dicee.models.BaseKGE.get_sentence_representation", false], [21, "id127", false], [21, "id173", false], [21, "id224", false], [21, "id266", false], [21, "id43", false], [21, "id85", false]], "get_transductive_entity_embeddings() (dicee.kge method)": [[11, "dicee.KGE.get_transductive_entity_embeddings", false]], "get_transductive_entity_embeddings() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.get_transductive_entity_embeddings", false]], "get_triple_representation() (dicee.basekge method)": [[11, "dicee.BaseKGE.get_triple_representation", false]], "get_triple_representation() (dicee.models.base_model.basekge method)": [[15, "dicee.models.base_model.BaseKGE.get_triple_representation", false]], "get_triple_representation() (dicee.models.basekge method)": [[21, "dicee.models.BaseKGE.get_triple_representation", false], [21, "id125", false], [21, "id171", false], [21, "id222", false], [21, "id264", false], [21, "id41", false], [21, "id83", false]], "gfmult (class in dicee.models)": [[21, "dicee.models.GFMult", false]], "gfmult (class in dicee.models.function_space)": [[20, "dicee.models.function_space.GFMult", false]], "global_rank (dicee.abstracts.abstracttrainer attribute)": [[3, "dicee.abstracts.AbstractTrainer.global_rank", false]], "global_rank (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[46, "dicee.trainer.torch_trainer_ddp.NodeTrainer.global_rank", false]], "gpt (class in dicee.models.transformers)": [[27, "dicee.models.transformers.GPT", false]], "gptconfig (class in dicee.models.transformers)": [[27, "dicee.models.transformers.GPTConfig", false]], "gpus (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.gpus", false]], "gradient_accumulation_steps (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.gradient_accumulation_steps", false]], "ground_queries() (dicee.query_generator.querygenerator method)": [[28, "dicee.query_generator.QueryGenerator.ground_queries", false]], "ground_queries() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.ground_queries", false]], "hidden_dropout (dicee.basekge attribute)": [[11, "dicee.BaseKGE.hidden_dropout", false]], "hidden_dropout (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.hidden_dropout", false]], "hidden_dropout (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.hidden_dropout", false], [21, "id113", false], [21, "id159", false], [21, "id210", false], [21, "id252", false], [21, "id29", false], [21, "id71", false]], "hidden_dropout_rate (dicee.basekge attribute)": [[11, "dicee.BaseKGE.hidden_dropout_rate", false]], "hidden_dropout_rate (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.hidden_dropout_rate", false]], "hidden_dropout_rate (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.hidden_dropout_rate", false]], "hidden_dropout_rate (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.hidden_dropout_rate", false], [21, "id13", false], [21, "id143", false], [21, "id194", false], [21, "id236", false], [21, "id55", false], [21, "id97", false]], "hidden_normalizer (dicee.basekge attribute)": [[11, "dicee.BaseKGE.hidden_normalizer", false]], "hidden_normalizer (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.hidden_normalizer", false]], "hidden_normalizer (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.hidden_normalizer", false], [21, "id109", false], [21, "id155", false], [21, "id206", false], [21, "id248", false], [21, "id25", false], [21, "id67", false]], "identityclass (class in dicee.models)": [[21, "dicee.models.IdentityClass", false], [21, "id130", false], [21, "id176", false]], "identityclass (class in dicee.models.base_model)": [[15, "dicee.models.base_model.IdentityClass", false]], "idx_entity_to_bpe_shaped (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.idx_entity_to_bpe_shaped", false]], "index_triple() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.index_triple", false]], "init_dataloader() (dicee.dice_trainer method)": [[11, "dicee.DICE_Trainer.init_dataloader", false]], "init_dataloader() (dicee.trainer.dice_trainer method)": [[43, "dicee.trainer.DICE_Trainer.init_dataloader", false]], "init_dataloader() (dicee.trainer.dice_trainer.dice_trainer method)": [[42, "dicee.trainer.dice_trainer.DICE_Trainer.init_dataloader", false]], "init_dataset() (dicee.dice_trainer method)": [[11, "dicee.DICE_Trainer.init_dataset", false]], "init_dataset() (dicee.trainer.dice_trainer method)": [[43, "dicee.trainer.DICE_Trainer.init_dataset", false]], "init_dataset() (dicee.trainer.dice_trainer.dice_trainer method)": [[42, "dicee.trainer.dice_trainer.DICE_Trainer.init_dataset", false]], "init_param (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.init_param", false]], "init_params_with_sanity_checking() (dicee.basekge method)": [[11, "dicee.BaseKGE.init_params_with_sanity_checking", false]], "init_params_with_sanity_checking() (dicee.models.base_model.basekge method)": [[15, "dicee.models.base_model.BaseKGE.init_params_with_sanity_checking", false]], "init_params_with_sanity_checking() (dicee.models.basekge method)": [[21, "dicee.models.BaseKGE.init_params_with_sanity_checking", false], [21, "id120", false], [21, "id166", false], [21, "id217", false], [21, "id259", false], [21, "id36", false], [21, "id78", false]], "initial_eval_setting (dicee.callbacks.aswa attribute)": [[5, "dicee.callbacks.ASWA.initial_eval_setting", false]], "initialize_or_load_model() (dicee.dice_trainer method)": [[11, "dicee.DICE_Trainer.initialize_or_load_model", false]], "initialize_or_load_model() (dicee.trainer.dice_trainer method)": [[43, "dicee.trainer.DICE_Trainer.initialize_or_load_model", false]], "initialize_or_load_model() (dicee.trainer.dice_trainer.dice_trainer method)": [[42, "dicee.trainer.dice_trainer.DICE_Trainer.initialize_or_load_model", false]], "initialize_trainer() (dicee.dice_trainer method)": [[11, "dicee.DICE_Trainer.initialize_trainer", false]], "initialize_trainer() (dicee.trainer.dice_trainer method)": [[43, "dicee.trainer.DICE_Trainer.initialize_trainer", false]], "initialize_trainer() (dicee.trainer.dice_trainer.dice_trainer method)": [[42, "dicee.trainer.dice_trainer.DICE_Trainer.initialize_trainer", false]], "initialize_trainer() (in module dicee.trainer.dice_trainer)": [[42, "dicee.trainer.dice_trainer.initialize_trainer", false]], "input_dp_ent_real (dicee.basekge attribute)": [[11, "dicee.BaseKGE.input_dp_ent_real", false]], "input_dp_ent_real (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.input_dp_ent_real", false]], "input_dp_ent_real (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.input_dp_ent_real", false], [21, "id111", false], [21, "id157", false], [21, "id208", false], [21, "id250", false], [21, "id27", false], [21, "id69", false]], "input_dp_rel_real (dicee.basekge attribute)": [[11, "dicee.BaseKGE.input_dp_rel_real", false]], "input_dp_rel_real (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.input_dp_rel_real", false]], "input_dp_rel_real (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.input_dp_rel_real", false], [21, "id112", false], [21, "id158", false], [21, "id209", false], [21, "id251", false], [21, "id28", false], [21, "id70", false]], "input_dropout_rate (dicee.basekge attribute)": [[11, "dicee.BaseKGE.input_dropout_rate", false]], "input_dropout_rate (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.input_dropout_rate", false]], "input_dropout_rate (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.input_dropout_rate", false]], "input_dropout_rate (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.input_dropout_rate", false], [21, "id12", false], [21, "id142", false], [21, "id193", false], [21, "id235", false], [21, "id54", false], [21, "id96", false]], "intialize_model() (in module dicee)": [[11, "dicee.intialize_model", false]], "intialize_model() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.intialize_model", false]], "is_continual_training (dicee.dice_trainer attribute)": [[11, "dicee.DICE_Trainer.is_continual_training", false]], "is_continual_training (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.is_continual_training", false]], "is_continual_training (dicee.execute attribute)": [[11, "dicee.Execute.is_continual_training", false]], "is_continual_training (dicee.executer.execute attribute)": [[10, "dicee.executer.Execute.is_continual_training", false]], "is_continual_training (dicee.trainer.dice_trainer attribute)": [[43, "dicee.trainer.DICE_Trainer.is_continual_training", false]], "is_continual_training (dicee.trainer.dice_trainer.dice_trainer attribute)": [[42, "dicee.trainer.dice_trainer.DICE_Trainer.is_continual_training", false]], "is_global_zero (dicee.abstracts.abstracttrainer attribute)": [[3, "dicee.abstracts.AbstractTrainer.is_global_zero", false]], "is_seen() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.is_seen", false]], "is_sparql_endpoint_alive() (in module dicee.sanity_checkers)": [[34, "dicee.sanity_checkers.is_sparql_endpoint_alive", false]], "k (dicee.models.fmult attribute)": [[21, "dicee.models.FMult.k", false]], "k (dicee.models.fmult2 attribute)": [[21, "dicee.models.FMult2.k", false]], "k (dicee.models.function_space.fmult attribute)": [[20, "dicee.models.function_space.FMult.k", false]], "k (dicee.models.function_space.fmult2 attribute)": [[20, "dicee.models.function_space.FMult2.k", false]], "k (dicee.models.function_space.gfmult attribute)": [[20, "dicee.models.function_space.GFMult.k", false]], "k (dicee.models.gfmult attribute)": [[21, "dicee.models.GFMult.k", false]], "k_fold_cross_validation() (dicee.dice_trainer method)": [[11, "dicee.DICE_Trainer.k_fold_cross_validation", false]], "k_fold_cross_validation() (dicee.trainer.dice_trainer method)": [[43, "dicee.trainer.DICE_Trainer.k_fold_cross_validation", false]], "k_fold_cross_validation() (dicee.trainer.dice_trainer.dice_trainer method)": [[42, "dicee.trainer.dice_trainer.DICE_Trainer.k_fold_cross_validation", false]], "k_vs_all_score() (dicee.complex static method)": [[11, "dicee.ComplEx.k_vs_all_score", false]], "k_vs_all_score() (dicee.distmult method)": [[11, "dicee.DistMult.k_vs_all_score", false]], "k_vs_all_score() (dicee.keci method)": [[11, "dicee.Keci.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.clifford.keci method)": [[16, "dicee.models.clifford.Keci.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.complex static method)": [[21, "dicee.models.ComplEx.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.complex.complex static method)": [[17, "dicee.models.complex.ComplEx.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.distmult method)": [[21, "dicee.models.DistMult.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.keci method)": [[21, "dicee.models.Keci.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.octonion.omult method)": [[22, "dicee.models.octonion.OMult.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.omult method)": [[21, "dicee.models.OMult.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.qmult method)": [[21, "dicee.models.QMult.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.quaternion.qmult method)": [[24, "dicee.models.quaternion.QMult.k_vs_all_score", false]], "k_vs_all_score() (dicee.models.real.distmult method)": [[25, "dicee.models.real.DistMult.k_vs_all_score", false]], "k_vs_all_score() (dicee.omult method)": [[11, "dicee.OMult.k_vs_all_score", false]], "k_vs_all_score() (dicee.qmult method)": [[11, "dicee.QMult.k_vs_all_score", false]], "keci (class in dicee)": [[11, "dicee.Keci", false]], "keci (class in dicee.models)": [[21, "dicee.models.Keci", false]], "keci (class in dicee.models.clifford)": [[16, "dicee.models.clifford.Keci", false]], "kecibase (class in dicee)": [[11, "dicee.KeciBase", false]], "kecibase (class in dicee.models)": [[21, "dicee.models.KeciBase", false]], "kecibase (class in dicee.models.clifford)": [[16, "dicee.models.clifford.KeciBase", false]], "kernel_size (dicee.basekge attribute)": [[11, "dicee.BaseKGE.kernel_size", false]], "kernel_size (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.kernel_size", false]], "kernel_size (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.kernel_size", false]], "kernel_size (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.kernel_size", false], [21, "id100", false], [21, "id146", false], [21, "id16", false], [21, "id197", false], [21, "id239", false], [21, "id58", false]], "kg (class in dicee.knowledge_graph)": [[12, "dicee.knowledge_graph.KG", false]], "kg (dicee.callbacks.pseudolabellingcallback attribute)": [[5, "dicee.callbacks.PseudoLabellingCallback.kg", false]], "kg (dicee.read_preprocess_save_load_kg.loadsavetodisk attribute)": [[29, "dicee.read_preprocess_save_load_kg.LoadSaveToDisk.kg", false]], "kg (dicee.read_preprocess_save_load_kg.preprocess.preprocesskg attribute)": [[30, "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG.kg", false]], "kg (dicee.read_preprocess_save_load_kg.preprocesskg attribute)": [[29, "dicee.read_preprocess_save_load_kg.PreprocessKG.kg", false]], "kg (dicee.read_preprocess_save_load_kg.read_from_disk.readfromdisk attribute)": [[31, "dicee.read_preprocess_save_load_kg.read_from_disk.ReadFromDisk.kg", false]], "kg (dicee.read_preprocess_save_load_kg.readfromdisk attribute)": [[29, "dicee.read_preprocess_save_load_kg.ReadFromDisk.kg", false]], "kg (dicee.read_preprocess_save_load_kg.save_load_disk.loadsavetodisk attribute)": [[32, "dicee.read_preprocess_save_load_kg.save_load_disk.LoadSaveToDisk.kg", false]], "kge (class in dicee)": [[11, "dicee.KGE", false]], "kge (class in dicee.knowledge_graph_embeddings)": [[13, "dicee.knowledge_graph_embeddings.KGE", false]], "kgesavecallback (class in dicee.callbacks)": [[5, "dicee.callbacks.KGESaveCallback", false]], "knowledge_graph (dicee.execute attribute)": [[11, "dicee.Execute.knowledge_graph", false]], "knowledge_graph (dicee.executer.execute attribute)": [[10, "dicee.executer.Execute.knowledge_graph", false]], "krone (class in dicee.callbacks)": [[5, "dicee.callbacks.KronE", false]], "kvsall (class in dicee)": [[11, "dicee.KvsAll", false]], "kvsall (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.KvsAll", false]], "kvsall_score() (dicee.duale method)": [[11, "dicee.DualE.kvsall_score", false]], "kvsall_score() (dicee.models.duale method)": [[21, "dicee.models.DualE.kvsall_score", false]], "kvsall_score() (dicee.models.duale.duale method)": [[18, "dicee.models.dualE.DualE.kvsall_score", false]], "kvssampledataset (class in dicee)": [[11, "dicee.KvsSampleDataset", false]], "kvssampledataset (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.KvsSampleDataset", false]], "label_smoothing_rate (dicee.allvsall attribute)": [[11, "dicee.AllvsAll.label_smoothing_rate", false]], "label_smoothing_rate (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.label_smoothing_rate", false]], "label_smoothing_rate (dicee.dataset_classes.allvsall attribute)": [[7, "dicee.dataset_classes.AllvsAll.label_smoothing_rate", false]], "label_smoothing_rate (dicee.dataset_classes.kvsall attribute)": [[7, "dicee.dataset_classes.KvsAll.label_smoothing_rate", false]], "label_smoothing_rate (dicee.dataset_classes.kvssampledataset attribute)": [[7, "dicee.dataset_classes.KvsSampleDataset.label_smoothing_rate", false]], "label_smoothing_rate (dicee.dataset_classes.onevssample attribute)": [[7, "dicee.dataset_classes.OnevsSample.label_smoothing_rate", false], [7, "id4", false]], "label_smoothing_rate (dicee.dataset_classes.triplepredictiondataset attribute)": [[7, "dicee.dataset_classes.TriplePredictionDataset.label_smoothing_rate", false]], "label_smoothing_rate (dicee.kvsall attribute)": [[11, "dicee.KvsAll.label_smoothing_rate", false]], "label_smoothing_rate (dicee.kvssampledataset attribute)": [[11, "dicee.KvsSampleDataset.label_smoothing_rate", false]], "label_smoothing_rate (dicee.onevssample attribute)": [[11, "dicee.OnevsSample.label_smoothing_rate", false], [11, "id30", false]], "label_smoothing_rate (dicee.triplepredictiondataset attribute)": [[11, "dicee.TriplePredictionDataset.label_smoothing_rate", false]], "layernorm (class in dicee.models.transformers)": [[27, "dicee.models.transformers.LayerNorm", false]], "learning_rate (dicee.basekge attribute)": [[11, "dicee.BaseKGE.learning_rate", false]], "learning_rate (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.learning_rate", false]], "learning_rate (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.learning_rate", false], [21, "id10", false], [21, "id140", false], [21, "id191", false], [21, "id233", false], [21, "id52", false], [21, "id94", false]], "length (dicee.dataset_classes.negsampledataset attribute)": [[7, "dicee.dataset_classes.NegSampleDataset.length", false]], "length (dicee.dataset_classes.triplepredictiondataset attribute)": [[7, "dicee.dataset_classes.TriplePredictionDataset.length", false]], "length (dicee.negsampledataset attribute)": [[11, "dicee.NegSampleDataset.length", false]], "length (dicee.triplepredictiondataset attribute)": [[11, "dicee.TriplePredictionDataset.length", false]], "level (dicee.callbacks.perturb attribute)": [[5, "dicee.callbacks.Perturb.level", false]], "lfmult (class in dicee)": [[11, "dicee.LFMult", false]], "lfmult (class in dicee.models)": [[21, "dicee.models.LFMult", false]], "lfmult (class in dicee.models.function_space)": [[20, "dicee.models.function_space.LFMult", false]], "lfmult1 (class in dicee.models)": [[21, "dicee.models.LFMult1", false]], "lfmult1 (class in dicee.models.function_space)": [[20, "dicee.models.function_space.LFMult1", false]], "linear() (dicee.lfmult method)": [[11, "dicee.LFMult.linear", false]], "linear() (dicee.models.function_space.lfmult method)": [[20, "dicee.models.function_space.LFMult.linear", false]], "linear() (dicee.models.lfmult method)": [[21, "dicee.models.LFMult.linear", false]], "list2tuple() (dicee.query_generator.querygenerator method)": [[28, "dicee.query_generator.QueryGenerator.list2tuple", false]], "list2tuple() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.list2tuple", false]], "lm_head (dicee.byte attribute)": [[11, "dicee.BytE.lm_head", false]], "lm_head (dicee.models.transformers.byte attribute)": [[27, "dicee.models.transformers.BytE.lm_head", false]], "lm_head (dicee.models.transformers.gpt attribute)": [[27, "dicee.models.transformers.GPT.lm_head", false]], "ln_1 (dicee.models.transformers.block attribute)": [[27, "dicee.models.transformers.Block.ln_1", false]], "ln_2 (dicee.models.transformers.block attribute)": [[27, "dicee.models.transformers.Block.ln_2", false]], "load() (dicee.read_preprocess_save_load_kg.loadsavetodisk method)": [[29, "dicee.read_preprocess_save_load_kg.LoadSaveToDisk.load", false]], "load() (dicee.read_preprocess_save_load_kg.save_load_disk.loadsavetodisk method)": [[32, "dicee.read_preprocess_save_load_kg.save_load_disk.LoadSaveToDisk.load", false]], "load_json() (in module dicee)": [[11, "dicee.load_json", false]], "load_json() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.load_json", false]], "load_model() (in module dicee)": [[11, "dicee.load_model", false]], "load_model() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.load_model", false]], "load_model_ensemble() (in module dicee)": [[11, "dicee.load_model_ensemble", false]], "load_model_ensemble() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.load_model_ensemble", false]], "load_numpy() (in module dicee)": [[11, "dicee.load_numpy", false]], "load_numpy() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.load_numpy", false]], "load_numpy_ndarray() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.load_numpy_ndarray", false]], "load_pickle() (in module dicee)": [[11, "dicee.load_pickle", false]], "load_pickle() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.load_pickle", false]], "load_pickle() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.load_pickle", false]], "load_queries() (dicee.query_generator.querygenerator method)": [[28, "dicee.query_generator.QueryGenerator.load_queries", false]], "load_queries() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.load_queries", false]], "load_queries_and_answers() (dicee.query_generator.querygenerator static method)": [[28, "dicee.query_generator.QueryGenerator.load_queries_and_answers", false]], "load_queries_and_answers() (dicee.querygenerator static method)": [[11, "dicee.QueryGenerator.load_queries_and_answers", false]], "load_term_mapping() (in module dicee)": [[11, "dicee.load_term_mapping", false], [11, "id25", false]], "load_term_mapping() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.load_term_mapping", false]], "load_term_mapping() (in module dicee.trainer.dice_trainer)": [[42, "dicee.trainer.dice_trainer.load_term_mapping", false]], "load_with_pandas() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.load_with_pandas", false]], "loadsavetodisk (class in dicee.read_preprocess_save_load_kg)": [[29, "dicee.read_preprocess_save_load_kg.LoadSaveToDisk", false]], "loadsavetodisk (class in dicee.read_preprocess_save_load_kg.save_load_disk)": [[32, "dicee.read_preprocess_save_load_kg.save_load_disk.LoadSaveToDisk", false]], "local_rank (dicee.abstracts.abstracttrainer attribute)": [[3, "dicee.abstracts.AbstractTrainer.local_rank", false]], "local_rank (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[46, "dicee.trainer.torch_trainer_ddp.NodeTrainer.local_rank", false]], "loss (dicee.basekge attribute)": [[11, "dicee.BaseKGE.loss", false]], "loss (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.loss", false]], "loss (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.loss", false], [21, "id103", false], [21, "id149", false], [21, "id19", false], [21, "id200", false], [21, "id242", false], [21, "id61", false]], "loss_func (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[46, "dicee.trainer.torch_trainer_ddp.NodeTrainer.loss_func", false]], "loss_function (dicee.trainer.torch_trainer.torchtrainer attribute)": [[45, "dicee.trainer.torch_trainer.TorchTrainer.loss_function", false]], "loss_function() (dicee.byte method)": [[11, "dicee.BytE.loss_function", false]], "loss_function() (dicee.models.base_model.basekgelightning method)": [[15, "dicee.models.base_model.BaseKGELightning.loss_function", false]], "loss_function() (dicee.models.basekgelightning method)": [[21, "dicee.models.BaseKGELightning.loss_function", false]], "loss_function() (dicee.models.transformers.byte method)": [[27, "dicee.models.transformers.BytE.loss_function", false]], "loss_history (dicee.basekge attribute)": [[11, "dicee.BaseKGE.loss_history", false]], "loss_history (dicee.ensemblekge attribute)": [[11, "dicee.EnsembleKGE.loss_history", false]], "loss_history (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.loss_history", false]], "loss_history (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.loss_history", false], [21, "id114", false], [21, "id160", false], [21, "id211", false], [21, "id253", false], [21, "id30", false], [21, "id72", false]], "loss_history (dicee.models.ensemble.ensemblekge attribute)": [[19, "dicee.models.ensemble.EnsembleKGE.loss_history", false]], "loss_history (dicee.models.pykeen_models.pykeenkge attribute)": [[23, "dicee.models.pykeen_models.PykeenKGE.loss_history", false]], "loss_history (dicee.models.pykeenkge attribute)": [[21, "dicee.models.PykeenKGE.loss_history", false]], "loss_history (dicee.pykeenkge attribute)": [[11, "dicee.PykeenKGE.loss_history", false]], "loss_history (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[46, "dicee.trainer.torch_trainer_ddp.NodeTrainer.loss_history", false]], "lr (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.lr", false]], "lr (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.lr", false]], "m (dicee.lfmult attribute)": [[11, "dicee.LFMult.m", false]], "m (dicee.models.function_space.lfmult attribute)": [[20, "dicee.models.function_space.LFMult.m", false]], "m (dicee.models.lfmult attribute)": [[21, "dicee.models.LFMult.m", false]], "main() (in module dicee.scripts.index)": [[36, "dicee.scripts.index.main", false]], "main() (in module dicee.scripts.run)": [[37, "dicee.scripts.run.main", false]], "main() (in module dicee.scripts.serve)": [[38, "dicee.scripts.serve.main", false]], "make_iterable_verbose() (in module dicee.static_funcs_training)": [[40, "dicee.static_funcs_training.make_iterable_verbose", false]], "make_iterable_verbose() (in module dicee.trainer.torch_trainer_ddp)": [[46, "dicee.trainer.torch_trainer_ddp.make_iterable_verbose", false]], "mapping_from_first_two_cols_to_third() (in module dicee)": [[11, "dicee.mapping_from_first_two_cols_to_third", false]], "mapping_from_first_two_cols_to_third() (in module dicee.static_preprocess_funcs)": [[41, "dicee.static_preprocess_funcs.mapping_from_first_two_cols_to_third", false]], "margin (dicee.models.pyke attribute)": [[21, "dicee.models.Pyke.margin", false]], "margin (dicee.models.real.pyke attribute)": [[25, "dicee.models.real.Pyke.margin", false]], "margin (dicee.models.real.transe attribute)": [[25, "dicee.models.real.TransE.margin", false]], "margin (dicee.models.transe attribute)": [[21, "dicee.models.TransE.margin", false]], "margin (dicee.pyke attribute)": [[11, "dicee.Pyke.margin", false]], "margin (dicee.transe attribute)": [[11, "dicee.TransE.margin", false]], "max_ans_num (dicee.query_generator.querygenerator attribute)": [[28, "dicee.query_generator.QueryGenerator.max_ans_num", false]], "max_ans_num (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.max_ans_num", false]], "max_epochs (dicee.callbacks.kgesavecallback attribute)": [[5, "dicee.callbacks.KGESaveCallback.max_epochs", false]], "max_length_subword_tokens (dicee.basekge attribute)": [[11, "dicee.BaseKGE.max_length_subword_tokens", false]], "max_length_subword_tokens (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.max_length_subword_tokens", false]], "max_length_subword_tokens (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.max_length_subword_tokens", false]], "max_length_subword_tokens (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.max_length_subword_tokens", false], [21, "id116", false], [21, "id162", false], [21, "id213", false], [21, "id255", false], [21, "id32", false], [21, "id74", false]], "max_num_of_classes (dicee.dataset_classes.kvssampledataset attribute)": [[7, "dicee.dataset_classes.KvsSampleDataset.max_num_of_classes", false]], "max_num_of_classes (dicee.kvssampledataset attribute)": [[11, "dicee.KvsSampleDataset.max_num_of_classes", false]], "mem_of_model() (dicee.ensemblekge method)": [[11, "dicee.EnsembleKGE.mem_of_model", false]], "mem_of_model() (dicee.models.base_model.basekgelightning method)": [[15, "dicee.models.base_model.BaseKGELightning.mem_of_model", false]], "mem_of_model() (dicee.models.basekgelightning method)": [[21, "dicee.models.BaseKGELightning.mem_of_model", false]], "mem_of_model() (dicee.models.ensemble.ensemblekge method)": [[19, "dicee.models.ensemble.EnsembleKGE.mem_of_model", false]], "method (dicee.callbacks.perturb attribute)": [[5, "dicee.callbacks.Perturb.method", false]], "mlp (class in dicee.models.transformers)": [[27, "dicee.models.transformers.MLP", false]], "mlp (dicee.models.transformers.block attribute)": [[27, "dicee.models.transformers.Block.mlp", false]], "mode (dicee.query_generator.querygenerator attribute)": [[28, "dicee.query_generator.QueryGenerator.mode", false]], "mode (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.mode", false]], "model (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.model", false]], "model (dicee.models.pykeen_models.pykeenkge attribute)": [[23, "dicee.models.pykeen_models.PykeenKGE.model", false]], "model (dicee.models.pykeenkge attribute)": [[21, "dicee.models.PykeenKGE.model", false]], "model (dicee.pykeenkge attribute)": [[11, "dicee.PykeenKGE.model", false]], "model (dicee.scripts.serve.neuralsearcher attribute)": [[38, "dicee.scripts.serve.NeuralSearcher.model", false]], "model (dicee.trainer.torch_trainer.torchtrainer attribute)": [[45, "dicee.trainer.torch_trainer.TorchTrainer.model", false]], "model (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[46, "dicee.trainer.torch_trainer_ddp.NodeTrainer.model", false]], "model_kwargs (dicee.models.pykeen_models.pykeenkge attribute)": [[23, "dicee.models.pykeen_models.PykeenKGE.model_kwargs", false]], "model_kwargs (dicee.models.pykeenkge attribute)": [[21, "dicee.models.PykeenKGE.model_kwargs", false]], "model_kwargs (dicee.pykeenkge attribute)": [[11, "dicee.PykeenKGE.model_kwargs", false]], "model_name (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.model_name", false]], "models (dicee.ensemblekge attribute)": [[11, "dicee.EnsembleKGE.models", false]], "models (dicee.models.ensemble.ensemblekge attribute)": [[19, "dicee.models.ensemble.EnsembleKGE.models", false]], "models (dicee.trainer.model_parallelism.tensorparallel attribute)": [[44, "dicee.trainer.model_parallelism.TensorParallel.models", false]], "module": [[2, "module-dicee.__main__", false], [3, "module-dicee.abstracts", false], [4, "module-dicee.analyse_experiments", false], [5, "module-dicee.callbacks", false], [6, "module-dicee.config", false], [7, "module-dicee.dataset_classes", false], [8, "module-dicee.eval_static_funcs", false], [9, "module-dicee.evaluator", false], [10, "module-dicee.executer", false], [11, "module-dicee", false], [12, "module-dicee.knowledge_graph", false], [13, "module-dicee.knowledge_graph_embeddings", false], [14, "module-dicee.models.adopt", false], [15, "module-dicee.models.base_model", false], [16, "module-dicee.models.clifford", false], [17, "module-dicee.models.complex", false], [18, "module-dicee.models.dualE", false], [19, "module-dicee.models.ensemble", false], [20, "module-dicee.models.function_space", false], [21, "module-dicee.models", false], [22, "module-dicee.models.octonion", false], [23, "module-dicee.models.pykeen_models", false], [24, "module-dicee.models.quaternion", false], [25, "module-dicee.models.real", false], [26, "module-dicee.models.static_funcs", false], [27, "module-dicee.models.transformers", false], [28, "module-dicee.query_generator", false], [29, "module-dicee.read_preprocess_save_load_kg", false], [30, "module-dicee.read_preprocess_save_load_kg.preprocess", false], [31, "module-dicee.read_preprocess_save_load_kg.read_from_disk", false], [32, "module-dicee.read_preprocess_save_load_kg.save_load_disk", false], [33, "module-dicee.read_preprocess_save_load_kg.util", false], [34, "module-dicee.sanity_checkers", false], [35, "module-dicee.scripts", false], [36, "module-dicee.scripts.index", false], [37, "module-dicee.scripts.run", false], [38, "module-dicee.scripts.serve", false], [39, "module-dicee.static_funcs", false], [40, "module-dicee.static_funcs_training", false], [41, "module-dicee.static_preprocess_funcs", false], [42, "module-dicee.trainer.dice_trainer", false], [43, "module-dicee.trainer", false], [44, "module-dicee.trainer.model_parallelism", false], [45, "module-dicee.trainer.torch_trainer", false], [46, "module-dicee.trainer.torch_trainer_ddp", false]], "modules() (dicee.ensemblekge method)": [[11, "dicee.EnsembleKGE.modules", false]], "modules() (dicee.models.ensemble.ensemblekge method)": [[19, "dicee.models.ensemble.EnsembleKGE.modules", false]], "multiclassclassificationdataset (class in dicee)": [[11, "dicee.MultiClassClassificationDataset", false]], "multiclassclassificationdataset (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.MultiClassClassificationDataset", false]], "multilabeldataset (class in dicee)": [[11, "dicee.MultiLabelDataset", false]], "multilabeldataset (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.MultiLabelDataset", false]], "n (dicee.models.fmult2 attribute)": [[21, "dicee.models.FMult2.n", false]], "n (dicee.models.function_space.fmult2 attribute)": [[20, "dicee.models.function_space.FMult2.n", false]], "n_embd (dicee.models.transformers.causalselfattention attribute)": [[27, "dicee.models.transformers.CausalSelfAttention.n_embd", false]], "n_embd (dicee.models.transformers.gptconfig attribute)": [[27, "dicee.models.transformers.GPTConfig.n_embd", false]], "n_head (dicee.models.transformers.causalselfattention attribute)": [[27, "dicee.models.transformers.CausalSelfAttention.n_head", false]], "n_head (dicee.models.transformers.gptconfig attribute)": [[27, "dicee.models.transformers.GPTConfig.n_head", false]], "n_layer (dicee.models.transformers.gptconfig attribute)": [[27, "dicee.models.transformers.GPTConfig.n_layer", false]], "n_layers (dicee.models.fmult2 attribute)": [[21, "dicee.models.FMult2.n_layers", false]], "n_layers (dicee.models.function_space.fmult2 attribute)": [[20, "dicee.models.function_space.FMult2.n_layers", false]], "name (dicee.abstracts.baseinteractivekge property)": [[3, "dicee.abstracts.BaseInteractiveKGE.name", false]], "name (dicee.aconex attribute)": [[11, "dicee.AConEx.name", false]], "name (dicee.aconvo attribute)": [[11, "dicee.AConvO.name", false]], "name (dicee.aconvq attribute)": [[11, "dicee.AConvQ.name", false]], "name (dicee.byte attribute)": [[11, "dicee.BytE.name", false]], "name (dicee.complex attribute)": [[11, "dicee.ComplEx.name", false]], "name (dicee.conex attribute)": [[11, "dicee.ConEx.name", false]], "name (dicee.convo attribute)": [[11, "dicee.ConvO.name", false]], "name (dicee.convq attribute)": [[11, "dicee.ConvQ.name", false]], "name (dicee.decal attribute)": [[11, "dicee.DeCaL.name", false]], "name (dicee.distmult attribute)": [[11, "dicee.DistMult.name", false]], "name (dicee.duale attribute)": [[11, "dicee.DualE.name", false]], "name (dicee.ensemblekge attribute)": [[11, "dicee.EnsembleKGE.name", false]], "name (dicee.keci attribute)": [[11, "dicee.Keci.name", false]], "name (dicee.kecibase attribute)": [[11, "dicee.KeciBase.name", false]], "name (dicee.lfmult attribute)": [[11, "dicee.LFMult.name", false]], "name (dicee.models.aconex attribute)": [[21, "dicee.models.AConEx.name", false]], "name (dicee.models.aconvo attribute)": [[21, "dicee.models.AConvO.name", false]], "name (dicee.models.aconvq attribute)": [[21, "dicee.models.AConvQ.name", false]], "name (dicee.models.clifford.decal attribute)": [[16, "dicee.models.clifford.DeCaL.name", false]], "name (dicee.models.clifford.keci attribute)": [[16, "dicee.models.clifford.Keci.name", false]], "name (dicee.models.clifford.kecibase attribute)": [[16, "dicee.models.clifford.KeciBase.name", false]], "name (dicee.models.complex attribute)": [[21, "dicee.models.ComplEx.name", false]], "name (dicee.models.complex.aconex attribute)": [[17, "dicee.models.complex.AConEx.name", false]], "name (dicee.models.complex.complex attribute)": [[17, "dicee.models.complex.ComplEx.name", false]], "name (dicee.models.complex.conex attribute)": [[17, "dicee.models.complex.ConEx.name", false]], "name (dicee.models.conex attribute)": [[21, "dicee.models.ConEx.name", false]], "name (dicee.models.convo attribute)": [[21, "dicee.models.ConvO.name", false]], "name (dicee.models.convq attribute)": [[21, "dicee.models.ConvQ.name", false]], "name (dicee.models.decal attribute)": [[21, "dicee.models.DeCaL.name", false]], "name (dicee.models.distmult attribute)": [[21, "dicee.models.DistMult.name", false]], "name (dicee.models.duale attribute)": [[21, "dicee.models.DualE.name", false]], "name (dicee.models.duale.duale attribute)": [[18, "dicee.models.dualE.DualE.name", false]], "name (dicee.models.ensemble.ensemblekge attribute)": [[19, "dicee.models.ensemble.EnsembleKGE.name", false]], "name (dicee.models.fmult attribute)": [[21, "dicee.models.FMult.name", false]], "name (dicee.models.fmult2 attribute)": [[21, "dicee.models.FMult2.name", false]], "name (dicee.models.function_space.fmult attribute)": [[20, "dicee.models.function_space.FMult.name", false]], "name (dicee.models.function_space.fmult2 attribute)": [[20, "dicee.models.function_space.FMult2.name", false]], "name (dicee.models.function_space.gfmult attribute)": [[20, "dicee.models.function_space.GFMult.name", false]], "name (dicee.models.function_space.lfmult attribute)": [[20, "dicee.models.function_space.LFMult.name", false]], "name (dicee.models.function_space.lfmult1 attribute)": [[20, "dicee.models.function_space.LFMult1.name", false]], "name (dicee.models.gfmult attribute)": [[21, "dicee.models.GFMult.name", false]], "name (dicee.models.keci attribute)": [[21, "dicee.models.Keci.name", false]], "name (dicee.models.kecibase attribute)": [[21, "dicee.models.KeciBase.name", false]], "name (dicee.models.lfmult attribute)": [[21, "dicee.models.LFMult.name", false]], "name (dicee.models.lfmult1 attribute)": [[21, "dicee.models.LFMult1.name", false]], "name (dicee.models.octonion.aconvo attribute)": [[22, "dicee.models.octonion.AConvO.name", false]], "name (dicee.models.octonion.convo attribute)": [[22, "dicee.models.octonion.ConvO.name", false]], "name (dicee.models.octonion.omult attribute)": [[22, "dicee.models.octonion.OMult.name", false]], "name (dicee.models.omult attribute)": [[21, "dicee.models.OMult.name", false]], "name (dicee.models.pyke attribute)": [[21, "dicee.models.Pyke.name", false]], "name (dicee.models.pykeen_models.pykeenkge attribute)": [[23, "dicee.models.pykeen_models.PykeenKGE.name", false]], "name (dicee.models.pykeenkge attribute)": [[21, "dicee.models.PykeenKGE.name", false]], "name (dicee.models.qmult attribute)": [[21, "dicee.models.QMult.name", false]], "name (dicee.models.quaternion.aconvq attribute)": [[24, "dicee.models.quaternion.AConvQ.name", false]], "name (dicee.models.quaternion.convq attribute)": [[24, "dicee.models.quaternion.ConvQ.name", false]], "name (dicee.models.quaternion.qmult attribute)": [[24, "dicee.models.quaternion.QMult.name", false]], "name (dicee.models.real.distmult attribute)": [[25, "dicee.models.real.DistMult.name", false]], "name (dicee.models.real.pyke attribute)": [[25, "dicee.models.real.Pyke.name", false]], "name (dicee.models.real.shallom attribute)": [[25, "dicee.models.real.Shallom.name", false]], "name (dicee.models.real.transe attribute)": [[25, "dicee.models.real.TransE.name", false]], "name (dicee.models.shallom attribute)": [[21, "dicee.models.Shallom.name", false]], "name (dicee.models.transe attribute)": [[21, "dicee.models.TransE.name", false]], "name (dicee.models.transformers.byte attribute)": [[27, "dicee.models.transformers.BytE.name", false]], "name (dicee.omult attribute)": [[11, "dicee.OMult.name", false]], "name (dicee.pyke attribute)": [[11, "dicee.Pyke.name", false]], "name (dicee.pykeenkge attribute)": [[11, "dicee.PykeenKGE.name", false]], "name (dicee.qmult attribute)": [[11, "dicee.QMult.name", false]], "name (dicee.shallom attribute)": [[11, "dicee.Shallom.name", false]], "name (dicee.transe attribute)": [[11, "dicee.TransE.name", false]], "named_children() (dicee.ensemblekge method)": [[11, "dicee.EnsembleKGE.named_children", false]], "named_children() (dicee.models.ensemble.ensemblekge method)": [[19, "dicee.models.ensemble.EnsembleKGE.named_children", false]], "namespace (class in dicee.config)": [[6, "dicee.config.Namespace", false]], "neg_ratio (dicee.bpe_negativesamplingdataset attribute)": [[11, "dicee.BPE_NegativeSamplingDataset.neg_ratio", false]], "neg_ratio (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.neg_ratio", false]], "neg_ratio (dicee.dataset_classes.bpe_negativesamplingdataset attribute)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset.neg_ratio", false]], "neg_ratio (dicee.dataset_classes.kvssampledataset attribute)": [[7, "dicee.dataset_classes.KvsSampleDataset.neg_ratio", false]], "neg_ratio (dicee.kvssampledataset attribute)": [[11, "dicee.KvsSampleDataset.neg_ratio", false]], "neg_sample_ratio (dicee.cvdatamodule attribute)": [[11, "dicee.CVDataModule.neg_sample_ratio", false]], "neg_sample_ratio (dicee.dataset_classes.cvdatamodule attribute)": [[7, "dicee.dataset_classes.CVDataModule.neg_sample_ratio", false]], "neg_sample_ratio (dicee.dataset_classes.negsampledataset attribute)": [[7, "dicee.dataset_classes.NegSampleDataset.neg_sample_ratio", false]], "neg_sample_ratio (dicee.dataset_classes.onevssample attribute)": [[7, "dicee.dataset_classes.OnevsSample.neg_sample_ratio", false], [7, "id3", false]], "neg_sample_ratio (dicee.dataset_classes.triplepredictiondataset attribute)": [[7, "dicee.dataset_classes.TriplePredictionDataset.neg_sample_ratio", false]], "neg_sample_ratio (dicee.negsampledataset attribute)": [[11, "dicee.NegSampleDataset.neg_sample_ratio", false]], "neg_sample_ratio (dicee.onevssample attribute)": [[11, "dicee.OnevsSample.neg_sample_ratio", false], [11, "id29", false]], "neg_sample_ratio (dicee.triplepredictiondataset attribute)": [[11, "dicee.TriplePredictionDataset.neg_sample_ratio", false]], "negnorm() (dicee.kge method)": [[11, "dicee.KGE.negnorm", false]], "negnorm() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.negnorm", false]], "negsampledataset (class in dicee)": [[11, "dicee.NegSampleDataset", false]], "negsampledataset (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.NegSampleDataset", false]], "neural_searcher (in module dicee.scripts.serve)": [[38, "dicee.scripts.serve.neural_searcher", false]], "neuralsearcher (class in dicee.scripts.serve)": [[38, "dicee.scripts.serve.NeuralSearcher", false]], "nodetrainer (class in dicee.trainer.torch_trainer_ddp)": [[46, "dicee.trainer.torch_trainer_ddp.NodeTrainer", false]], "norm_fc1 (dicee.aconex attribute)": [[11, "dicee.AConEx.norm_fc1", false]], "norm_fc1 (dicee.aconvo attribute)": [[11, "dicee.AConvO.norm_fc1", false]], "norm_fc1 (dicee.conex attribute)": [[11, "dicee.ConEx.norm_fc1", false]], "norm_fc1 (dicee.convo attribute)": [[11, "dicee.ConvO.norm_fc1", false]], "norm_fc1 (dicee.models.aconex attribute)": [[21, "dicee.models.AConEx.norm_fc1", false]], "norm_fc1 (dicee.models.aconvo attribute)": [[21, "dicee.models.AConvO.norm_fc1", false]], "norm_fc1 (dicee.models.complex.aconex attribute)": [[17, "dicee.models.complex.AConEx.norm_fc1", false]], "norm_fc1 (dicee.models.complex.conex attribute)": [[17, "dicee.models.complex.ConEx.norm_fc1", false]], "norm_fc1 (dicee.models.conex attribute)": [[21, "dicee.models.ConEx.norm_fc1", false]], "norm_fc1 (dicee.models.convo attribute)": [[21, "dicee.models.ConvO.norm_fc1", false]], "norm_fc1 (dicee.models.octonion.aconvo attribute)": [[22, "dicee.models.octonion.AConvO.norm_fc1", false]], "norm_fc1 (dicee.models.octonion.convo attribute)": [[22, "dicee.models.octonion.ConvO.norm_fc1", false]], "normalization (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.normalization", false]], "normalization (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.normalization", false]], "normalize_head_entity_embeddings (dicee.basekge attribute)": [[11, "dicee.BaseKGE.normalize_head_entity_embeddings", false]], "normalize_head_entity_embeddings (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.normalize_head_entity_embeddings", false]], "normalize_head_entity_embeddings (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.normalize_head_entity_embeddings", false], [21, "id106", false], [21, "id152", false], [21, "id203", false], [21, "id22", false], [21, "id245", false], [21, "id64", false]], "normalize_relation_embeddings (dicee.basekge attribute)": [[11, "dicee.BaseKGE.normalize_relation_embeddings", false]], "normalize_relation_embeddings (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.normalize_relation_embeddings", false]], "normalize_relation_embeddings (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.normalize_relation_embeddings", false], [21, "id107", false], [21, "id153", false], [21, "id204", false], [21, "id23", false], [21, "id246", false], [21, "id65", false]], "normalize_tail_entity_embeddings (dicee.basekge attribute)": [[11, "dicee.BaseKGE.normalize_tail_entity_embeddings", false]], "normalize_tail_entity_embeddings (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.normalize_tail_entity_embeddings", false]], "normalize_tail_entity_embeddings (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.normalize_tail_entity_embeddings", false], [21, "id108", false], [21, "id154", false], [21, "id205", false], [21, "id24", false], [21, "id247", false], [21, "id66", false]], "normalizer_class (dicee.basekge attribute)": [[11, "dicee.BaseKGE.normalizer_class", false]], "normalizer_class (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.normalizer_class", false]], "normalizer_class (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.normalizer_class", false], [21, "id105", false], [21, "id151", false], [21, "id202", false], [21, "id21", false], [21, "id244", false], [21, "id63", false]], "num_bpe_entities (dicee.bpe_negativesamplingdataset attribute)": [[11, "dicee.BPE_NegativeSamplingDataset.num_bpe_entities", false]], "num_bpe_entities (dicee.dataset_classes.bpe_negativesamplingdataset attribute)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset.num_bpe_entities", false]], "num_bpe_entities (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.num_bpe_entities", false]], "num_core (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.num_core", false]], "num_datapoints (dicee.bpe_negativesamplingdataset attribute)": [[11, "dicee.BPE_NegativeSamplingDataset.num_datapoints", false]], "num_datapoints (dicee.dataset_classes.bpe_negativesamplingdataset attribute)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset.num_datapoints", false]], "num_datapoints (dicee.dataset_classes.multilabeldataset attribute)": [[7, "dicee.dataset_classes.MultiLabelDataset.num_datapoints", false]], "num_datapoints (dicee.multilabeldataset attribute)": [[11, "dicee.MultiLabelDataset.num_datapoints", false]], "num_ent (dicee.duale attribute)": [[11, "dicee.DualE.num_ent", false]], "num_ent (dicee.models.duale attribute)": [[21, "dicee.models.DualE.num_ent", false]], "num_ent (dicee.models.duale.duale attribute)": [[18, "dicee.models.dualE.DualE.num_ent", false]], "num_entities (dicee.basekge attribute)": [[11, "dicee.BaseKGE.num_entities", false]], "num_entities (dicee.cvdatamodule attribute)": [[11, "dicee.CVDataModule.num_entities", false]], "num_entities (dicee.dataset_classes.cvdatamodule attribute)": [[7, "dicee.dataset_classes.CVDataModule.num_entities", false]], "num_entities (dicee.dataset_classes.kvssampledataset attribute)": [[7, "dicee.dataset_classes.KvsSampleDataset.num_entities", false]], "num_entities (dicee.dataset_classes.negsampledataset attribute)": [[7, "dicee.dataset_classes.NegSampleDataset.num_entities", false]], "num_entities (dicee.dataset_classes.onevssample attribute)": [[7, "dicee.dataset_classes.OnevsSample.num_entities", false], [7, "id1", false]], "num_entities (dicee.dataset_classes.triplepredictiondataset attribute)": [[7, "dicee.dataset_classes.TriplePredictionDataset.num_entities", false]], "num_entities (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.num_entities", false]], "num_entities (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.num_entities", false]], "num_entities (dicee.kvssampledataset attribute)": [[11, "dicee.KvsSampleDataset.num_entities", false]], "num_entities (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.num_entities", false]], "num_entities (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.num_entities", false], [21, "id137", false], [21, "id188", false], [21, "id230", false], [21, "id49", false], [21, "id7", false], [21, "id91", false]], "num_entities (dicee.negsampledataset attribute)": [[11, "dicee.NegSampleDataset.num_entities", false]], "num_entities (dicee.onevssample attribute)": [[11, "dicee.OnevsSample.num_entities", false], [11, "id27", false]], "num_entities (dicee.triplepredictiondataset attribute)": [[11, "dicee.TriplePredictionDataset.num_entities", false]], "num_epochs (dicee.abstracts.abstractppecallback attribute)": [[3, "dicee.abstracts.AbstractPPECallback.num_epochs", false]], "num_epochs (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.num_epochs", false]], "num_epochs (dicee.callbacks.aswa attribute)": [[5, "dicee.callbacks.ASWA.num_epochs", false]], "num_epochs (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.num_epochs", false]], "num_epochs (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[46, "dicee.trainer.torch_trainer_ddp.NodeTrainer.num_epochs", false]], "num_folds_for_cv (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.num_folds_for_cv", false]], "num_of_data_points (dicee.dataset_classes.multiclassclassificationdataset attribute)": [[7, "dicee.dataset_classes.MultiClassClassificationDataset.num_of_data_points", false]], "num_of_data_points (dicee.multiclassclassificationdataset attribute)": [[11, "dicee.MultiClassClassificationDataset.num_of_data_points", false]], "num_of_epochs (dicee.callbacks.pseudolabellingcallback attribute)": [[5, "dicee.callbacks.PseudoLabellingCallback.num_of_epochs", false]], "num_of_output_channels (dicee.basekge attribute)": [[11, "dicee.BaseKGE.num_of_output_channels", false]], "num_of_output_channels (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.num_of_output_channels", false]], "num_of_output_channels (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.num_of_output_channels", false]], "num_of_output_channels (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.num_of_output_channels", false], [21, "id101", false], [21, "id147", false], [21, "id17", false], [21, "id198", false], [21, "id240", false], [21, "id59", false]], "num_params (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.num_params", false]], "num_relations (dicee.basekge attribute)": [[11, "dicee.BaseKGE.num_relations", false]], "num_relations (dicee.cvdatamodule attribute)": [[11, "dicee.CVDataModule.num_relations", false]], "num_relations (dicee.dataset_classes.cvdatamodule attribute)": [[7, "dicee.dataset_classes.CVDataModule.num_relations", false]], "num_relations (dicee.dataset_classes.negsampledataset attribute)": [[7, "dicee.dataset_classes.NegSampleDataset.num_relations", false]], "num_relations (dicee.dataset_classes.onevssample attribute)": [[7, "dicee.dataset_classes.OnevsSample.num_relations", false], [7, "id2", false]], "num_relations (dicee.dataset_classes.triplepredictiondataset attribute)": [[7, "dicee.dataset_classes.TriplePredictionDataset.num_relations", false]], "num_relations (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.num_relations", false]], "num_relations (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.num_relations", false]], "num_relations (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.num_relations", false]], "num_relations (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.num_relations", false], [21, "id138", false], [21, "id189", false], [21, "id231", false], [21, "id50", false], [21, "id8", false], [21, "id92", false]], "num_relations (dicee.negsampledataset attribute)": [[11, "dicee.NegSampleDataset.num_relations", false]], "num_relations (dicee.onevssample attribute)": [[11, "dicee.OnevsSample.num_relations", false], [11, "id28", false]], "num_relations (dicee.triplepredictiondataset attribute)": [[11, "dicee.TriplePredictionDataset.num_relations", false]], "num_sample (dicee.models.fmult attribute)": [[21, "dicee.models.FMult.num_sample", false]], "num_sample (dicee.models.function_space.fmult attribute)": [[20, "dicee.models.function_space.FMult.num_sample", false]], "num_sample (dicee.models.function_space.gfmult attribute)": [[20, "dicee.models.function_space.GFMult.num_sample", false]], "num_sample (dicee.models.gfmult attribute)": [[21, "dicee.models.GFMult.num_sample", false]], "num_tokens (dicee.basekge attribute)": [[11, "dicee.BaseKGE.num_tokens", false]], "num_tokens (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.num_tokens", false]], "num_tokens (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.num_tokens", false]], "num_tokens (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.num_tokens", false], [21, "id139", false], [21, "id190", false], [21, "id232", false], [21, "id51", false], [21, "id9", false], [21, "id93", false]], "num_workers (dicee.cvdatamodule attribute)": [[11, "dicee.CVDataModule.num_workers", false]], "num_workers (dicee.dataset_classes.cvdatamodule attribute)": [[7, "dicee.dataset_classes.CVDataModule.num_workers", false]], "numpy_data_type_changer() (in module dicee)": [[11, "dicee.numpy_data_type_changer", false]], "numpy_data_type_changer() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.numpy_data_type_changer", false]], "octonion_mul() (in module dicee.models)": [[21, "dicee.models.octonion_mul", false]], "octonion_mul() (in module dicee.models.octonion)": [[22, "dicee.models.octonion.octonion_mul", false]], "octonion_mul_norm() (in module dicee.models)": [[21, "dicee.models.octonion_mul_norm", false]], "octonion_mul_norm() (in module dicee.models.octonion)": [[22, "dicee.models.octonion.octonion_mul_norm", false]], "octonion_normalizer() (dicee.aconvo static method)": [[11, "dicee.AConvO.octonion_normalizer", false]], "octonion_normalizer() (dicee.convo static method)": [[11, "dicee.ConvO.octonion_normalizer", false]], "octonion_normalizer() (dicee.models.aconvo static method)": [[21, "dicee.models.AConvO.octonion_normalizer", false]], "octonion_normalizer() (dicee.models.convo static method)": [[21, "dicee.models.ConvO.octonion_normalizer", false]], "octonion_normalizer() (dicee.models.octonion.aconvo static method)": [[22, "dicee.models.octonion.AConvO.octonion_normalizer", false]], "octonion_normalizer() (dicee.models.octonion.convo static method)": [[22, "dicee.models.octonion.ConvO.octonion_normalizer", false]], "octonion_normalizer() (dicee.models.octonion.omult static method)": [[22, "dicee.models.octonion.OMult.octonion_normalizer", false]], "octonion_normalizer() (dicee.models.omult static method)": [[21, "dicee.models.OMult.octonion_normalizer", false]], "octonion_normalizer() (dicee.omult static method)": [[11, "dicee.OMult.octonion_normalizer", false]], "omult (class in dicee)": [[11, "dicee.OMult", false]], "omult (class in dicee.models)": [[21, "dicee.models.OMult", false]], "omult (class in dicee.models.octonion)": [[22, "dicee.models.octonion.OMult", false]], "on_epoch_end() (dicee.callbacks.kgesavecallback method)": [[5, "dicee.callbacks.KGESaveCallback.on_epoch_end", false]], "on_epoch_end() (dicee.callbacks.pseudolabellingcallback method)": [[5, "dicee.callbacks.PseudoLabellingCallback.on_epoch_end", false]], "on_fit_end() (dicee.abstracts.abstractcallback method)": [[3, "dicee.abstracts.AbstractCallback.on_fit_end", false]], "on_fit_end() (dicee.abstracts.abstractppecallback method)": [[3, "dicee.abstracts.AbstractPPECallback.on_fit_end", false]], "on_fit_end() (dicee.abstracts.abstracttrainer method)": [[3, "dicee.abstracts.AbstractTrainer.on_fit_end", false]], "on_fit_end() (dicee.callbacks.accumulateepochlosscallback method)": [[5, "dicee.callbacks.AccumulateEpochLossCallback.on_fit_end", false]], "on_fit_end() (dicee.callbacks.aswa method)": [[5, "dicee.callbacks.ASWA.on_fit_end", false]], "on_fit_end() (dicee.callbacks.eval method)": [[5, "dicee.callbacks.Eval.on_fit_end", false]], "on_fit_end() (dicee.callbacks.kgesavecallback method)": [[5, "dicee.callbacks.KGESaveCallback.on_fit_end", false]], "on_fit_end() (dicee.callbacks.printcallback method)": [[5, "dicee.callbacks.PrintCallback.on_fit_end", false]], "on_fit_start() (dicee.abstracts.abstractcallback method)": [[3, "dicee.abstracts.AbstractCallback.on_fit_start", false]], "on_fit_start() (dicee.abstracts.abstractppecallback method)": [[3, "dicee.abstracts.AbstractPPECallback.on_fit_start", false]], "on_fit_start() (dicee.abstracts.abstracttrainer method)": [[3, "dicee.abstracts.AbstractTrainer.on_fit_start", false]], "on_fit_start() (dicee.callbacks.eval method)": [[5, "dicee.callbacks.Eval.on_fit_start", false]], "on_fit_start() (dicee.callbacks.kgesavecallback method)": [[5, "dicee.callbacks.KGESaveCallback.on_fit_start", false]], "on_fit_start() (dicee.callbacks.krone method)": [[5, "dicee.callbacks.KronE.on_fit_start", false]], "on_fit_start() (dicee.callbacks.printcallback method)": [[5, "dicee.callbacks.PrintCallback.on_fit_start", false]], "on_init_end() (dicee.abstracts.abstractcallback method)": [[3, "dicee.abstracts.AbstractCallback.on_init_end", false]], "on_init_start() (dicee.abstracts.abstractcallback method)": [[3, "dicee.abstracts.AbstractCallback.on_init_start", false]], "on_train_batch_end() (dicee.abstracts.abstractcallback method)": [[3, "dicee.abstracts.AbstractCallback.on_train_batch_end", false]], "on_train_batch_end() (dicee.abstracts.abstracttrainer method)": [[3, "dicee.abstracts.AbstractTrainer.on_train_batch_end", false]], "on_train_batch_end() (dicee.callbacks.eval method)": [[5, "dicee.callbacks.Eval.on_train_batch_end", false]], "on_train_batch_end() (dicee.callbacks.kgesavecallback method)": [[5, "dicee.callbacks.KGESaveCallback.on_train_batch_end", false]], "on_train_batch_end() (dicee.callbacks.printcallback method)": [[5, "dicee.callbacks.PrintCallback.on_train_batch_end", false]], "on_train_batch_start() (dicee.callbacks.perturb method)": [[5, "dicee.callbacks.Perturb.on_train_batch_start", false]], "on_train_epoch_end() (dicee.abstracts.abstractcallback method)": [[3, "dicee.abstracts.AbstractCallback.on_train_epoch_end", false]], "on_train_epoch_end() (dicee.abstracts.abstracttrainer method)": [[3, "dicee.abstracts.AbstractTrainer.on_train_epoch_end", false]], "on_train_epoch_end() (dicee.callbacks.aswa method)": [[5, "dicee.callbacks.ASWA.on_train_epoch_end", false]], "on_train_epoch_end() (dicee.callbacks.eval method)": [[5, "dicee.callbacks.Eval.on_train_epoch_end", false]], "on_train_epoch_end() (dicee.callbacks.kgesavecallback method)": [[5, "dicee.callbacks.KGESaveCallback.on_train_epoch_end", false]], "on_train_epoch_end() (dicee.callbacks.printcallback method)": [[5, "dicee.callbacks.PrintCallback.on_train_epoch_end", false]], "on_train_epoch_end() (dicee.models.base_model.basekgelightning method)": [[15, "dicee.models.base_model.BaseKGELightning.on_train_epoch_end", false]], "on_train_epoch_end() (dicee.models.basekgelightning method)": [[21, "dicee.models.BaseKGELightning.on_train_epoch_end", false]], "onevsalldataset (class in dicee)": [[11, "dicee.OnevsAllDataset", false]], "onevsalldataset (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.OnevsAllDataset", false]], "onevssample (class in dicee)": [[11, "dicee.OnevsSample", false]], "onevssample (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.OnevsSample", false]], "optim (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.optim", false]], "optimizer (dicee.trainer.torch_trainer.torchtrainer attribute)": [[45, "dicee.trainer.torch_trainer.TorchTrainer.optimizer", false]], "optimizer (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[46, "dicee.trainer.torch_trainer_ddp.NodeTrainer.optimizer", false]], "optimizer_name (dicee.basekge attribute)": [[11, "dicee.BaseKGE.optimizer_name", false]], "optimizer_name (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.optimizer_name", false]], "optimizer_name (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.optimizer_name", false], [21, "id14", false], [21, "id144", false], [21, "id195", false], [21, "id237", false], [21, "id56", false], [21, "id98", false]], "optimizers (dicee.ensemblekge attribute)": [[11, "dicee.EnsembleKGE.optimizers", false]], "optimizers (dicee.models.ensemble.ensemblekge attribute)": [[19, "dicee.models.ensemble.EnsembleKGE.optimizers", false]], "ordered_bpe_entities (dicee.bpe_negativesamplingdataset attribute)": [[11, "dicee.BPE_NegativeSamplingDataset.ordered_bpe_entities", false]], "ordered_bpe_entities (dicee.dataset_classes.bpe_negativesamplingdataset attribute)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset.ordered_bpe_entities", false]], "ordered_bpe_entities (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.ordered_bpe_entities", false]], "ordered_shaped_bpe_tokens (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.ordered_shaped_bpe_tokens", false]], "p (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.p", false]], "p (dicee.decal attribute)": [[11, "dicee.DeCaL.p", false]], "p (dicee.keci attribute)": [[11, "dicee.Keci.p", false]], "p (dicee.models.clifford.decal attribute)": [[16, "dicee.models.clifford.DeCaL.p", false]], "p (dicee.models.clifford.keci attribute)": [[16, "dicee.models.clifford.Keci.p", false]], "p (dicee.models.decal attribute)": [[21, "dicee.models.DeCaL.p", false]], "p (dicee.models.keci attribute)": [[21, "dicee.models.Keci.p", false]], "padding (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.padding", false]], "pandas_dataframe_indexer() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.pandas_dataframe_indexer", false]], "param_init (dicee.basekge attribute)": [[11, "dicee.BaseKGE.param_init", false]], "param_init (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.param_init", false]], "param_init (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.param_init", false], [21, "id110", false], [21, "id156", false], [21, "id207", false], [21, "id249", false], [21, "id26", false], [21, "id68", false]], "parameters() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.parameters", false]], "parameters() (dicee.ensemblekge method)": [[11, "dicee.EnsembleKGE.parameters", false]], "parameters() (dicee.models.ensemble.ensemblekge method)": [[19, "dicee.models.ensemble.EnsembleKGE.parameters", false]], "path (dicee.abstracts.abstractppecallback attribute)": [[3, "dicee.abstracts.AbstractPPECallback.path", false]], "path (dicee.callbacks.accumulateepochlosscallback attribute)": [[5, "dicee.callbacks.AccumulateEpochLossCallback.path", false]], "path (dicee.callbacks.aswa attribute)": [[5, "dicee.callbacks.ASWA.path", false]], "path (dicee.callbacks.eval attribute)": [[5, "dicee.callbacks.Eval.path", false]], "path (dicee.callbacks.kgesavecallback attribute)": [[5, "dicee.callbacks.KGESaveCallback.path", false]], "path_dataset_folder (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.path_dataset_folder", false]], "path_for_deserialization (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.path_for_deserialization", false]], "path_for_serialization (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.path_for_serialization", false]], "path_single_kg (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.path_single_kg", false]], "path_single_kg (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.path_single_kg", false]], "path_to_store_single_run (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.path_to_store_single_run", false]], "perturb (class in dicee.callbacks)": [[5, "dicee.callbacks.Perturb", false]], "polars_dataframe_indexer() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.polars_dataframe_indexer", false]], "poly_nn() (dicee.lfmult method)": [[11, "dicee.LFMult.poly_NN", false]], "poly_nn() (dicee.models.function_space.lfmult method)": [[20, "dicee.models.function_space.LFMult.poly_NN", false]], "poly_nn() (dicee.models.lfmult method)": [[21, "dicee.models.LFMult.poly_NN", false]], "polynomial() (dicee.lfmult method)": [[11, "dicee.LFMult.polynomial", false]], "polynomial() (dicee.models.function_space.lfmult method)": [[20, "dicee.models.function_space.LFMult.polynomial", false]], "polynomial() (dicee.models.lfmult method)": [[21, "dicee.models.LFMult.polynomial", false]], "pop() (dicee.lfmult method)": [[11, "dicee.LFMult.pop", false]], "pop() (dicee.models.function_space.lfmult method)": [[20, "dicee.models.function_space.LFMult.pop", false]], "pop() (dicee.models.lfmult method)": [[21, "dicee.models.LFMult.pop", false]], "pq (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.pq", false]], "predict() (dicee.kge method)": [[11, "dicee.KGE.predict", false]], "predict() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.predict", false]], "predict_dataloader() (dicee.models.base_model.basekgelightning method)": [[15, "dicee.models.base_model.BaseKGELightning.predict_dataloader", false]], "predict_dataloader() (dicee.models.basekgelightning method)": [[21, "dicee.models.BaseKGELightning.predict_dataloader", false]], "predict_missing_head_entity() (dicee.kge method)": [[11, "dicee.KGE.predict_missing_head_entity", false]], "predict_missing_head_entity() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.predict_missing_head_entity", false]], "predict_missing_relations() (dicee.kge method)": [[11, "dicee.KGE.predict_missing_relations", false]], "predict_missing_relations() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.predict_missing_relations", false]], "predict_missing_tail_entity() (dicee.kge method)": [[11, "dicee.KGE.predict_missing_tail_entity", false]], "predict_missing_tail_entity() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.predict_missing_tail_entity", false]], "predict_topk() (dicee.kge method)": [[11, "dicee.KGE.predict_topk", false]], "predict_topk() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.predict_topk", false]], "prepare_data() (dicee.cvdatamodule method)": [[11, "dicee.CVDataModule.prepare_data", false]], "prepare_data() (dicee.dataset_classes.cvdatamodule method)": [[7, "dicee.dataset_classes.CVDataModule.prepare_data", false]], "preprocess_with_byte_pair_encoding() (dicee.read_preprocess_save_load_kg.preprocess.preprocesskg method)": [[30, "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG.preprocess_with_byte_pair_encoding", false]], "preprocess_with_byte_pair_encoding() (dicee.read_preprocess_save_load_kg.preprocesskg method)": [[29, "dicee.read_preprocess_save_load_kg.PreprocessKG.preprocess_with_byte_pair_encoding", false]], "preprocess_with_byte_pair_encoding_with_padding() (dicee.read_preprocess_save_load_kg.preprocess.preprocesskg method)": [[30, "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG.preprocess_with_byte_pair_encoding_with_padding", false]], "preprocess_with_byte_pair_encoding_with_padding() (dicee.read_preprocess_save_load_kg.preprocesskg method)": [[29, "dicee.read_preprocess_save_load_kg.PreprocessKG.preprocess_with_byte_pair_encoding_with_padding", false]], "preprocess_with_pandas() (dicee.read_preprocess_save_load_kg.preprocess.preprocesskg method)": [[30, "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG.preprocess_with_pandas", false]], "preprocess_with_pandas() (dicee.read_preprocess_save_load_kg.preprocesskg method)": [[29, "dicee.read_preprocess_save_load_kg.PreprocessKG.preprocess_with_pandas", false]], "preprocess_with_polars() (dicee.read_preprocess_save_load_kg.preprocess.preprocesskg method)": [[30, "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG.preprocess_with_polars", false]], "preprocess_with_polars() (dicee.read_preprocess_save_load_kg.preprocesskg method)": [[29, "dicee.read_preprocess_save_load_kg.PreprocessKG.preprocess_with_polars", false]], "preprocesses_input_args() (in module dicee.static_preprocess_funcs)": [[41, "dicee.static_preprocess_funcs.preprocesses_input_args", false]], "preprocesskg (class in dicee.read_preprocess_save_load_kg)": [[29, "dicee.read_preprocess_save_load_kg.PreprocessKG", false]], "preprocesskg (class in dicee.read_preprocess_save_load_kg.preprocess)": [[30, "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG", false]], "printcallback (class in dicee.callbacks)": [[5, "dicee.callbacks.PrintCallback", false]], "process (dicee.trainer.torch_trainer.torchtrainer attribute)": [[45, "dicee.trainer.torch_trainer.TorchTrainer.process", false]], "pseudolabellingcallback (class in dicee.callbacks)": [[5, "dicee.callbacks.PseudoLabellingCallback", false]], "pyke (class in dicee)": [[11, "dicee.Pyke", false]], "pyke (class in dicee.models)": [[21, "dicee.models.Pyke", false]], "pyke (class in dicee.models.real)": [[25, "dicee.models.real.Pyke", false]], "pykeen_model_kwargs (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.pykeen_model_kwargs", false]], "pykeenkge (class in dicee)": [[11, "dicee.PykeenKGE", false]], "pykeenkge (class in dicee.models)": [[21, "dicee.models.PykeenKGE", false]], "pykeenkge (class in dicee.models.pykeen_models)": [[23, "dicee.models.pykeen_models.PykeenKGE", false]], "q (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.q", false]], "q (dicee.decal attribute)": [[11, "dicee.DeCaL.q", false]], "q (dicee.keci attribute)": [[11, "dicee.Keci.q", false]], "q (dicee.models.clifford.decal attribute)": [[16, "dicee.models.clifford.DeCaL.q", false]], "q (dicee.models.clifford.keci attribute)": [[16, "dicee.models.clifford.Keci.q", false]], "q (dicee.models.decal attribute)": [[21, "dicee.models.DeCaL.q", false]], "q (dicee.models.keci attribute)": [[21, "dicee.models.Keci.q", false]], "qdrant_client (dicee.scripts.serve.neuralsearcher attribute)": [[38, "dicee.scripts.serve.NeuralSearcher.qdrant_client", false]], "qmult (class in dicee)": [[11, "dicee.QMult", false]], "qmult (class in dicee.models)": [[21, "dicee.models.QMult", false]], "qmult (class in dicee.models.quaternion)": [[24, "dicee.models.quaternion.QMult", false]], "quaternion_mul() (in module dicee.models)": [[21, "dicee.models.quaternion_mul", false]], "quaternion_mul() (in module dicee.models.static_funcs)": [[26, "dicee.models.static_funcs.quaternion_mul", false]], "quaternion_mul_with_unit_norm() (in module dicee.models)": [[21, "dicee.models.quaternion_mul_with_unit_norm", false]], "quaternion_mul_with_unit_norm() (in module dicee.models.quaternion)": [[24, "dicee.models.quaternion.quaternion_mul_with_unit_norm", false]], "quaternion_multiplication_followed_by_inner_product() (dicee.models.qmult method)": [[21, "dicee.models.QMult.quaternion_multiplication_followed_by_inner_product", false]], "quaternion_multiplication_followed_by_inner_product() (dicee.models.quaternion.qmult method)": [[24, "dicee.models.quaternion.QMult.quaternion_multiplication_followed_by_inner_product", false]], "quaternion_multiplication_followed_by_inner_product() (dicee.qmult method)": [[11, "dicee.QMult.quaternion_multiplication_followed_by_inner_product", false]], "quaternion_normalizer() (dicee.models.qmult static method)": [[21, "dicee.models.QMult.quaternion_normalizer", false]], "quaternion_normalizer() (dicee.models.quaternion.qmult static method)": [[24, "dicee.models.quaternion.QMult.quaternion_normalizer", false]], "quaternion_normalizer() (dicee.qmult static method)": [[11, "dicee.QMult.quaternion_normalizer", false]], "query_name_to_struct (dicee.query_generator.querygenerator attribute)": [[28, "dicee.query_generator.QueryGenerator.query_name_to_struct", false]], "query_name_to_struct (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.query_name_to_struct", false]], "querygenerator (class in dicee)": [[11, "dicee.QueryGenerator", false]], "querygenerator (class in dicee.query_generator)": [[28, "dicee.query_generator.QueryGenerator", false]], "r (dicee.decal attribute)": [[11, "dicee.DeCaL.r", false]], "r (dicee.keci attribute)": [[11, "dicee.Keci.r", false]], "r (dicee.models.clifford.decal attribute)": [[16, "dicee.models.clifford.DeCaL.r", false]], "r (dicee.models.clifford.keci attribute)": [[16, "dicee.models.clifford.Keci.r", false]], "r (dicee.models.decal attribute)": [[21, "dicee.models.DeCaL.r", false]], "r (dicee.models.keci attribute)": [[21, "dicee.models.Keci.r", false]], "random_prediction() (in module dicee)": [[11, "dicee.random_prediction", false]], "random_prediction() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.random_prediction", false]], "random_seed (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.random_seed", false]], "ratio (dicee.callbacks.perturb attribute)": [[5, "dicee.callbacks.Perturb.ratio", false]], "re (dicee.decal attribute)": [[11, "dicee.DeCaL.re", false]], "re (dicee.models.clifford.decal attribute)": [[16, "dicee.models.clifford.DeCaL.re", false]], "re (dicee.models.decal attribute)": [[21, "dicee.models.DeCaL.re", false]], "re_vocab (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.re_vocab", false]], "read_from_disk() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.read_from_disk", false]], "read_from_triple_store() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.read_from_triple_store", false]], "read_only_few (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.read_only_few", false]], "read_only_few (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.read_only_few", false]], "read_or_load_kg() (in module dicee)": [[11, "dicee.read_or_load_kg", false]], "read_or_load_kg() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.read_or_load_kg", false]], "read_with_pandas() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.read_with_pandas", false]], "read_with_polars() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.read_with_polars", false]], "readfromdisk (class in dicee.read_preprocess_save_load_kg)": [[29, "dicee.read_preprocess_save_load_kg.ReadFromDisk", false]], "readfromdisk (class in dicee.read_preprocess_save_load_kg.read_from_disk)": [[31, "dicee.read_preprocess_save_load_kg.read_from_disk.ReadFromDisk", false]], "rel2id (dicee.query_generator.querygenerator attribute)": [[28, "dicee.query_generator.QueryGenerator.rel2id", false]], "rel2id (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.rel2id", false]], "relation_embeddings (dicee.aconvq attribute)": [[11, "dicee.AConvQ.relation_embeddings", false]], "relation_embeddings (dicee.convq attribute)": [[11, "dicee.ConvQ.relation_embeddings", false]], "relation_embeddings (dicee.decal attribute)": [[11, "dicee.DeCaL.relation_embeddings", false]], "relation_embeddings (dicee.duale attribute)": [[11, "dicee.DualE.relation_embeddings", false]], "relation_embeddings (dicee.lfmult attribute)": [[11, "dicee.LFMult.relation_embeddings", false]], "relation_embeddings (dicee.models.aconvq attribute)": [[21, "dicee.models.AConvQ.relation_embeddings", false]], "relation_embeddings (dicee.models.clifford.decal attribute)": [[16, "dicee.models.clifford.DeCaL.relation_embeddings", false]], "relation_embeddings (dicee.models.convq attribute)": [[21, "dicee.models.ConvQ.relation_embeddings", false]], "relation_embeddings (dicee.models.decal attribute)": [[21, "dicee.models.DeCaL.relation_embeddings", false]], "relation_embeddings (dicee.models.duale attribute)": [[21, "dicee.models.DualE.relation_embeddings", false]], "relation_embeddings (dicee.models.duale.duale attribute)": [[18, "dicee.models.dualE.DualE.relation_embeddings", false]], "relation_embeddings (dicee.models.fmult attribute)": [[21, "dicee.models.FMult.relation_embeddings", false]], "relation_embeddings (dicee.models.fmult2 attribute)": [[21, "dicee.models.FMult2.relation_embeddings", false]], "relation_embeddings (dicee.models.function_space.fmult attribute)": [[20, "dicee.models.function_space.FMult.relation_embeddings", false]], "relation_embeddings (dicee.models.function_space.fmult2 attribute)": [[20, "dicee.models.function_space.FMult2.relation_embeddings", false]], "relation_embeddings (dicee.models.function_space.gfmult attribute)": [[20, "dicee.models.function_space.GFMult.relation_embeddings", false]], "relation_embeddings (dicee.models.function_space.lfmult attribute)": [[20, "dicee.models.function_space.LFMult.relation_embeddings", false]], "relation_embeddings (dicee.models.function_space.lfmult1 attribute)": [[20, "dicee.models.function_space.LFMult1.relation_embeddings", false]], "relation_embeddings (dicee.models.gfmult attribute)": [[21, "dicee.models.GFMult.relation_embeddings", false]], "relation_embeddings (dicee.models.lfmult attribute)": [[21, "dicee.models.LFMult.relation_embeddings", false]], "relation_embeddings (dicee.models.lfmult1 attribute)": [[21, "dicee.models.LFMult1.relation_embeddings", false]], "relation_embeddings (dicee.models.pykeen_models.pykeenkge attribute)": [[23, "dicee.models.pykeen_models.PykeenKGE.relation_embeddings", false]], "relation_embeddings (dicee.models.pykeenkge attribute)": [[21, "dicee.models.PykeenKGE.relation_embeddings", false]], "relation_embeddings (dicee.models.quaternion.aconvq attribute)": [[24, "dicee.models.quaternion.AConvQ.relation_embeddings", false]], "relation_embeddings (dicee.models.quaternion.convq attribute)": [[24, "dicee.models.quaternion.ConvQ.relation_embeddings", false]], "relation_embeddings (dicee.pykeenkge attribute)": [[11, "dicee.PykeenKGE.relation_embeddings", false]], "relation_to_idx (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.relation_to_idx", false]], "relations_str (dicee.knowledge_graph.kg property)": [[12, "dicee.knowledge_graph.KG.relations_str", false]], "reload_dataset() (in module dicee)": [[11, "dicee.reload_dataset", false]], "reload_dataset() (in module dicee.dataset_classes)": [[7, "dicee.dataset_classes.reload_dataset", false]], "report (dicee.dice_trainer attribute)": [[11, "dicee.DICE_Trainer.report", false]], "report (dicee.evaluator.evaluator attribute)": [[9, "dicee.evaluator.Evaluator.report", false]], "report (dicee.execute attribute)": [[11, "dicee.Execute.report", false]], "report (dicee.executer.execute attribute)": [[10, "dicee.executer.Execute.report", false]], "report (dicee.trainer.dice_trainer attribute)": [[43, "dicee.trainer.DICE_Trainer.report", false]], "report (dicee.trainer.dice_trainer.dice_trainer attribute)": [[42, "dicee.trainer.dice_trainer.DICE_Trainer.report", false]], "reports (dicee.callbacks.eval attribute)": [[5, "dicee.callbacks.Eval.reports", false]], "requires_grad_for_interactions (dicee.keci attribute)": [[11, "dicee.Keci.requires_grad_for_interactions", false]], "requires_grad_for_interactions (dicee.kecibase attribute)": [[11, "dicee.KeciBase.requires_grad_for_interactions", false]], "requires_grad_for_interactions (dicee.models.clifford.keci attribute)": [[16, "dicee.models.clifford.Keci.requires_grad_for_interactions", false]], "requires_grad_for_interactions (dicee.models.clifford.kecibase attribute)": [[16, "dicee.models.clifford.KeciBase.requires_grad_for_interactions", false]], "requires_grad_for_interactions (dicee.models.keci attribute)": [[21, "dicee.models.Keci.requires_grad_for_interactions", false]], "requires_grad_for_interactions (dicee.models.kecibase attribute)": [[21, "dicee.models.KeciBase.requires_grad_for_interactions", false]], "resid_dropout (dicee.models.transformers.causalselfattention attribute)": [[27, "dicee.models.transformers.CausalSelfAttention.resid_dropout", false]], "residual_convolution() (dicee.aconex method)": [[11, "dicee.AConEx.residual_convolution", false]], "residual_convolution() (dicee.aconvo method)": [[11, "dicee.AConvO.residual_convolution", false]], "residual_convolution() (dicee.aconvq method)": [[11, "dicee.AConvQ.residual_convolution", false]], "residual_convolution() (dicee.conex method)": [[11, "dicee.ConEx.residual_convolution", false]], "residual_convolution() (dicee.convo method)": [[11, "dicee.ConvO.residual_convolution", false]], "residual_convolution() (dicee.convq method)": [[11, "dicee.ConvQ.residual_convolution", false]], "residual_convolution() (dicee.models.aconex method)": [[21, "dicee.models.AConEx.residual_convolution", false]], "residual_convolution() (dicee.models.aconvo method)": [[21, "dicee.models.AConvO.residual_convolution", false]], "residual_convolution() (dicee.models.aconvq method)": [[21, "dicee.models.AConvQ.residual_convolution", false]], "residual_convolution() (dicee.models.complex.aconex method)": [[17, "dicee.models.complex.AConEx.residual_convolution", false]], "residual_convolution() (dicee.models.complex.conex method)": [[17, "dicee.models.complex.ConEx.residual_convolution", false]], "residual_convolution() (dicee.models.conex method)": [[21, "dicee.models.ConEx.residual_convolution", false]], "residual_convolution() (dicee.models.convo method)": [[21, "dicee.models.ConvO.residual_convolution", false]], "residual_convolution() (dicee.models.convq method)": [[21, "dicee.models.ConvQ.residual_convolution", false]], "residual_convolution() (dicee.models.octonion.aconvo method)": [[22, "dicee.models.octonion.AConvO.residual_convolution", false]], "residual_convolution() (dicee.models.octonion.convo method)": [[22, "dicee.models.octonion.ConvO.residual_convolution", false]], "residual_convolution() (dicee.models.quaternion.aconvq method)": [[24, "dicee.models.quaternion.AConvQ.residual_convolution", false]], "residual_convolution() (dicee.models.quaternion.convq method)": [[24, "dicee.models.quaternion.ConvQ.residual_convolution", false]], "retrieve_embeddings() (in module dicee.scripts.serve)": [[38, "dicee.scripts.serve.retrieve_embeddings", false]], "return_multi_hop_query_results() (dicee.kge method)": [[11, "dicee.KGE.return_multi_hop_query_results", false]], "return_multi_hop_query_results() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.return_multi_hop_query_results", false]], "root() (in module dicee.scripts.serve)": [[38, "dicee.scripts.serve.root", false]], "roots (dicee.models.fmult attribute)": [[21, "dicee.models.FMult.roots", false]], "roots (dicee.models.function_space.fmult attribute)": [[20, "dicee.models.function_space.FMult.roots", false]], "roots (dicee.models.function_space.gfmult attribute)": [[20, "dicee.models.function_space.GFMult.roots", false]], "roots (dicee.models.gfmult attribute)": [[21, "dicee.models.GFMult.roots", false]], "runtime (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.runtime", false]], "sample_counter (dicee.abstracts.abstractppecallback attribute)": [[3, "dicee.abstracts.AbstractPPECallback.sample_counter", false]], "sample_entity() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.sample_entity", false]], "sample_relation() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.sample_relation", false]], "sample_triples_ratio (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.sample_triples_ratio", false]], "sample_triples_ratio (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.sample_triples_ratio", false]], "sanity_checking_with_arguments() (in module dicee.sanity_checkers)": [[34, "dicee.sanity_checkers.sanity_checking_with_arguments", false]], "save() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.save", false]], "save() (dicee.read_preprocess_save_load_kg.loadsavetodisk method)": [[29, "dicee.read_preprocess_save_load_kg.LoadSaveToDisk.save", false]], "save() (dicee.read_preprocess_save_load_kg.save_load_disk.loadsavetodisk method)": [[32, "dicee.read_preprocess_save_load_kg.save_load_disk.LoadSaveToDisk.save", false]], "save_checkpoint() (dicee.abstracts.abstracttrainer static method)": [[3, "dicee.abstracts.AbstractTrainer.save_checkpoint", false]], "save_checkpoint_model() (in module dicee)": [[11, "dicee.save_checkpoint_model", false]], "save_checkpoint_model() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.save_checkpoint_model", false]], "save_embeddings() (in module dicee)": [[11, "dicee.save_embeddings", false]], "save_embeddings() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.save_embeddings", false]], "save_embeddings_as_csv (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.save_embeddings_as_csv", false]], "save_experiment() (dicee.analyse_experiments.experiment method)": [[4, "dicee.analyse_experiments.Experiment.save_experiment", false]], "save_model_at_every_epoch (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.save_model_at_every_epoch", false]], "save_numpy_ndarray() (in module dicee)": [[11, "dicee.save_numpy_ndarray", false]], "save_numpy_ndarray() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.save_numpy_ndarray", false]], "save_numpy_ndarray() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.save_numpy_ndarray", false]], "save_pickle() (in module dicee)": [[11, "dicee.save_pickle", false]], "save_pickle() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.save_pickle", false]], "save_pickle() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.save_pickle", false]], "save_queries() (dicee.query_generator.querygenerator method)": [[28, "dicee.query_generator.QueryGenerator.save_queries", false]], "save_queries() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.save_queries", false]], "save_queries_and_answers() (dicee.query_generator.querygenerator static method)": [[28, "dicee.query_generator.QueryGenerator.save_queries_and_answers", false]], "save_queries_and_answers() (dicee.querygenerator static method)": [[11, "dicee.QueryGenerator.save_queries_and_answers", false]], "save_trained_model() (dicee.execute method)": [[11, "dicee.Execute.save_trained_model", false]], "save_trained_model() (dicee.executer.execute method)": [[10, "dicee.executer.Execute.save_trained_model", false]], "scalar_batch_nn() (dicee.lfmult method)": [[11, "dicee.LFMult.scalar_batch_NN", false]], "scalar_batch_nn() (dicee.models.function_space.lfmult method)": [[20, "dicee.models.function_space.LFMult.scalar_batch_NN", false]], "scalar_batch_nn() (dicee.models.lfmult method)": [[21, "dicee.models.LFMult.scalar_batch_NN", false]], "scaler (dicee.callbacks.perturb attribute)": [[5, "dicee.callbacks.Perturb.scaler", false]], "scaler (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[46, "dicee.trainer.torch_trainer_ddp.NodeTrainer.scaler", false]], "score() (dicee.complex static method)": [[11, "dicee.ComplEx.score", false]], "score() (dicee.distmult method)": [[11, "dicee.DistMult.score", false]], "score() (dicee.keci method)": [[11, "dicee.Keci.score", false]], "score() (dicee.models.clifford.keci method)": [[16, "dicee.models.clifford.Keci.score", false]], "score() (dicee.models.complex static method)": [[21, "dicee.models.ComplEx.score", false]], "score() (dicee.models.complex.complex static method)": [[17, "dicee.models.complex.ComplEx.score", false]], "score() (dicee.models.distmult method)": [[21, "dicee.models.DistMult.score", false]], "score() (dicee.models.keci method)": [[21, "dicee.models.Keci.score", false]], "score() (dicee.models.octonion.omult method)": [[22, "dicee.models.octonion.OMult.score", false]], "score() (dicee.models.omult method)": [[21, "dicee.models.OMult.score", false]], "score() (dicee.models.qmult method)": [[21, "dicee.models.QMult.score", false]], "score() (dicee.models.quaternion.qmult method)": [[24, "dicee.models.quaternion.QMult.score", false]], "score() (dicee.models.real.distmult method)": [[25, "dicee.models.real.DistMult.score", false]], "score() (dicee.models.real.transe method)": [[25, "dicee.models.real.TransE.score", false]], "score() (dicee.models.transe method)": [[21, "dicee.models.TransE.score", false]], "score() (dicee.omult method)": [[11, "dicee.OMult.score", false]], "score() (dicee.qmult method)": [[11, "dicee.QMult.score", false]], "score() (dicee.transe method)": [[11, "dicee.TransE.score", false]], "score_func (dicee.models.fmult2 attribute)": [[21, "dicee.models.FMult2.score_func", false]], "score_func (dicee.models.function_space.fmult2 attribute)": [[20, "dicee.models.function_space.FMult2.score_func", false]], "scoring_technique (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.scoring_technique", false]], "scoring_technique (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.scoring_technique", false]], "search() (dicee.scripts.serve.neuralsearcher method)": [[38, "dicee.scripts.serve.NeuralSearcher.search", false]], "search_embeddings() (in module dicee.scripts.serve)": [[38, "dicee.scripts.serve.search_embeddings", false]], "seed (dicee.query_generator.querygenerator attribute)": [[28, "dicee.query_generator.QueryGenerator.seed", false]], "seed (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.seed", false]], "select_model() (in module dicee)": [[11, "dicee.select_model", false]], "select_model() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.select_model", false]], "selected_optimizer (dicee.basekge attribute)": [[11, "dicee.BaseKGE.selected_optimizer", false]], "selected_optimizer (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.selected_optimizer", false]], "selected_optimizer (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.selected_optimizer", false], [21, "id104", false], [21, "id150", false], [21, "id20", false], [21, "id201", false], [21, "id243", false], [21, "id62", false]], "separator (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.separator", false]], "separator (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.separator", false]], "sequential_vocabulary_construction() (dicee.read_preprocess_save_load_kg.preprocess.preprocesskg method)": [[30, "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG.sequential_vocabulary_construction", false]], "sequential_vocabulary_construction() (dicee.read_preprocess_save_load_kg.preprocesskg method)": [[29, "dicee.read_preprocess_save_load_kg.PreprocessKG.sequential_vocabulary_construction", false]], "set_global_seed() (dicee.query_generator.querygenerator method)": [[28, "dicee.query_generator.QueryGenerator.set_global_seed", false]], "set_global_seed() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.set_global_seed", false]], "set_model_eval_mode() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.set_model_eval_mode", false]], "set_model_train_mode() (dicee.abstracts.baseinteractivekge method)": [[3, "dicee.abstracts.BaseInteractiveKGE.set_model_train_mode", false]], "setup() (dicee.cvdatamodule method)": [[11, "dicee.CVDataModule.setup", false]], "setup() (dicee.dataset_classes.cvdatamodule method)": [[7, "dicee.dataset_classes.CVDataModule.setup", false]], "setup_executor() (dicee.execute method)": [[11, "dicee.Execute.setup_executor", false]], "setup_executor() (dicee.executer.execute method)": [[10, "dicee.executer.Execute.setup_executor", false]], "shallom (class in dicee)": [[11, "dicee.Shallom", false]], "shallom (class in dicee.models)": [[21, "dicee.models.Shallom", false]], "shallom (class in dicee.models.real)": [[25, "dicee.models.real.Shallom", false]], "shallom (dicee.models.real.shallom attribute)": [[25, "dicee.models.real.Shallom.shallom", false]], "shallom (dicee.models.shallom attribute)": [[21, "dicee.models.Shallom.shallom", false]], "shallom (dicee.shallom attribute)": [[11, "dicee.Shallom.shallom", false]], "single_hop_query_answering() (dicee.kge method)": [[11, "dicee.KGE.single_hop_query_answering", false]], "single_hop_query_answering() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.single_hop_query_answering", false]], "sparql_endpoint (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.sparql_endpoint", false]], "sparql_endpoint (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.sparql_endpoint", false]], "start() (dicee.dice_trainer method)": [[11, "dicee.DICE_Trainer.start", false]], "start() (dicee.execute method)": [[11, "dicee.Execute.start", false]], "start() (dicee.executer.execute method)": [[10, "dicee.executer.Execute.start", false]], "start() (dicee.read_preprocess_save_load_kg.preprocess.preprocesskg method)": [[30, "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG.start", false]], "start() (dicee.read_preprocess_save_load_kg.preprocesskg method)": [[29, "dicee.read_preprocess_save_load_kg.PreprocessKG.start", false]], "start() (dicee.read_preprocess_save_load_kg.read_from_disk.readfromdisk method)": [[31, "dicee.read_preprocess_save_load_kg.read_from_disk.ReadFromDisk.start", false]], "start() (dicee.read_preprocess_save_load_kg.readfromdisk method)": [[29, "dicee.read_preprocess_save_load_kg.ReadFromDisk.start", false]], "start() (dicee.trainer.dice_trainer method)": [[43, "dicee.trainer.DICE_Trainer.start", false]], "start() (dicee.trainer.dice_trainer.dice_trainer method)": [[42, "dicee.trainer.dice_trainer.DICE_Trainer.start", false]], "start_time (dicee.callbacks.printcallback attribute)": [[5, "dicee.callbacks.PrintCallback.start_time", false]], "start_time (dicee.execute attribute)": [[11, "dicee.Execute.start_time", false]], "start_time (dicee.executer.execute attribute)": [[10, "dicee.executer.Execute.start_time", false]], "step() (dicee.ensemblekge method)": [[11, "dicee.EnsembleKGE.step", false]], "step() (dicee.models.adopt method)": [[21, "dicee.models.ADOPT.step", false]], "step() (dicee.models.adopt.adopt method)": [[14, "dicee.models.adopt.ADOPT.step", false]], "step() (dicee.models.ensemble.ensemblekge method)": [[19, "dicee.models.ensemble.EnsembleKGE.step", false]], "storage_path (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.storage_path", false]], "storage_path (dicee.dice_trainer attribute)": [[11, "dicee.DICE_Trainer.storage_path", false]], "storage_path (dicee.trainer.dice_trainer attribute)": [[43, "dicee.trainer.DICE_Trainer.storage_path", false]], "storage_path (dicee.trainer.dice_trainer.dice_trainer attribute)": [[42, "dicee.trainer.dice_trainer.DICE_Trainer.storage_path", false]], "store() (in module dicee)": [[11, "dicee.store", false]], "store() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.store", false]], "store_ensemble() (dicee.abstracts.abstractppecallback method)": [[3, "dicee.abstracts.AbstractPPECallback.store_ensemble", false]], "strategy (dicee.abstracts.abstracttrainer attribute)": [[3, "dicee.abstracts.AbstractTrainer.strategy", false]], "swa (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.swa", false]], "t() (dicee.duale method)": [[11, "dicee.DualE.T", false]], "t() (dicee.models.duale method)": [[21, "dicee.models.DualE.T", false]], "t() (dicee.models.duale.duale method)": [[18, "dicee.models.dualE.DualE.T", false]], "t_conorm() (dicee.kge method)": [[11, "dicee.KGE.t_conorm", false]], "t_conorm() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.t_conorm", false]], "t_norm() (dicee.kge method)": [[11, "dicee.KGE.t_norm", false]], "t_norm() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.t_norm", false]], "target_dim (dicee.allvsall attribute)": [[11, "dicee.AllvsAll.target_dim", false]], "target_dim (dicee.dataset_classes.allvsall attribute)": [[7, "dicee.dataset_classes.AllvsAll.target_dim", false]], "target_dim (dicee.dataset_classes.multilabeldataset attribute)": [[7, "dicee.dataset_classes.MultiLabelDataset.target_dim", false]], "target_dim (dicee.dataset_classes.onevsalldataset attribute)": [[7, "dicee.dataset_classes.OnevsAllDataset.target_dim", false]], "target_dim (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.target_dim", false]], "target_dim (dicee.multilabeldataset attribute)": [[11, "dicee.MultiLabelDataset.target_dim", false]], "target_dim (dicee.onevsalldataset attribute)": [[11, "dicee.OnevsAllDataset.target_dim", false]], "temperature (dicee.byte attribute)": [[11, "dicee.BytE.temperature", false]], "temperature (dicee.models.transformers.byte attribute)": [[27, "dicee.models.transformers.BytE.temperature", false]], "tensor_t_norm() (dicee.kge method)": [[11, "dicee.KGE.tensor_t_norm", false]], "tensor_t_norm() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.tensor_t_norm", false]], "tensorparallel (class in dicee.trainer.model_parallelism)": [[44, "dicee.trainer.model_parallelism.TensorParallel", false]], "test_dataloader() (dicee.models.base_model.basekgelightning method)": [[15, "dicee.models.base_model.BaseKGELightning.test_dataloader", false]], "test_dataloader() (dicee.models.basekgelightning method)": [[21, "dicee.models.BaseKGELightning.test_dataloader", false]], "test_epoch_end() (dicee.models.base_model.basekgelightning method)": [[15, "dicee.models.base_model.BaseKGELightning.test_epoch_end", false]], "test_epoch_end() (dicee.models.basekgelightning method)": [[21, "dicee.models.BaseKGELightning.test_epoch_end", false]], "test_h1 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.test_h1", false]], "test_h10 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.test_h10", false]], "test_h3 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.test_h3", false]], "test_mrr (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.test_mrr", false]], "test_path (dicee.query_generator.querygenerator attribute)": [[28, "dicee.query_generator.QueryGenerator.test_path", false]], "test_path (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.test_path", false]], "timeit() (in module dicee)": [[11, "dicee.timeit", false], [11, "id0", false]], "timeit() (in module dicee.read_preprocess_save_load_kg.util)": [[33, "dicee.read_preprocess_save_load_kg.util.timeit", false]], "timeit() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.timeit", false]], "timeit() (in module dicee.static_preprocess_funcs)": [[41, "dicee.static_preprocess_funcs.timeit", false]], "to() (dicee.ensemblekge method)": [[11, "dicee.EnsembleKGE.to", false]], "to() (dicee.kge method)": [[11, "dicee.KGE.to", false]], "to() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.to", false]], "to() (dicee.models.ensemble.ensemblekge method)": [[19, "dicee.models.ensemble.EnsembleKGE.to", false]], "to_df() (dicee.analyse_experiments.experiment method)": [[4, "dicee.analyse_experiments.Experiment.to_df", false]], "topk (dicee.byte attribute)": [[11, "dicee.BytE.topk", false]], "topk (dicee.models.transformers.byte attribute)": [[27, "dicee.models.transformers.BytE.topk", false]], "torch_ordered_shaped_bpe_entities (dicee.dataset_classes.multilabeldataset attribute)": [[7, "dicee.dataset_classes.MultiLabelDataset.torch_ordered_shaped_bpe_entities", false]], "torch_ordered_shaped_bpe_entities (dicee.multilabeldataset attribute)": [[11, "dicee.MultiLabelDataset.torch_ordered_shaped_bpe_entities", false]], "torchddptrainer (class in dicee.trainer.torch_trainer_ddp)": [[46, "dicee.trainer.torch_trainer_ddp.TorchDDPTrainer", false]], "torchtrainer (class in dicee.trainer.torch_trainer)": [[45, "dicee.trainer.torch_trainer.TorchTrainer", false]], "train() (dicee.kge method)": [[11, "dicee.KGE.train", false]], "train() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.train", false]], "train() (dicee.trainer.torch_trainer_ddp.nodetrainer method)": [[46, "dicee.trainer.torch_trainer_ddp.NodeTrainer.train", false]], "train_data (dicee.allvsall attribute)": [[11, "dicee.AllvsAll.train_data", false]], "train_data (dicee.dataset_classes.allvsall attribute)": [[7, "dicee.dataset_classes.AllvsAll.train_data", false]], "train_data (dicee.dataset_classes.kvsall attribute)": [[7, "dicee.dataset_classes.KvsAll.train_data", false]], "train_data (dicee.dataset_classes.kvssampledataset attribute)": [[7, "dicee.dataset_classes.KvsSampleDataset.train_data", false]], "train_data (dicee.dataset_classes.multiclassclassificationdataset attribute)": [[7, "dicee.dataset_classes.MultiClassClassificationDataset.train_data", false]], "train_data (dicee.dataset_classes.onevsalldataset attribute)": [[7, "dicee.dataset_classes.OnevsAllDataset.train_data", false]], "train_data (dicee.dataset_classes.onevssample attribute)": [[7, "dicee.dataset_classes.OnevsSample.train_data", false], [7, "id0", false]], "train_data (dicee.kvsall attribute)": [[11, "dicee.KvsAll.train_data", false]], "train_data (dicee.kvssampledataset attribute)": [[11, "dicee.KvsSampleDataset.train_data", false]], "train_data (dicee.multiclassclassificationdataset attribute)": [[11, "dicee.MultiClassClassificationDataset.train_data", false]], "train_data (dicee.onevsalldataset attribute)": [[11, "dicee.OnevsAllDataset.train_data", false]], "train_data (dicee.onevssample attribute)": [[11, "dicee.OnevsSample.train_data", false], [11, "id26", false]], "train_dataloader() (dicee.cvdatamodule method)": [[11, "dicee.CVDataModule.train_dataloader", false]], "train_dataloader() (dicee.dataset_classes.cvdatamodule method)": [[7, "dicee.dataset_classes.CVDataModule.train_dataloader", false]], "train_dataloader() (dicee.models.base_model.basekgelightning method)": [[15, "dicee.models.base_model.BaseKGELightning.train_dataloader", false]], "train_dataloader() (dicee.models.basekgelightning method)": [[21, "dicee.models.BaseKGELightning.train_dataloader", false]], "train_dataloaders (dicee.trainer.torch_trainer.torchtrainer attribute)": [[45, "dicee.trainer.torch_trainer.TorchTrainer.train_dataloaders", false]], "train_dataset_loader (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[46, "dicee.trainer.torch_trainer_ddp.NodeTrainer.train_dataset_loader", false]], "train_h1 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.train_h1", false]], "train_h10 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.train_h10", false]], "train_h3 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.train_h3", false]], "train_indices_target (dicee.dataset_classes.multilabeldataset attribute)": [[7, "dicee.dataset_classes.MultiLabelDataset.train_indices_target", false]], "train_indices_target (dicee.multilabeldataset attribute)": [[11, "dicee.MultiLabelDataset.train_indices_target", false]], "train_k_vs_all() (dicee.kge method)": [[11, "dicee.KGE.train_k_vs_all", false]], "train_k_vs_all() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.train_k_vs_all", false]], "train_mode (dicee.ensemblekge attribute)": [[11, "dicee.EnsembleKGE.train_mode", false]], "train_mode (dicee.models.ensemble.ensemblekge attribute)": [[19, "dicee.models.ensemble.EnsembleKGE.train_mode", false]], "train_mrr (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.train_mrr", false]], "train_path (dicee.query_generator.querygenerator attribute)": [[28, "dicee.query_generator.QueryGenerator.train_path", false]], "train_path (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.train_path", false]], "train_set (dicee.bpe_negativesamplingdataset attribute)": [[11, "dicee.BPE_NegativeSamplingDataset.train_set", false]], "train_set (dicee.dataset_classes.bpe_negativesamplingdataset attribute)": [[7, "dicee.dataset_classes.BPE_NegativeSamplingDataset.train_set", false]], "train_set (dicee.dataset_classes.multilabeldataset attribute)": [[7, "dicee.dataset_classes.MultiLabelDataset.train_set", false]], "train_set (dicee.dataset_classes.negsampledataset attribute)": [[7, "dicee.dataset_classes.NegSampleDataset.train_set", false]], "train_set (dicee.dataset_classes.triplepredictiondataset attribute)": [[7, "dicee.dataset_classes.TriplePredictionDataset.train_set", false]], "train_set (dicee.multilabeldataset attribute)": [[11, "dicee.MultiLabelDataset.train_set", false]], "train_set (dicee.negsampledataset attribute)": [[11, "dicee.NegSampleDataset.train_set", false]], "train_set (dicee.triplepredictiondataset attribute)": [[11, "dicee.TriplePredictionDataset.train_set", false]], "train_set_idx (dicee.cvdatamodule attribute)": [[11, "dicee.CVDataModule.train_set_idx", false]], "train_set_idx (dicee.dataset_classes.cvdatamodule attribute)": [[7, "dicee.dataset_classes.CVDataModule.train_set_idx", false]], "train_set_target (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.train_set_target", false]], "train_target (dicee.allvsall attribute)": [[11, "dicee.AllvsAll.train_target", false]], "train_target (dicee.dataset_classes.allvsall attribute)": [[7, "dicee.dataset_classes.AllvsAll.train_target", false]], "train_target (dicee.dataset_classes.kvsall attribute)": [[7, "dicee.dataset_classes.KvsAll.train_target", false]], "train_target (dicee.dataset_classes.kvssampledataset attribute)": [[7, "dicee.dataset_classes.KvsSampleDataset.train_target", false]], "train_target (dicee.kvsall attribute)": [[11, "dicee.KvsAll.train_target", false]], "train_target (dicee.kvssampledataset attribute)": [[11, "dicee.KvsSampleDataset.train_target", false]], "train_target_indices (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.train_target_indices", false]], "train_triples() (dicee.kge method)": [[11, "dicee.KGE.train_triples", false]], "train_triples() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.train_triples", false]], "trained_model (dicee.execute attribute)": [[11, "dicee.Execute.trained_model", false]], "trained_model (dicee.executer.execute attribute)": [[10, "dicee.executer.Execute.trained_model", false]], "trainer (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.trainer", false]], "trainer (dicee.dice_trainer attribute)": [[11, "dicee.DICE_Trainer.trainer", false]], "trainer (dicee.execute attribute)": [[11, "dicee.Execute.trainer", false]], "trainer (dicee.executer.execute attribute)": [[10, "dicee.executer.Execute.trainer", false]], "trainer (dicee.trainer.dice_trainer attribute)": [[43, "dicee.trainer.DICE_Trainer.trainer", false]], "trainer (dicee.trainer.dice_trainer.dice_trainer attribute)": [[42, "dicee.trainer.dice_trainer.DICE_Trainer.trainer", false]], "trainer (dicee.trainer.torch_trainer_ddp.nodetrainer attribute)": [[46, "dicee.trainer.torch_trainer_ddp.NodeTrainer.trainer", false]], "training_step (dicee.trainer.torch_trainer.torchtrainer attribute)": [[45, "dicee.trainer.torch_trainer.TorchTrainer.training_step", false]], "training_step() (dicee.byte method)": [[11, "dicee.BytE.training_step", false]], "training_step() (dicee.models.base_model.basekgelightning method)": [[15, "dicee.models.base_model.BaseKGELightning.training_step", false]], "training_step() (dicee.models.basekgelightning method)": [[21, "dicee.models.BaseKGELightning.training_step", false]], "training_step() (dicee.models.transformers.byte method)": [[27, "dicee.models.transformers.BytE.training_step", false]], "training_step_outputs (dicee.models.base_model.basekgelightning attribute)": [[15, "dicee.models.base_model.BaseKGELightning.training_step_outputs", false]], "training_step_outputs (dicee.models.basekgelightning attribute)": [[21, "dicee.models.BaseKGELightning.training_step_outputs", false]], "training_technique (dicee.knowledge_graph.kg attribute)": [[12, "dicee.knowledge_graph.KG.training_technique", false]], "transe (class in dicee)": [[11, "dicee.TransE", false]], "transe (class in dicee.models)": [[21, "dicee.models.TransE", false]], "transe (class in dicee.models.real)": [[25, "dicee.models.real.TransE", false]], "transfer_batch_to_device() (dicee.cvdatamodule method)": [[11, "dicee.CVDataModule.transfer_batch_to_device", false]], "transfer_batch_to_device() (dicee.dataset_classes.cvdatamodule method)": [[7, "dicee.dataset_classes.CVDataModule.transfer_batch_to_device", false]], "transformer (dicee.byte attribute)": [[11, "dicee.BytE.transformer", false]], "transformer (dicee.models.transformers.byte attribute)": [[27, "dicee.models.transformers.BytE.transformer", false]], "transformer (dicee.models.transformers.gpt attribute)": [[27, "dicee.models.transformers.GPT.transformer", false]], "trapezoid() (dicee.models.fmult2 method)": [[21, "dicee.models.FMult2.trapezoid", false]], "trapezoid() (dicee.models.function_space.fmult2 method)": [[20, "dicee.models.function_space.FMult2.trapezoid", false]], "tri_score() (dicee.lfmult method)": [[11, "dicee.LFMult.tri_score", false]], "tri_score() (dicee.models.function_space.lfmult method)": [[20, "dicee.models.function_space.LFMult.tri_score", false]], "tri_score() (dicee.models.function_space.lfmult1 method)": [[20, "dicee.models.function_space.LFMult1.tri_score", false]], "tri_score() (dicee.models.lfmult method)": [[21, "dicee.models.LFMult.tri_score", false]], "tri_score() (dicee.models.lfmult1 method)": [[21, "dicee.models.LFMult1.tri_score", false]], "triple_score() (dicee.kge method)": [[11, "dicee.KGE.triple_score", false]], "triple_score() (dicee.knowledge_graph_embeddings.kge method)": [[13, "dicee.knowledge_graph_embeddings.KGE.triple_score", false]], "triplepredictiondataset (class in dicee)": [[11, "dicee.TriplePredictionDataset", false]], "triplepredictiondataset (class in dicee.dataset_classes)": [[7, "dicee.dataset_classes.TriplePredictionDataset", false]], "tuple2list() (dicee.query_generator.querygenerator method)": [[28, "dicee.query_generator.QueryGenerator.tuple2list", false]], "tuple2list() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.tuple2list", false]], "unlabelled_size (dicee.callbacks.pseudolabellingcallback attribute)": [[5, "dicee.callbacks.PseudoLabellingCallback.unlabelled_size", false]], "unmap() (dicee.query_generator.querygenerator method)": [[28, "dicee.query_generator.QueryGenerator.unmap", false]], "unmap() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.unmap", false]], "unmap_query() (dicee.query_generator.querygenerator method)": [[28, "dicee.query_generator.QueryGenerator.unmap_query", false]], "unmap_query() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.unmap_query", false]], "val_aswa (dicee.callbacks.aswa attribute)": [[5, "dicee.callbacks.ASWA.val_aswa", false]], "val_dataloader() (dicee.models.base_model.basekgelightning method)": [[15, "dicee.models.base_model.BaseKGELightning.val_dataloader", false]], "val_dataloader() (dicee.models.basekgelightning method)": [[21, "dicee.models.BaseKGELightning.val_dataloader", false]], "val_h1 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.val_h1", false]], "val_h10 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.val_h10", false]], "val_h3 (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.val_h3", false]], "val_mrr (dicee.analyse_experiments.experiment attribute)": [[4, "dicee.analyse_experiments.Experiment.val_mrr", false]], "val_path (dicee.query_generator.querygenerator attribute)": [[28, "dicee.query_generator.QueryGenerator.val_path", false]], "val_path (dicee.querygenerator attribute)": [[11, "dicee.QueryGenerator.val_path", false]], "validate_knowledge_graph() (in module dicee.sanity_checkers)": [[34, "dicee.sanity_checkers.validate_knowledge_graph", false]], "vocab_preparation() (dicee.evaluator.evaluator method)": [[9, "dicee.evaluator.Evaluator.vocab_preparation", false]], "vocab_size (dicee.models.transformers.gptconfig attribute)": [[27, "dicee.models.transformers.GPTConfig.vocab_size", false]], "vocab_to_parquet() (in module dicee)": [[11, "dicee.vocab_to_parquet", false]], "vocab_to_parquet() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.vocab_to_parquet", false]], "vtp_score() (dicee.lfmult method)": [[11, "dicee.LFMult.vtp_score", false]], "vtp_score() (dicee.models.function_space.lfmult method)": [[20, "dicee.models.function_space.LFMult.vtp_score", false]], "vtp_score() (dicee.models.function_space.lfmult1 method)": [[20, "dicee.models.function_space.LFMult1.vtp_score", false]], "vtp_score() (dicee.models.lfmult method)": [[21, "dicee.models.LFMult.vtp_score", false]], "vtp_score() (dicee.models.lfmult1 method)": [[21, "dicee.models.LFMult1.vtp_score", false]], "weight (dicee.models.transformers.layernorm attribute)": [[27, "dicee.models.transformers.LayerNorm.weight", false]], "weight_decay (dicee.basekge attribute)": [[11, "dicee.BaseKGE.weight_decay", false]], "weight_decay (dicee.config.namespace attribute)": [[6, "dicee.config.Namespace.weight_decay", false]], "weight_decay (dicee.models.base_model.basekge attribute)": [[15, "dicee.models.base_model.BaseKGE.weight_decay", false]], "weight_decay (dicee.models.basekge attribute)": [[21, "dicee.models.BaseKGE.weight_decay", false], [21, "id102", false], [21, "id148", false], [21, "id18", false], [21, "id199", false], [21, "id241", false], [21, "id60", false]], "weights (dicee.models.fmult attribute)": [[21, "dicee.models.FMult.weights", false]], "weights (dicee.models.function_space.fmult attribute)": [[20, "dicee.models.function_space.FMult.weights", false]], "weights (dicee.models.function_space.gfmult attribute)": [[20, "dicee.models.function_space.GFMult.weights", false]], "weights (dicee.models.gfmult attribute)": [[21, "dicee.models.GFMult.weights", false]], "write_csv_from_model_parallel() (in module dicee)": [[11, "dicee.write_csv_from_model_parallel", false]], "write_csv_from_model_parallel() (in module dicee.static_funcs)": [[39, "dicee.static_funcs.write_csv_from_model_parallel", false]], "write_links() (dicee.query_generator.querygenerator method)": [[28, "dicee.query_generator.QueryGenerator.write_links", false]], "write_links() (dicee.querygenerator method)": [[11, "dicee.QueryGenerator.write_links", false]], "write_report() (dicee.execute method)": [[11, "dicee.Execute.write_report", false]], "write_report() (dicee.executer.execute method)": [[10, "dicee.executer.Execute.write_report", false]], "x_values (dicee.lfmult attribute)": [[11, "dicee.LFMult.x_values", false]], "x_values (dicee.models.function_space.lfmult attribute)": [[20, "dicee.models.function_space.LFMult.x_values", false]], "x_values (dicee.models.lfmult attribute)": [[21, "dicee.models.LFMult.x_values", false]]}, "objects": {"": [[11, 0, 0, "-", "dicee"]], "dicee": [[11, 1, 1, "", "AConEx"], [11, 1, 1, "", "AConvO"], [11, 1, 1, "", "AConvQ"], [11, 1, 1, "", "AllvsAll"], [11, 1, 1, "", "BPE_NegativeSamplingDataset"], [11, 1, 1, "", "BaseKGE"], [11, 1, 1, "", "BytE"], [11, 1, 1, "", "CVDataModule"], [11, 1, 1, "", "ComplEx"], [11, 1, 1, "", "ConEx"], [11, 1, 1, "", "ConvO"], [11, 1, 1, "", "ConvQ"], [11, 1, 1, "", "DICE_Trainer"], [11, 1, 1, "", "DeCaL"], [11, 1, 1, "", "DistMult"], [11, 1, 1, "", "DualE"], [11, 1, 1, "", "EnsembleKGE"], [11, 1, 1, "", "Execute"], [11, 1, 1, "", "KGE"], [11, 1, 1, "", "Keci"], [11, 1, 1, "", "KeciBase"], [11, 1, 1, "", "KvsAll"], [11, 1, 1, "", "KvsSampleDataset"], [11, 1, 1, "", "LFMult"], [11, 1, 1, "", "MultiClassClassificationDataset"], [11, 1, 1, "", "MultiLabelDataset"], [11, 1, 1, "", "NegSampleDataset"], [11, 1, 1, "", "OMult"], [11, 1, 1, "", "OnevsAllDataset"], [11, 1, 1, "", "OnevsSample"], [11, 1, 1, "", "Pyke"], [11, 1, 1, "", "PykeenKGE"], [11, 1, 1, "", "QMult"], [11, 1, 1, "", "QueryGenerator"], [11, 1, 1, "", "Shallom"], [11, 1, 1, "", "TransE"], [11, 1, 1, "", "TriplePredictionDataset"], [2, 0, 0, "-", "__main__"], [11, 5, 1, "", "__version__"], [3, 0, 0, "-", "abstracts"], [11, 6, 1, "", "add_noisy_triples"], [4, 0, 0, "-", "analyse_experiments"], [5, 0, 0, "-", "callbacks"], [6, 0, 0, "-", "config"], [11, 6, 1, "", "construct_dataset"], [11, 6, 1, "", "continual_training_setup_executor"], [11, 6, 1, "", "create_experiment_folder"], [11, 6, 1, "", "create_recipriocal_triples"], [7, 0, 0, "-", "dataset_classes"], [11, 6, 1, "", "deploy_head_entity_prediction"], [11, 6, 1, "", "deploy_relation_prediction"], [11, 6, 1, "", "deploy_tail_entity_prediction"], [11, 6, 1, "", "deploy_triple_prediction"], [11, 6, 1, "", "download_file"], [11, 6, 1, "", "download_files_from_url"], [11, 6, 1, "", "download_pretrained_model"], [8, 0, 0, "-", "eval_static_funcs"], [11, 6, 1, "", "evaluate"], [9, 0, 0, "-", "evaluator"], [10, 0, 0, "-", "executer"], [11, 6, 1, "", "exponential_function"], [11, 6, 1, "", "from_pretrained_model_write_embeddings_into_csv"], [11, 6, 1, "", "get_ee_vocab"], [11, 6, 1, "", "get_er_vocab"], [11, 6, 1, "", "get_re_vocab"], [11, 6, 1, "", "intialize_model"], [12, 0, 0, "-", "knowledge_graph"], [13, 0, 0, "-", "knowledge_graph_embeddings"], [11, 6, 1, "", "load_json"], [11, 6, 1, "", "load_model"], [11, 6, 1, "", "load_model_ensemble"], [11, 6, 1, "", "load_numpy"], [11, 6, 1, "", "load_pickle"], [11, 6, 1, "id25", "load_term_mapping"], [11, 6, 1, "", "mapping_from_first_two_cols_to_third"], [21, 0, 0, "-", "models"], [11, 6, 1, "", "numpy_data_type_changer"], [28, 0, 0, "-", "query_generator"], [11, 6, 1, "", "random_prediction"], [11, 6, 1, "", "read_or_load_kg"], [29, 0, 0, "-", "read_preprocess_save_load_kg"], [11, 6, 1, "", "reload_dataset"], [34, 0, 0, "-", "sanity_checkers"], [11, 6, 1, "", "save_checkpoint_model"], [11, 6, 1, "", "save_embeddings"], [11, 6, 1, "", "save_numpy_ndarray"], [11, 6, 1, "", "save_pickle"], [35, 0, 0, "-", "scripts"], [11, 6, 1, "", "select_model"], [39, 0, 0, "-", "static_funcs"], [40, 0, 0, "-", "static_funcs_training"], [41, 0, 0, "-", "static_preprocess_funcs"], [11, 6, 1, "", "store"], [11, 6, 1, "id0", "timeit"], [43, 0, 0, "-", "trainer"], [11, 6, 1, "", "vocab_to_parquet"], [11, 6, 1, "", "write_csv_from_model_parallel"]], "dicee.AConEx": [[11, 2, 1, "", "bn_conv2d"], [11, 2, 1, "", "conv2d"], [11, 2, 1, "", "fc1"], [11, 2, 1, "", "fc_num_input"], [11, 2, 1, "", "feature_map_dropout"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_k_vs_sample"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "name"], [11, 2, 1, "", "norm_fc1"], [11, 3, 1, "", "residual_convolution"]], "dicee.AConvO": [[11, 2, 1, "", "bn_conv2d"], [11, 2, 1, "", "conv2d"], [11, 2, 1, "", "fc1"], [11, 2, 1, "", "fc_num_input"], [11, 2, 1, "", "feature_map_dropout"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "name"], [11, 2, 1, "", "norm_fc1"], [11, 3, 1, "", "octonion_normalizer"], [11, 3, 1, "", "residual_convolution"]], "dicee.AConvQ": [[11, 2, 1, "", "bn_conv1"], [11, 2, 1, "", "bn_conv2"], [11, 2, 1, "", "conv2d"], [11, 2, 1, "", "entity_embeddings"], [11, 2, 1, "", "fc1"], [11, 2, 1, "", "fc_num_input"], [11, 2, 1, "", "feature_map_dropout"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "name"], [11, 2, 1, "", "relation_embeddings"], [11, 3, 1, "", "residual_convolution"]], "dicee.AllvsAll": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 2, 1, "", "collate_fn"], [11, 2, 1, "", "label_smoothing_rate"], [11, 2, 1, "", "target_dim"], [11, 2, 1, "", "train_data"], [11, 2, 1, "", "train_target"]], "dicee.BPE_NegativeSamplingDataset": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 3, 1, "", "collate_fn"], [11, 2, 1, "", "neg_ratio"], [11, 2, 1, "", "num_bpe_entities"], [11, 2, 1, "", "num_datapoints"], [11, 2, 1, "", "ordered_bpe_entities"], [11, 2, 1, "", "train_set"]], "dicee.BaseKGE": [[11, 2, 1, "", "apply_unit_norm"], [11, 2, 1, "", "args"], [11, 2, 1, "", "block_size"], [11, 2, 1, "", "byte_pair_encoding"], [11, 2, 1, "", "embedding_dim"], [11, 2, 1, "", "feature_map_dropout_rate"], [11, 3, 1, "", "forward"], [11, 3, 1, "", "forward_byte_pair_encoded_k_vs_all"], [11, 3, 1, "", "forward_byte_pair_encoded_triple"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_k_vs_sample"], [11, 3, 1, "", "forward_triples"], [11, 3, 1, "", "get_bpe_head_and_relation_representation"], [11, 3, 1, "", "get_embeddings"], [11, 3, 1, "", "get_head_relation_representation"], [11, 3, 1, "", "get_sentence_representation"], [11, 3, 1, "", "get_triple_representation"], [11, 2, 1, "", "hidden_dropout"], [11, 2, 1, "", "hidden_dropout_rate"], [11, 2, 1, "", "hidden_normalizer"], [11, 3, 1, "", "init_params_with_sanity_checking"], [11, 2, 1, "", "input_dp_ent_real"], [11, 2, 1, "", "input_dp_rel_real"], [11, 2, 1, "", "input_dropout_rate"], [11, 2, 1, "", "kernel_size"], [11, 2, 1, "", "learning_rate"], [11, 2, 1, "", "loss"], [11, 2, 1, "", "loss_history"], [11, 2, 1, "", "max_length_subword_tokens"], [11, 2, 1, "", "normalize_head_entity_embeddings"], [11, 2, 1, "", "normalize_relation_embeddings"], [11, 2, 1, "", "normalize_tail_entity_embeddings"], [11, 2, 1, "", "normalizer_class"], [11, 2, 1, "", "num_entities"], [11, 2, 1, "", "num_of_output_channels"], [11, 2, 1, "", "num_relations"], [11, 2, 1, "", "num_tokens"], [11, 2, 1, "", "optimizer_name"], [11, 2, 1, "", "param_init"], [11, 2, 1, "", "selected_optimizer"], [11, 2, 1, "", "weight_decay"]], "dicee.BytE": [[11, 2, 1, "", "config"], [11, 3, 1, "", "forward"], [11, 3, 1, "", "generate"], [11, 2, 1, "", "lm_head"], [11, 3, 1, "", "loss_function"], [11, 2, 1, "", "name"], [11, 2, 1, "", "temperature"], [11, 2, 1, "", "topk"], [11, 3, 1, "", "training_step"], [11, 2, 1, "", "transformer"]], "dicee.CVDataModule": [[11, 2, 1, "", "batch_size"], [11, 2, 1, "", "neg_sample_ratio"], [11, 2, 1, "", "num_entities"], [11, 2, 1, "", "num_relations"], [11, 2, 1, "", "num_workers"], [11, 3, 1, "", "prepare_data"], [11, 3, 1, "", "setup"], [11, 3, 1, "", "train_dataloader"], [11, 2, 1, "", "train_set_idx"], [11, 3, 1, "", "transfer_batch_to_device"]], "dicee.ComplEx": [[11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_k_vs_sample"], [11, 3, 1, "", "k_vs_all_score"], [11, 2, 1, "", "name"], [11, 3, 1, "", "score"]], "dicee.ConEx": [[11, 2, 1, "", "bn_conv2d"], [11, 2, 1, "", "conv2d"], [11, 2, 1, "", "fc1"], [11, 2, 1, "", "fc_num_input"], [11, 2, 1, "", "feature_map_dropout"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_k_vs_sample"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "name"], [11, 2, 1, "", "norm_fc1"], [11, 3, 1, "", "residual_convolution"]], "dicee.ConvO": [[11, 2, 1, "", "bn_conv2d"], [11, 2, 1, "", "conv2d"], [11, 2, 1, "", "fc1"], [11, 2, 1, "", "fc_num_input"], [11, 2, 1, "", "feature_map_dropout"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "name"], [11, 2, 1, "", "norm_fc1"], [11, 3, 1, "", "octonion_normalizer"], [11, 3, 1, "", "residual_convolution"]], "dicee.ConvQ": [[11, 2, 1, "", "bn_conv1"], [11, 2, 1, "", "bn_conv2"], [11, 2, 1, "", "conv2d"], [11, 2, 1, "", "entity_embeddings"], [11, 2, 1, "", "fc1"], [11, 2, 1, "", "fc_num_input"], [11, 2, 1, "", "feature_map_dropout"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "name"], [11, 2, 1, "", "relation_embeddings"], [11, 3, 1, "", "residual_convolution"]], "dicee.DICE_Trainer": [[11, 2, 1, "", "args"], [11, 3, 1, "", "continual_start"], [11, 2, 1, "", "evaluator"], [11, 2, 1, "", "form_of_labelling"], [11, 3, 1, "", "init_dataloader"], [11, 3, 1, "", "init_dataset"], [11, 3, 1, "", "initialize_or_load_model"], [11, 3, 1, "", "initialize_trainer"], [11, 2, 1, "", "is_continual_training"], [11, 3, 1, "", "k_fold_cross_validation"], [11, 2, 1, "", "report"], [11, 3, 1, "", "start"], [11, 2, 1, "", "storage_path"], [11, 2, 1, "", "trainer"]], "dicee.DeCaL": [[11, 3, 1, "", "apply_coefficients"], [11, 3, 1, "", "cl_pqr"], [11, 3, 1, "", "compute_sigma_pp"], [11, 3, 1, "", "compute_sigma_pq"], [11, 3, 1, "", "compute_sigma_pr"], [11, 3, 1, "", "compute_sigma_qq"], [11, 3, 1, "", "compute_sigma_qr"], [11, 3, 1, "", "compute_sigma_rr"], [11, 3, 1, "", "compute_sigmas_multivect"], [11, 3, 1, "", "compute_sigmas_single"], [11, 3, 1, "", "construct_cl_multivector"], [11, 2, 1, "", "entity_embeddings"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "name"], [11, 2, 1, "", "p"], [11, 2, 1, "", "q"], [11, 2, 1, "", "r"], [11, 2, 1, "", "re"], [11, 2, 1, "", "relation_embeddings"]], "dicee.DistMult": [[11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_k_vs_sample"], [11, 3, 1, "", "k_vs_all_score"], [11, 2, 1, "", "name"], [11, 3, 1, "", "score"]], "dicee.DualE": [[11, 3, 1, "", "T"], [11, 2, 1, "", "entity_embeddings"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_triples"], [11, 3, 1, "", "kvsall_score"], [11, 2, 1, "", "name"], [11, 2, 1, "", "num_ent"], [11, 2, 1, "", "relation_embeddings"]], "dicee.EnsembleKGE": [[11, 3, 1, "", "__call__"], [11, 3, 1, "", "__iter__"], [11, 3, 1, "", "__len__"], [11, 3, 1, "", "__str__"], [11, 3, 1, "", "eval"], [11, 4, 1, "", "example_input_array"], [11, 2, 1, "", "loss_history"], [11, 3, 1, "", "mem_of_model"], [11, 2, 1, "", "models"], [11, 3, 1, "", "modules"], [11, 2, 1, "", "name"], [11, 3, 1, "", "named_children"], [11, 2, 1, "", "optimizers"], [11, 3, 1, "", "parameters"], [11, 3, 1, "", "step"], [11, 3, 1, "", "to"], [11, 2, 1, "", "train_mode"]], "dicee.Execute": [[11, 2, 1, "", "args"], [11, 3, 1, "", "dept_read_preprocess_index_serialize_data"], [11, 3, 1, "", "end"], [11, 2, 1, "", "evaluator"], [11, 2, 1, "", "is_continual_training"], [11, 2, 1, "", "knowledge_graph"], [11, 2, 1, "", "report"], [11, 3, 1, "", "save_trained_model"], [11, 3, 1, "", "setup_executor"], [11, 3, 1, "", "start"], [11, 2, 1, "", "start_time"], [11, 2, 1, "", "trained_model"], [11, 2, 1, "", "trainer"], [11, 3, 1, "", "write_report"]], "dicee.KGE": [[11, 3, 1, "", "__str__"], [11, 3, 1, "", "answer_multi_hop_query"], [11, 3, 1, "", "create_vector_database"], [11, 3, 1, "", "deploy"], [11, 3, 1, "", "eval_lp_performance"], [11, 3, 1, "", "find_missing_triples"], [11, 3, 1, "", "generate"], [11, 3, 1, "", "get_transductive_entity_embeddings"], [11, 3, 1, "", "negnorm"], [11, 3, 1, "", "predict"], [11, 3, 1, "", "predict_missing_head_entity"], [11, 3, 1, "", "predict_missing_relations"], [11, 3, 1, "", "predict_missing_tail_entity"], [11, 3, 1, "", "predict_topk"], [11, 3, 1, "", "return_multi_hop_query_results"], [11, 3, 1, "", "single_hop_query_answering"], [11, 3, 1, "", "t_conorm"], [11, 3, 1, "", "t_norm"], [11, 3, 1, "", "tensor_t_norm"], [11, 3, 1, "", "to"], [11, 3, 1, "", "train"], [11, 3, 1, "", "train_k_vs_all"], [11, 3, 1, "", "train_triples"], [11, 3, 1, "", "triple_score"]], "dicee.Keci": [[11, 3, 1, "", "apply_coefficients"], [11, 3, 1, "", "clifford_multiplication"], [11, 3, 1, "", "compute_sigma_pp"], [11, 3, 1, "", "compute_sigma_pq"], [11, 3, 1, "", "compute_sigma_qq"], [11, 3, 1, "", "construct_batch_selected_cl_multivector"], [11, 3, 1, "", "construct_cl_multivector"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_k_vs_sample"], [11, 3, 1, "", "forward_k_vs_with_explicit"], [11, 3, 1, "", "forward_triples"], [11, 3, 1, "", "k_vs_all_score"], [11, 2, 1, "", "name"], [11, 2, 1, "", "p"], [11, 2, 1, "", "q"], [11, 2, 1, "", "r"], [11, 2, 1, "", "requires_grad_for_interactions"], [11, 3, 1, "", "score"]], "dicee.KeciBase": [[11, 2, 1, "", "name"], [11, 2, 1, "", "requires_grad_for_interactions"]], "dicee.KvsAll": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 2, 1, "", "collate_fn"], [11, 2, 1, "", "label_smoothing_rate"], [11, 2, 1, "", "train_data"], [11, 2, 1, "", "train_target"]], "dicee.KvsSampleDataset": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 2, 1, "", "collate_fn"], [11, 2, 1, "", "label_smoothing_rate"], [11, 2, 1, "", "max_num_of_classes"], [11, 2, 1, "", "neg_ratio"], [11, 2, 1, "", "num_entities"], [11, 2, 1, "", "train_data"], [11, 2, 1, "", "train_target"]], "dicee.LFMult": [[11, 3, 1, "", "comp_func"], [11, 3, 1, "", "construct_multi_coeff"], [11, 2, 1, "", "degree"], [11, 2, 1, "", "entity_embeddings"], [11, 3, 1, "", "forward_triples"], [11, 3, 1, "", "linear"], [11, 2, 1, "", "m"], [11, 2, 1, "", "name"], [11, 3, 1, "", "poly_NN"], [11, 3, 1, "", "polynomial"], [11, 3, 1, "", "pop"], [11, 2, 1, "", "relation_embeddings"], [11, 3, 1, "", "scalar_batch_NN"], [11, 3, 1, "", "tri_score"], [11, 3, 1, "", "vtp_score"], [11, 2, 1, "", "x_values"]], "dicee.MultiClassClassificationDataset": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 2, 1, "", "block_size"], [11, 2, 1, "", "collate_fn"], [11, 2, 1, "", "num_of_data_points"], [11, 2, 1, "", "train_data"]], "dicee.MultiLabelDataset": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 2, 1, "", "collate_fn"], [11, 2, 1, "", "num_datapoints"], [11, 2, 1, "", "target_dim"], [11, 2, 1, "", "torch_ordered_shaped_bpe_entities"], [11, 2, 1, "", "train_indices_target"], [11, 2, 1, "", "train_set"]], "dicee.NegSampleDataset": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 2, 1, "", "length"], [11, 2, 1, "", "neg_sample_ratio"], [11, 2, 1, "", "num_entities"], [11, 2, 1, "", "num_relations"], [11, 2, 1, "", "train_set"]], "dicee.OMult": [[11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "k_vs_all_score"], [11, 2, 1, "", "name"], [11, 3, 1, "", "octonion_normalizer"], [11, 3, 1, "", "score"]], "dicee.OnevsAllDataset": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 2, 1, "", "collate_fn"], [11, 2, 1, "", "target_dim"], [11, 2, 1, "", "train_data"]], "dicee.OnevsSample": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 2, 1, "id31", "collate_fn"], [11, 2, 1, "id30", "label_smoothing_rate"], [11, 2, 1, "id29", "neg_sample_ratio"], [11, 2, 1, "id27", "num_entities"], [11, 2, 1, "id28", "num_relations"], [11, 2, 1, "id26", "train_data"]], "dicee.Pyke": [[11, 2, 1, "", "dist_func"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "margin"], [11, 2, 1, "", "name"]], "dicee.PykeenKGE": [[11, 2, 1, "", "args"], [11, 2, 1, "", "entity_embeddings"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_k_vs_sample"], [11, 3, 1, "", "forward_triples"], [11, 2, 1, "", "loss_history"], [11, 2, 1, "", "model"], [11, 2, 1, "", "model_kwargs"], [11, 2, 1, "", "name"], [11, 2, 1, "", "relation_embeddings"]], "dicee.QMult": [[11, 2, 1, "", "explicit"], [11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_k_vs_sample"], [11, 3, 1, "", "k_vs_all_score"], [11, 2, 1, "", "name"], [11, 3, 1, "", "quaternion_multiplication_followed_by_inner_product"], [11, 3, 1, "", "quaternion_normalizer"], [11, 3, 1, "", "score"]], "dicee.QueryGenerator": [[11, 3, 1, "", "achieve_answer"], [11, 3, 1, "", "construct_graph"], [11, 2, 1, "", "ent2id"], [11, 2, 1, "", "ent_in"], [11, 2, 1, "", "ent_out"], [11, 3, 1, "", "fill_query"], [11, 2, 1, "", "gen_test"], [11, 2, 1, "", "gen_valid"], [11, 3, 1, "", "generate_queries"], [11, 3, 1, "", "get_queries"], [11, 3, 1, "", "ground_queries"], [11, 3, 1, "", "list2tuple"], [11, 3, 1, "", "load_queries"], [11, 3, 1, "", "load_queries_and_answers"], [11, 2, 1, "", "max_ans_num"], [11, 2, 1, "", "mode"], [11, 2, 1, "", "query_name_to_struct"], [11, 2, 1, "", "rel2id"], [11, 3, 1, "", "save_queries"], [11, 3, 1, "", "save_queries_and_answers"], [11, 2, 1, "", "seed"], [11, 3, 1, "", "set_global_seed"], [11, 2, 1, "", "test_path"], [11, 2, 1, "", "train_path"], [11, 3, 1, "", "tuple2list"], [11, 3, 1, "", "unmap"], [11, 3, 1, "", "unmap_query"], [11, 2, 1, "", "val_path"], [11, 3, 1, "", "write_links"]], "dicee.Shallom": [[11, 3, 1, "", "forward_k_vs_all"], [11, 3, 1, "", "forward_triples"], [11, 3, 1, "", "get_embeddings"], [11, 2, 1, "", "name"], [11, 2, 1, "", "shallom"]], "dicee.TransE": [[11, 3, 1, "", "forward_k_vs_all"], [11, 2, 1, "", "margin"], [11, 2, 1, "", "name"], [11, 3, 1, "", "score"]], "dicee.TriplePredictionDataset": [[11, 3, 1, "", "__getitem__"], [11, 3, 1, "", "__len__"], [11, 3, 1, "", "collate_fn"], [11, 2, 1, "", "label_smoothing_rate"], [11, 2, 1, "", "length"], [11, 2, 1, "", "neg_sample_ratio"], [11, 2, 1, "", "num_entities"], [11, 2, 1, "", "num_relations"], [11, 2, 1, "", "train_set"]], "dicee.abstracts": [[3, 1, 1, "", "AbstractCallback"], [3, 1, 1, "", "AbstractPPECallback"], [3, 1, 1, "", "AbstractTrainer"], [3, 1, 1, "", "BaseInteractiveKGE"]], "dicee.abstracts.AbstractCallback": [[3, 3, 1, "", "on_fit_end"], [3, 3, 1, "", "on_fit_start"], [3, 3, 1, "", "on_init_end"], [3, 3, 1, "", "on_init_start"], [3, 3, 1, "", "on_train_batch_end"], [3, 3, 1, "", "on_train_epoch_end"]], "dicee.abstracts.AbstractPPECallback": [[3, 2, 1, "", "alphas"], [3, 2, 1, "", "epoch_count"], [3, 2, 1, "", "num_epochs"], [3, 3, 1, "", "on_fit_end"], [3, 3, 1, "", "on_fit_start"], [3, 2, 1, "", "path"], [3, 2, 1, "", "sample_counter"], [3, 3, 1, "", "store_ensemble"]], "dicee.abstracts.AbstractTrainer": [[3, 2, 1, "", "attributes"], [3, 2, 1, "", "callbacks"], [3, 2, 1, "", "global_rank"], [3, 2, 1, "", "is_global_zero"], [3, 2, 1, "", "local_rank"], [3, 3, 1, "", "on_fit_end"], [3, 3, 1, "", "on_fit_start"], [3, 3, 1, "", "on_train_batch_end"], [3, 3, 1, "", "on_train_epoch_end"], [3, 3, 1, "", "save_checkpoint"], [3, 2, 1, "", "strategy"]], "dicee.abstracts.BaseInteractiveKGE": [[3, 3, 1, "", "add_new_entity_embeddings"], [3, 2, 1, "", "apply_semantic_constraint"], [3, 2, 1, "", "configs"], [3, 2, 1, "", "construct_ensemble"], [3, 3, 1, "", "construct_input_and_output"], [3, 3, 1, "", "get_bpe_token_representation"], [3, 3, 1, "", "get_entity_embeddings"], [3, 3, 1, "", "get_entity_index"], [3, 3, 1, "", "get_eval_report"], [3, 3, 1, "", "get_padded_bpe_triple_representation"], [3, 3, 1, "", "get_relation_embeddings"], [3, 3, 1, "", "get_relation_index"], [3, 3, 1, "", "index_triple"], [3, 3, 1, "", "is_seen"], [3, 4, 1, "", "name"], [3, 3, 1, "", "parameters"], [3, 3, 1, "", "sample_entity"], [3, 3, 1, "", "sample_relation"], [3, 3, 1, "", "save"], [3, 3, 1, "", "set_model_eval_mode"], [3, 3, 1, "", "set_model_train_mode"]], "dicee.analyse_experiments": [[4, 1, 1, "", "Experiment"], [4, 6, 1, "", "analyse"], [4, 6, 1, "", "get_default_arguments"]], "dicee.analyse_experiments.Experiment": [[4, 2, 1, "", "aswa"], [4, 2, 1, "", "batch_size"], [4, 2, 1, "", "byte_pair_encoding"], [4, 2, 1, "", "callbacks"], [4, 2, 1, "", "embedding_dim"], [4, 2, 1, "", "full_storage_path"], [4, 2, 1, "", "lr"], [4, 2, 1, "", "model_name"], [4, 2, 1, "", "normalization"], [4, 2, 1, "", "num_epochs"], [4, 2, 1, "", "num_params"], [4, 2, 1, "", "path_dataset_folder"], [4, 2, 1, "", "pq"], [4, 2, 1, "", "runtime"], [4, 3, 1, "", "save_experiment"], [4, 2, 1, "", "scoring_technique"], [4, 2, 1, "", "test_h1"], [4, 2, 1, "", "test_h10"], [4, 2, 1, "", "test_h3"], [4, 2, 1, "", "test_mrr"], [4, 3, 1, "", "to_df"], [4, 2, 1, "", "train_h1"], [4, 2, 1, "", "train_h10"], [4, 2, 1, "", "train_h3"], [4, 2, 1, "", "train_mrr"], [4, 2, 1, "", "val_h1"], [4, 2, 1, "", "val_h10"], [4, 2, 1, "", "val_h3"], [4, 2, 1, "", "val_mrr"]], "dicee.callbacks": [[5, 1, 1, "", "ASWA"], [5, 1, 1, "", "AccumulateEpochLossCallback"], [5, 1, 1, "", "Eval"], [5, 1, 1, "", "KGESaveCallback"], [5, 1, 1, "", "KronE"], [5, 1, 1, "", "Perturb"], [5, 1, 1, "", "PrintCallback"], [5, 1, 1, "", "PseudoLabellingCallback"], [5, 6, 1, "", "compute_convergence"], [5, 6, 1, "", "estimate_q"]], "dicee.callbacks.ASWA": [[5, 2, 1, "", "alphas"], [5, 3, 1, "", "compute_mrr"], [5, 3, 1, "", "decide"], [5, 2, 1, "", "epoch_count"], [5, 3, 1, "", "get_aswa_state_dict"], [5, 2, 1, "", "initial_eval_setting"], [5, 2, 1, "", "num_epochs"], [5, 3, 1, "", "on_fit_end"], [5, 3, 1, "", "on_train_epoch_end"], [5, 2, 1, "", "path"], [5, 2, 1, "", "val_aswa"]], "dicee.callbacks.AccumulateEpochLossCallback": [[5, 3, 1, "", "on_fit_end"], [5, 2, 1, "", "path"]], "dicee.callbacks.Eval": [[5, 2, 1, "", "epoch_counter"], [5, 2, 1, "", "epoch_ratio"], [5, 3, 1, "", "on_fit_end"], [5, 3, 1, "", "on_fit_start"], [5, 3, 1, "", "on_train_batch_end"], [5, 3, 1, "", "on_train_epoch_end"], [5, 2, 1, "", "path"], [5, 2, 1, "", "reports"]], "dicee.callbacks.KGESaveCallback": [[5, 2, 1, "", "epoch_counter"], [5, 2, 1, "", "every_x_epoch"], [5, 2, 1, "", "max_epochs"], [5, 3, 1, "", "on_epoch_end"], [5, 3, 1, "", "on_fit_end"], [5, 3, 1, "", "on_fit_start"], [5, 3, 1, "", "on_train_batch_end"], [5, 3, 1, "", "on_train_epoch_end"], [5, 2, 1, "", "path"]], "dicee.callbacks.KronE": [[5, 3, 1, "", "batch_kronecker_product"], [5, 2, 1, "", "f"], [5, 3, 1, "", "get_kronecker_triple_representation"], [5, 3, 1, "", "on_fit_start"]], "dicee.callbacks.Perturb": [[5, 2, 1, "", "frequency"], [5, 2, 1, "", "level"], [5, 2, 1, "", "method"], [5, 3, 1, "", "on_train_batch_start"], [5, 2, 1, "", "ratio"], [5, 2, 1, "", "scaler"]], "dicee.callbacks.PrintCallback": [[5, 3, 1, "", "on_fit_end"], [5, 3, 1, "", "on_fit_start"], [5, 3, 1, "", "on_train_batch_end"], [5, 3, 1, "", "on_train_epoch_end"], [5, 2, 1, "", "start_time"]], "dicee.callbacks.PseudoLabellingCallback": [[5, 2, 1, "", "batch_size"], [5, 3, 1, "", "create_random_data"], [5, 2, 1, "", "data_module"], [5, 2, 1, "", "kg"], [5, 2, 1, "", "num_of_epochs"], [5, 3, 1, "", "on_epoch_end"], [5, 2, 1, "", "unlabelled_size"]], "dicee.config": [[6, 1, 1, "", "Namespace"]], "dicee.config.Namespace": [[6, 3, 1, "", "__iter__"], [6, 2, 1, "", "adaptive_swa"], [6, 2, 1, "", "add_noise_rate"], [6, 2, 1, "", "backend"], [6, 2, 1, "", "batch_size"], [6, 2, 1, "", "block_size"], [6, 2, 1, "", "byte_pair_encoding"], [6, 2, 1, "", "callbacks"], [6, 2, 1, "", "continual_learning"], [6, 2, 1, "", "dataset_dir"], [6, 2, 1, "", "embedding_dim"], [6, 2, 1, "", "eval_model"], [6, 2, 1, "", "feature_map_dropout_rate"], [6, 2, 1, "", "gpus"], [6, 2, 1, "", "gradient_accumulation_steps"], [6, 2, 1, "", "hidden_dropout_rate"], [6, 2, 1, "", "init_param"], [6, 2, 1, "", "input_dropout_rate"], [6, 2, 1, "", "kernel_size"], [6, 2, 1, "", "label_smoothing_rate"], [6, 2, 1, "", "lr"], [6, 2, 1, "", "model"], [6, 2, 1, "", "neg_ratio"], [6, 2, 1, "", "normalization"], [6, 2, 1, "", "num_core"], [6, 2, 1, "", "num_epochs"], [6, 2, 1, "", "num_folds_for_cv"], [6, 2, 1, "", "num_of_output_channels"], [6, 2, 1, "", "optim"], [6, 2, 1, "", "p"], [6, 2, 1, "", "path_single_kg"], [6, 2, 1, "", "path_to_store_single_run"], [6, 2, 1, "", "pykeen_model_kwargs"], [6, 2, 1, "", "q"], [6, 2, 1, "", "random_seed"], [6, 2, 1, "", "read_only_few"], [6, 2, 1, "", "sample_triples_ratio"], [6, 2, 1, "", "save_embeddings_as_csv"], [6, 2, 1, "", "save_model_at_every_epoch"], [6, 2, 1, "", "scoring_technique"], [6, 2, 1, "", "separator"], [6, 2, 1, "", "sparql_endpoint"], [6, 2, 1, "", "storage_path"], [6, 2, 1, "", "swa"], [6, 2, 1, "", "trainer"], [6, 2, 1, "", "weight_decay"]], "dicee.dataset_classes": [[7, 1, 1, "", "AllvsAll"], [7, 1, 1, "", "BPE_NegativeSamplingDataset"], [7, 1, 1, "", "CVDataModule"], [7, 1, 1, "", "KvsAll"], [7, 1, 1, "", "KvsSampleDataset"], [7, 1, 1, "", "MultiClassClassificationDataset"], [7, 1, 1, "", "MultiLabelDataset"], [7, 1, 1, "", "NegSampleDataset"], [7, 1, 1, "", "OnevsAllDataset"], [7, 1, 1, "", "OnevsSample"], [7, 1, 1, "", "TriplePredictionDataset"], [7, 6, 1, "", "construct_dataset"], [7, 6, 1, "", "reload_dataset"]], "dicee.dataset_classes.AllvsAll": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 2, 1, "", "collate_fn"], [7, 2, 1, "", "label_smoothing_rate"], [7, 2, 1, "", "target_dim"], [7, 2, 1, "", "train_data"], [7, 2, 1, "", "train_target"]], "dicee.dataset_classes.BPE_NegativeSamplingDataset": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 3, 1, "", "collate_fn"], [7, 2, 1, "", "neg_ratio"], [7, 2, 1, "", "num_bpe_entities"], [7, 2, 1, "", "num_datapoints"], [7, 2, 1, "", "ordered_bpe_entities"], [7, 2, 1, "", "train_set"]], "dicee.dataset_classes.CVDataModule": [[7, 2, 1, "", "batch_size"], [7, 2, 1, "", "neg_sample_ratio"], [7, 2, 1, "", "num_entities"], [7, 2, 1, "", "num_relations"], [7, 2, 1, "", "num_workers"], [7, 3, 1, "", "prepare_data"], [7, 3, 1, "", "setup"], [7, 3, 1, "", "train_dataloader"], [7, 2, 1, "", "train_set_idx"], [7, 3, 1, "", "transfer_batch_to_device"]], "dicee.dataset_classes.KvsAll": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 2, 1, "", "collate_fn"], [7, 2, 1, "", "label_smoothing_rate"], [7, 2, 1, "", "train_data"], [7, 2, 1, "", "train_target"]], "dicee.dataset_classes.KvsSampleDataset": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 2, 1, "", "collate_fn"], [7, 2, 1, "", "label_smoothing_rate"], [7, 2, 1, "", "max_num_of_classes"], [7, 2, 1, "", "neg_ratio"], [7, 2, 1, "", "num_entities"], [7, 2, 1, "", "train_data"], [7, 2, 1, "", "train_target"]], "dicee.dataset_classes.MultiClassClassificationDataset": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 2, 1, "", "block_size"], [7, 2, 1, "", "collate_fn"], [7, 2, 1, "", "num_of_data_points"], [7, 2, 1, "", "train_data"]], "dicee.dataset_classes.MultiLabelDataset": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 2, 1, "", "collate_fn"], [7, 2, 1, "", "num_datapoints"], [7, 2, 1, "", "target_dim"], [7, 2, 1, "", "torch_ordered_shaped_bpe_entities"], [7, 2, 1, "", "train_indices_target"], [7, 2, 1, "", "train_set"]], "dicee.dataset_classes.NegSampleDataset": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 2, 1, "", "length"], [7, 2, 1, "", "neg_sample_ratio"], [7, 2, 1, "", "num_entities"], [7, 2, 1, "", "num_relations"], [7, 2, 1, "", "train_set"]], "dicee.dataset_classes.OnevsAllDataset": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 2, 1, "", "collate_fn"], [7, 2, 1, "", "target_dim"], [7, 2, 1, "", "train_data"]], "dicee.dataset_classes.OnevsSample": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 2, 1, "id5", "collate_fn"], [7, 2, 1, "id4", "label_smoothing_rate"], [7, 2, 1, "id3", "neg_sample_ratio"], [7, 2, 1, "id1", "num_entities"], [7, 2, 1, "id2", "num_relations"], [7, 2, 1, "id0", "train_data"]], "dicee.dataset_classes.TriplePredictionDataset": [[7, 3, 1, "", "__getitem__"], [7, 3, 1, "", "__len__"], [7, 3, 1, "", "collate_fn"], [7, 2, 1, "", "label_smoothing_rate"], [7, 2, 1, "", "length"], [7, 2, 1, "", "neg_sample_ratio"], [7, 2, 1, "", "num_entities"], [7, 2, 1, "", "num_relations"], [7, 2, 1, "", "train_set"]], "dicee.eval_static_funcs": [[8, 6, 1, "", "evaluate_link_prediction_performance"], [8, 6, 1, "", "evaluate_link_prediction_performance_with_bpe"], [8, 6, 1, "", "evaluate_link_prediction_performance_with_bpe_reciprocals"], [8, 6, 1, "", "evaluate_link_prediction_performance_with_reciprocals"], [8, 6, 1, "", "evaluate_lp_bpe_k_vs_all"]], "dicee.evaluator": [[9, 1, 1, "", "Evaluator"]], "dicee.evaluator.Evaluator": [[9, 2, 1, "", "args"], [9, 3, 1, "", "dummy_eval"], [9, 2, 1, "", "during_training"], [9, 2, 1, "", "ee_vocab"], [9, 2, 1, "", "er_vocab"], [9, 3, 1, "", "eval"], [9, 3, 1, "", "eval_rank_of_head_and_tail_byte_pair_encoded_entity"], [9, 3, 1, "", "eval_rank_of_head_and_tail_entity"], [9, 3, 1, "", "eval_with_bpe_vs_all"], [9, 3, 1, "", "eval_with_byte"], [9, 3, 1, "", "eval_with_data"], [9, 3, 1, "", "eval_with_vs_all"], [9, 3, 1, "", "evaluate_lp"], [9, 3, 1, "", "evaluate_lp_bpe_k_vs_all"], [9, 3, 1, "", "evaluate_lp_k_vs_all"], [9, 3, 1, "", "evaluate_lp_with_byte"], [9, 2, 1, "", "func_triple_to_bpe_representation"], [9, 2, 1, "", "is_continual_training"], [9, 2, 1, "", "num_entities"], [9, 2, 1, "", "num_relations"], [9, 2, 1, "", "re_vocab"], [9, 2, 1, "", "report"], [9, 3, 1, "", "vocab_preparation"]], "dicee.executer": [[10, 1, 1, "", "ContinuousExecute"], [10, 1, 1, "", "Execute"]], "dicee.executer.ContinuousExecute": [[10, 3, 1, "", "continual_start"]], "dicee.executer.Execute": [[10, 2, 1, "", "args"], [10, 3, 1, "", "dept_read_preprocess_index_serialize_data"], [10, 3, 1, "", "end"], [10, 2, 1, "", "evaluator"], [10, 2, 1, "", "is_continual_training"], [10, 2, 1, "", "knowledge_graph"], [10, 2, 1, "", "report"], [10, 3, 1, "", "save_trained_model"], [10, 3, 1, "", "setup_executor"], [10, 3, 1, "", "start"], [10, 2, 1, "", "start_time"], [10, 2, 1, "", "trained_model"], [10, 2, 1, "", "trainer"], [10, 3, 1, "", "write_report"]], "dicee.knowledge_graph": [[12, 1, 1, "", "KG"]], "dicee.knowledge_graph.KG": [[12, 3, 1, "", "__iter__"], [12, 3, 1, "", "__len__"], [12, 2, 1, "", "add_noise_rate"], [12, 2, 1, "", "add_reciprocal"], [12, 2, 1, "", "backend"], [12, 2, 1, "", "byte_pair_encoding"], [12, 2, 1, "", "dataset_dir"], [12, 3, 1, "", "describe"], [12, 2, 1, "", "description_of_input"], [12, 2, 1, "", "dummy_id"], [12, 2, 1, "", "enc"], [12, 4, 1, "", "entities_str"], [12, 2, 1, "", "entity_to_idx"], [12, 2, 1, "", "eval_model"], [12, 3, 1, "", "exists"], [12, 3, 1, "", "func_triple_to_bpe_representation"], [12, 2, 1, "", "idx_entity_to_bpe_shaped"], [12, 2, 1, "", "max_length_subword_tokens"], [12, 2, 1, "", "num_bpe_entities"], [12, 2, 1, "", "num_entities"], [12, 2, 1, "", "num_relations"], [12, 2, 1, "", "num_tokens"], [12, 2, 1, "", "ordered_bpe_entities"], [12, 2, 1, "", "ordered_shaped_bpe_tokens"], [12, 2, 1, "", "padding"], [12, 2, 1, "", "path_for_deserialization"], [12, 2, 1, "", "path_for_serialization"], [12, 2, 1, "", "path_single_kg"], [12, 2, 1, "", "read_only_few"], [12, 2, 1, "", "relation_to_idx"], [12, 4, 1, "", "relations_str"], [12, 2, 1, "", "sample_triples_ratio"], [12, 2, 1, "", "separator"], [12, 2, 1, "", "sparql_endpoint"], [12, 2, 1, "", "target_dim"], [12, 2, 1, "", "train_set_target"], [12, 2, 1, "", "train_target_indices"], [12, 2, 1, "", "training_technique"]], "dicee.knowledge_graph_embeddings": [[13, 1, 1, "", "KGE"]], "dicee.knowledge_graph_embeddings.KGE": [[13, 3, 1, "", "__str__"], [13, 3, 1, "", "answer_multi_hop_query"], [13, 3, 1, "", "create_vector_database"], [13, 3, 1, "", "deploy"], [13, 3, 1, "", "eval_lp_performance"], [13, 3, 1, "", "find_missing_triples"], [13, 3, 1, "", "generate"], [13, 3, 1, "", "get_transductive_entity_embeddings"], [13, 3, 1, "", "negnorm"], [13, 3, 1, "", "predict"], [13, 3, 1, "", "predict_missing_head_entity"], [13, 3, 1, "", "predict_missing_relations"], [13, 3, 1, "", "predict_missing_tail_entity"], [13, 3, 1, "", "predict_topk"], [13, 3, 1, "", "return_multi_hop_query_results"], [13, 3, 1, "", "single_hop_query_answering"], [13, 3, 1, "", "t_conorm"], [13, 3, 1, "", "t_norm"], [13, 3, 1, "", "tensor_t_norm"], [13, 3, 1, "", "to"], [13, 3, 1, "", "train"], [13, 3, 1, "", "train_k_vs_all"], [13, 3, 1, "", "train_triples"], [13, 3, 1, "", "triple_score"]], "dicee.models": [[21, 1, 1, "", "AConEx"], [21, 1, 1, "", "AConvO"], [21, 1, 1, "", "AConvQ"], [21, 1, 1, "", "ADOPT"], [21, 1, 1, "id227", "BaseKGE"], [21, 1, 1, "", "BaseKGELightning"], [21, 1, 1, "", "ComplEx"], [21, 1, 1, "", "ConEx"], [21, 1, 1, "", "ConvO"], [21, 1, 1, "", "ConvQ"], [21, 1, 1, "", "DeCaL"], [21, 1, 1, "", "DistMult"], [21, 1, 1, "", "DualE"], [21, 1, 1, "", "FMult"], [21, 1, 1, "", "FMult2"], [21, 1, 1, "", "GFMult"], [21, 1, 1, "id176", "IdentityClass"], [21, 1, 1, "", "Keci"], [21, 1, 1, "", "KeciBase"], [21, 1, 1, "", "LFMult"], [21, 1, 1, "", "LFMult1"], [21, 1, 1, "", "OMult"], [21, 1, 1, "", "Pyke"], [21, 1, 1, "", "PykeenKGE"], [21, 1, 1, "", "QMult"], [21, 1, 1, "", "Shallom"], [21, 1, 1, "", "TransE"], [14, 0, 0, "-", "adopt"], [15, 0, 0, "-", "base_model"], [16, 0, 0, "-", "clifford"], [17, 0, 0, "-", "complex"], [18, 0, 0, "-", "dualE"], [19, 0, 0, "-", "ensemble"], [20, 0, 0, "-", "function_space"], [22, 0, 0, "-", "octonion"], [21, 6, 1, "", "octonion_mul"], [21, 6, 1, "", "octonion_mul_norm"], [23, 0, 0, "-", "pykeen_models"], [24, 0, 0, "-", "quaternion"], [21, 6, 1, "", "quaternion_mul"], [21, 6, 1, "", "quaternion_mul_with_unit_norm"], [25, 0, 0, "-", "real"], [26, 0, 0, "-", "static_funcs"], [27, 0, 0, "-", "transformers"]], "dicee.models.AConEx": [[21, 2, 1, "", "bn_conv2d"], [21, 2, 1, "", "conv2d"], [21, 2, 1, "", "fc1"], [21, 2, 1, "", "fc_num_input"], [21, 2, 1, "", "feature_map_dropout"], [21, 3, 1, "", "forward_k_vs_all"], [21, 3, 1, "", "forward_k_vs_sample"], [21, 3, 1, "", "forward_triples"], [21, 2, 1, "", "name"], [21, 2, 1, "", "norm_fc1"], [21, 3, 1, "", "residual_convolution"]], "dicee.models.AConvO": [[21, 2, 1, "", "bn_conv2d"], [21, 2, 1, "", "conv2d"], [21, 2, 1, "", "fc1"], [21, 2, 1, "", "fc_num_input"], [21, 2, 1, "", "feature_map_dropout"], [21, 3, 1, "", "forward_k_vs_all"], [21, 3, 1, "", "forward_triples"], [21, 2, 1, "", "name"], [21, 2, 1, "", "norm_fc1"], [21, 3, 1, "", "octonion_normalizer"], [21, 3, 1, "", "residual_convolution"]], "dicee.models.AConvQ": [[21, 2, 1, "", "bn_conv1"], [21, 2, 1, "", "bn_conv2"], [21, 2, 1, "", "conv2d"], [21, 2, 1, "", "entity_embeddings"], [21, 2, 1, "", "fc1"], [21, 2, 1, "", "fc_num_input"], [21, 2, 1, "", "feature_map_dropout"], [21, 3, 1, "", "forward_k_vs_all"], [21, 3, 1, "", "forward_triples"], [21, 2, 1, "", "name"], [21, 2, 1, "", "relation_embeddings"], [21, 3, 1, "", "residual_convolution"]], "dicee.models.ADOPT": [[21, 3, 1, "", "__setstate__"], [21, 2, 1, "", "clip_lambda"], [21, 3, 1, "", "step"]], "dicee.models.BaseKGE": [[21, 2, 1, "id234", "apply_unit_norm"], [21, 2, 1, "id228", "args"], [21, 2, 1, "id256", "block_size"], [21, 2, 1, "id254", "byte_pair_encoding"], [21, 2, 1, "id229", "embedding_dim"], [21, 2, 1, "id238", "feature_map_dropout_rate"], [21, 3, 1, "id260", "forward"], [21, 3, 1, "id257", "forward_byte_pair_encoded_k_vs_all"], [21, 3, 1, "id258", "forward_byte_pair_encoded_triple"], [21, 3, 1, "id262", "forward_k_vs_all"], [21, 3, 1, "id263", "forward_k_vs_sample"], [21, 3, 1, "id261", "forward_triples"], [21, 3, 1, "id267", "get_bpe_head_and_relation_representation"], [21, 3, 1, "id268", "get_embeddings"], [21, 3, 1, "id265", "get_head_relation_representation"], [21, 3, 1, "id266", "get_sentence_representation"], [21, 3, 1, "id264", "get_triple_representation"], [21, 2, 1, "id252", "hidden_dropout"], [21, 2, 1, "id236", "hidden_dropout_rate"], [21, 2, 1, "id248", "hidden_normalizer"], [21, 3, 1, "id259", "init_params_with_sanity_checking"], [21, 2, 1, "id250", "input_dp_ent_real"], [21, 2, 1, "id251", "input_dp_rel_real"], [21, 2, 1, "id235", "input_dropout_rate"], [21, 2, 1, "id239", "kernel_size"], [21, 2, 1, "id233", "learning_rate"], [21, 2, 1, "id242", "loss"], [21, 2, 1, "id253", "loss_history"], [21, 2, 1, "id255", "max_length_subword_tokens"], [21, 2, 1, "id245", "normalize_head_entity_embeddings"], [21, 2, 1, "id246", "normalize_relation_embeddings"], [21, 2, 1, "id247", "normalize_tail_entity_embeddings"], [21, 2, 1, "id244", "normalizer_class"], [21, 2, 1, "id230", "num_entities"], [21, 2, 1, "id240", "num_of_output_channels"], [21, 2, 1, "id231", "num_relations"], [21, 2, 1, "id232", "num_tokens"], [21, 2, 1, "id237", "optimizer_name"], [21, 2, 1, "id249", "param_init"], [21, 2, 1, "id243", "selected_optimizer"], [21, 2, 1, "id241", "weight_decay"]], "dicee.models.BaseKGELightning": [[21, 3, 1, "", "configure_optimizers"], [21, 3, 1, "", "loss_function"], [21, 3, 1, "", "mem_of_model"], [21, 3, 1, "", "on_train_epoch_end"], [21, 3, 1, "", "predict_dataloader"], [21, 3, 1, "", "test_dataloader"], [21, 3, 1, "", "test_epoch_end"], [21, 3, 1, "", "train_dataloader"], [21, 3, 1, "", "training_step"], [21, 2, 1, "", "training_step_outputs"], [21, 3, 1, "", "val_dataloader"]], "dicee.models.ComplEx": [[21, 3, 1, "", "forward_k_vs_all"], [21, 3, 1, "", "forward_k_vs_sample"], [21, 3, 1, "", "k_vs_all_score"], [21, 2, 1, "", "name"], [21, 3, 1, "", "score"]], "dicee.models.ConEx": [[21, 2, 1, "", "bn_conv2d"], [21, 2, 1, "", "conv2d"], [21, 2, 1, "", "fc1"], [21, 2, 1, "", "fc_num_input"], [21, 2, 1, "", "feature_map_dropout"], [21, 3, 1, "", "forward_k_vs_all"], [21, 3, 1, "", "forward_k_vs_sample"], [21, 3, 1, "", "forward_triples"], [21, 2, 1, "", "name"], [21, 2, 1, "", "norm_fc1"], [21, 3, 1, "", "residual_convolution"]], "dicee.models.ConvO": [[21, 2, 1, "", "bn_conv2d"], [21, 2, 1, "", "conv2d"], [21, 2, 1, "", "fc1"], [21, 2, 1, "", "fc_num_input"], [21, 2, 1, "", "feature_map_dropout"], [21, 3, 1, "", "forward_k_vs_all"], [21, 3, 1, "", "forward_triples"], [21, 2, 1, "", "name"], [21, 2, 1, "", "norm_fc1"], [21, 3, 1, "", "octonion_normalizer"], [21, 3, 1, "", "residual_convolution"]], "dicee.models.ConvQ": [[21, 2, 1, "", "bn_conv1"], [21, 2, 1, "", "bn_conv2"], [21, 2, 1, "", "conv2d"], [21, 2, 1, "", "entity_embeddings"], [21, 2, 1, "", "fc1"], [21, 2, 1, "", "fc_num_input"], [21, 2, 1, "", "feature_map_dropout"], [21, 3, 1, "", "forward_k_vs_all"], [21, 3, 1, "", "forward_triples"], [21, 2, 1, "", "name"], [21, 2, 1, "", "relation_embeddings"], [21, 3, 1, "", "residual_convolution"]], "dicee.models.DeCaL": [[21, 3, 1, "", "apply_coefficients"], [21, 3, 1, "", "cl_pqr"], [21, 3, 1, "", "compute_sigma_pp"], [21, 3, 1, "", "compute_sigma_pq"], [21, 3, 1, "", "compute_sigma_pr"], [21, 3, 1, "", "compute_sigma_qq"], [21, 3, 1, "", "compute_sigma_qr"], [21, 3, 1, "", "compute_sigma_rr"], [21, 3, 1, "", "compute_sigmas_multivect"], [21, 3, 1, "", "compute_sigmas_single"], [21, 3, 1, "", "construct_cl_multivector"], [21, 2, 1, "", "entity_embeddings"], [21, 3, 1, "", "forward_k_vs_all"], [21, 3, 1, "", "forward_triples"], [21, 2, 1, "", "name"], [21, 2, 1, "", "p"], [21, 2, 1, "", "q"], [21, 2, 1, "", "r"], [21, 2, 1, "", "re"], [21, 2, 1, "", "relation_embeddings"]], "dicee.models.DistMult": [[21, 3, 1, "", "forward_k_vs_all"], [21, 3, 1, "", "forward_k_vs_sample"], [21, 3, 1, "", "k_vs_all_score"], [21, 2, 1, "", "name"], [21, 3, 1, "", "score"]], "dicee.models.DualE": [[21, 3, 1, "", "T"], [21, 2, 1, "", "entity_embeddings"], [21, 3, 1, "", "forward_k_vs_all"], [21, 3, 1, "", "forward_triples"], [21, 3, 1, "", "kvsall_score"], [21, 2, 1, "", "name"], [21, 2, 1, "", "num_ent"], [21, 2, 1, "", "relation_embeddings"]], "dicee.models.FMult": [[21, 3, 1, "", "chain_func"], [21, 3, 1, "", "compute_func"], [21, 2, 1, "", "entity_embeddings"], [21, 3, 1, "", "forward_triples"], [21, 2, 1, "", "gamma"], [21, 2, 1, "", "k"], [21, 2, 1, "", "name"], [21, 2, 1, "", "num_sample"], [21, 2, 1, "", "relation_embeddings"], [21, 2, 1, "", "roots"], [21, 2, 1, "", "weights"]], "dicee.models.FMult2": [[21, 3, 1, "", "build_chain_funcs"], [21, 3, 1, "", "build_func"], [21, 3, 1, "", "compute_func"], [21, 2, 1, "", "discrete_points"], [21, 2, 1, "", "entity_embeddings"], [21, 3, 1, "", "forward_triples"], [21, 3, 1, "", "function"], [21, 2, 1, "", "k"], [21, 2, 1, "", "n"], [21, 2, 1, "", "n_layers"], [21, 2, 1, "", "name"], [21, 2, 1, "", "relation_embeddings"], [21, 2, 1, "", "score_func"], [21, 3, 1, "", "trapezoid"]], "dicee.models.GFMult": [[21, 3, 1, "", "chain_func"], [21, 3, 1, "", "compute_func"], [21, 2, 1, "", "entity_embeddings"], [21, 3, 1, "", "forward_triples"], [21, 2, 1, "", "k"], [21, 2, 1, "", "name"], [21, 2, 1, "", "num_sample"], [21, 2, 1, "", "relation_embeddings"], [21, 2, 1, "", "roots"], [21, 2, 1, "", "weights"]], "dicee.models.IdentityClass": [[21, 3, 1, "id178", "__call__"], [21, 2, 1, "id177", "args"], [21, 3, 1, "id179", "forward"]], "dicee.models.Keci": [[21, 3, 1, "", "apply_coefficients"], [21, 3, 1, "", "clifford_multiplication"], [21, 3, 1, "", "compute_sigma_pp"], [21, 3, 1, "", "compute_sigma_pq"], [21, 3, 1, "", "compute_sigma_qq"], [21, 3, 1, "", "construct_batch_selected_cl_multivector"], [21, 3, 1, "", "construct_cl_multivector"], [21, 3, 1, "", "forward_k_vs_all"], [21, 3, 1, "", "forward_k_vs_sample"], [21, 3, 1, "", "forward_k_vs_with_explicit"], [21, 3, 1, "", "forward_triples"], [21, 3, 1, "", "k_vs_all_score"], [21, 2, 1, "", "name"], [21, 2, 1, "", "p"], [21, 2, 1, "", "q"], [21, 2, 1, "", "r"], [21, 2, 1, "", "requires_grad_for_interactions"], [21, 3, 1, "", "score"]], "dicee.models.KeciBase": [[21, 2, 1, "", "name"], [21, 2, 1, "", "requires_grad_for_interactions"]], "dicee.models.LFMult": [[21, 3, 1, "", "comp_func"], [21, 3, 1, "", "construct_multi_coeff"], [21, 2, 1, "", "degree"], [21, 2, 1, "", "entity_embeddings"], [21, 3, 1, "", "forward_triples"], [21, 3, 1, "", "linear"], [21, 2, 1, "", "m"], [21, 2, 1, "", "name"], [21, 3, 1, "", "poly_NN"], [21, 3, 1, "", "polynomial"], [21, 3, 1, "", "pop"], [21, 2, 1, "", "relation_embeddings"], [21, 3, 1, "", "scalar_batch_NN"], [21, 3, 1, "", "tri_score"], [21, 3, 1, "", "vtp_score"], [21, 2, 1, "", "x_values"]], "dicee.models.LFMult1": [[21, 2, 1, "", "entity_embeddings"], [21, 3, 1, "", "forward_triples"], [21, 2, 1, "", "name"], [21, 2, 1, "", "relation_embeddings"], [21, 3, 1, "", "tri_score"], [21, 3, 1, "", "vtp_score"]], "dicee.models.OMult": [[21, 3, 1, "", "forward_k_vs_all"], [21, 3, 1, "", "k_vs_all_score"], [21, 2, 1, "", "name"], [21, 3, 1, "", "octonion_normalizer"], [21, 3, 1, "", "score"]], "dicee.models.Pyke": [[21, 2, 1, "", "dist_func"], [21, 3, 1, "", "forward_triples"], [21, 2, 1, "", "margin"], [21, 2, 1, "", "name"]], "dicee.models.PykeenKGE": [[21, 2, 1, "", "args"], [21, 2, 1, "", "entity_embeddings"], [21, 3, 1, "", "forward_k_vs_all"], [21, 3, 1, "", "forward_k_vs_sample"], [21, 3, 1, "", "forward_triples"], [21, 2, 1, "", "loss_history"], [21, 2, 1, "", "model"], [21, 2, 1, "", "model_kwargs"], [21, 2, 1, "", "name"], [21, 2, 1, "", "relation_embeddings"]], "dicee.models.QMult": [[21, 2, 1, "", "explicit"], [21, 3, 1, "", "forward_k_vs_all"], [21, 3, 1, "", "forward_k_vs_sample"], [21, 3, 1, "", "k_vs_all_score"], [21, 2, 1, "", "name"], [21, 3, 1, "", "quaternion_multiplication_followed_by_inner_product"], [21, 3, 1, "", "quaternion_normalizer"], [21, 3, 1, "", "score"]], "dicee.models.Shallom": [[21, 3, 1, "", "forward_k_vs_all"], [21, 3, 1, "", "forward_triples"], [21, 3, 1, "", "get_embeddings"], [21, 2, 1, "", "name"], [21, 2, 1, "", "shallom"]], "dicee.models.TransE": [[21, 3, 1, "", "forward_k_vs_all"], [21, 2, 1, "", "margin"], [21, 2, 1, "", "name"], [21, 3, 1, "", "score"]], "dicee.models.adopt": [[14, 1, 1, "", "ADOPT"], [14, 6, 1, "", "adopt"]], "dicee.models.adopt.ADOPT": [[14, 3, 1, "", "__setstate__"], [14, 2, 1, "", "clip_lambda"], [14, 3, 1, "", "step"]], "dicee.models.base_model": [[15, 1, 1, "", "BaseKGE"], [15, 1, 1, "", "BaseKGELightning"], [15, 1, 1, "", "IdentityClass"]], "dicee.models.base_model.BaseKGE": [[15, 2, 1, "", "apply_unit_norm"], [15, 2, 1, "", "args"], [15, 2, 1, "", "block_size"], [15, 2, 1, "", "byte_pair_encoding"], [15, 2, 1, "", "embedding_dim"], [15, 2, 1, "", "feature_map_dropout_rate"], [15, 3, 1, "", "forward"], [15, 3, 1, "", "forward_byte_pair_encoded_k_vs_all"], [15, 3, 1, "", "forward_byte_pair_encoded_triple"], [15, 3, 1, "", "forward_k_vs_all"], [15, 3, 1, "", "forward_k_vs_sample"], [15, 3, 1, "", "forward_triples"], [15, 3, 1, "", "get_bpe_head_and_relation_representation"], [15, 3, 1, "", "get_embeddings"], [15, 3, 1, "", "get_head_relation_representation"], [15, 3, 1, "", "get_sentence_representation"], [15, 3, 1, "", "get_triple_representation"], [15, 2, 1, "", "hidden_dropout"], [15, 2, 1, "", "hidden_dropout_rate"], [15, 2, 1, "", "hidden_normalizer"], [15, 3, 1, "", "init_params_with_sanity_checking"], [15, 2, 1, "", "input_dp_ent_real"], [15, 2, 1, "", "input_dp_rel_real"], [15, 2, 1, "", "input_dropout_rate"], [15, 2, 1, "", "kernel_size"], [15, 2, 1, "", "learning_rate"], [15, 2, 1, "", "loss"], [15, 2, 1, "", "loss_history"], [15, 2, 1, "", "max_length_subword_tokens"], [15, 2, 1, "", "normalize_head_entity_embeddings"], [15, 2, 1, "", "normalize_relation_embeddings"], [15, 2, 1, "", "normalize_tail_entity_embeddings"], [15, 2, 1, "", "normalizer_class"], [15, 2, 1, "", "num_entities"], [15, 2, 1, "", "num_of_output_channels"], [15, 2, 1, "", "num_relations"], [15, 2, 1, "", "num_tokens"], [15, 2, 1, "", "optimizer_name"], [15, 2, 1, "", "param_init"], [15, 2, 1, "", "selected_optimizer"], [15, 2, 1, "", "weight_decay"]], "dicee.models.base_model.BaseKGELightning": [[15, 3, 1, "", "configure_optimizers"], [15, 3, 1, "", "loss_function"], [15, 3, 1, "", "mem_of_model"], [15, 3, 1, "", "on_train_epoch_end"], [15, 3, 1, "", "predict_dataloader"], [15, 3, 1, "", "test_dataloader"], [15, 3, 1, "", "test_epoch_end"], [15, 3, 1, "", "train_dataloader"], [15, 3, 1, "", "training_step"], [15, 2, 1, "", "training_step_outputs"], [15, 3, 1, "", "val_dataloader"]], "dicee.models.base_model.IdentityClass": [[15, 3, 1, "", "__call__"], [15, 2, 1, "", "args"], [15, 3, 1, "", "forward"]], "dicee.models.clifford": [[16, 1, 1, "", "DeCaL"], [16, 1, 1, "", "Keci"], [16, 1, 1, "", "KeciBase"]], "dicee.models.clifford.DeCaL": [[16, 3, 1, "", "apply_coefficients"], [16, 3, 1, "", "cl_pqr"], [16, 3, 1, "", "compute_sigma_pp"], [16, 3, 1, "", "compute_sigma_pq"], [16, 3, 1, "", "compute_sigma_pr"], [16, 3, 1, "", "compute_sigma_qq"], [16, 3, 1, "", "compute_sigma_qr"], [16, 3, 1, "", "compute_sigma_rr"], [16, 3, 1, "", "compute_sigmas_multivect"], [16, 3, 1, "", "compute_sigmas_single"], [16, 3, 1, "", "construct_cl_multivector"], [16, 2, 1, "", "entity_embeddings"], [16, 3, 1, "", "forward_k_vs_all"], [16, 3, 1, "", "forward_triples"], [16, 2, 1, "", "name"], [16, 2, 1, "", "p"], [16, 2, 1, "", "q"], [16, 2, 1, "", "r"], [16, 2, 1, "", "re"], [16, 2, 1, "", "relation_embeddings"]], "dicee.models.clifford.Keci": [[16, 3, 1, "", "apply_coefficients"], [16, 3, 1, "", "clifford_multiplication"], [16, 3, 1, "", "compute_sigma_pp"], [16, 3, 1, "", "compute_sigma_pq"], [16, 3, 1, "", "compute_sigma_qq"], [16, 3, 1, "", "construct_batch_selected_cl_multivector"], [16, 3, 1, "", "construct_cl_multivector"], [16, 3, 1, "", "forward_k_vs_all"], [16, 3, 1, "", "forward_k_vs_sample"], [16, 3, 1, "", "forward_k_vs_with_explicit"], [16, 3, 1, "", "forward_triples"], [16, 3, 1, "", "k_vs_all_score"], [16, 2, 1, "", "name"], [16, 2, 1, "", "p"], [16, 2, 1, "", "q"], [16, 2, 1, "", "r"], [16, 2, 1, "", "requires_grad_for_interactions"], [16, 3, 1, "", "score"]], "dicee.models.clifford.KeciBase": [[16, 2, 1, "", "name"], [16, 2, 1, "", "requires_grad_for_interactions"]], "dicee.models.complex": [[17, 1, 1, "", "AConEx"], [17, 1, 1, "", "ComplEx"], [17, 1, 1, "", "ConEx"]], "dicee.models.complex.AConEx": [[17, 2, 1, "", "bn_conv2d"], [17, 2, 1, "", "conv2d"], [17, 2, 1, "", "fc1"], [17, 2, 1, "", "fc_num_input"], [17, 2, 1, "", "feature_map_dropout"], [17, 3, 1, "", "forward_k_vs_all"], [17, 3, 1, "", "forward_k_vs_sample"], [17, 3, 1, "", "forward_triples"], [17, 2, 1, "", "name"], [17, 2, 1, "", "norm_fc1"], [17, 3, 1, "", "residual_convolution"]], "dicee.models.complex.ComplEx": [[17, 3, 1, "", "forward_k_vs_all"], [17, 3, 1, "", "forward_k_vs_sample"], [17, 3, 1, "", "k_vs_all_score"], [17, 2, 1, "", "name"], [17, 3, 1, "", "score"]], "dicee.models.complex.ConEx": [[17, 2, 1, "", "bn_conv2d"], [17, 2, 1, "", "conv2d"], [17, 2, 1, "", "fc1"], [17, 2, 1, "", "fc_num_input"], [17, 2, 1, "", "feature_map_dropout"], [17, 3, 1, "", "forward_k_vs_all"], [17, 3, 1, "", "forward_k_vs_sample"], [17, 3, 1, "", "forward_triples"], [17, 2, 1, "", "name"], [17, 2, 1, "", "norm_fc1"], [17, 3, 1, "", "residual_convolution"]], "dicee.models.dualE": [[18, 1, 1, "", "DualE"]], "dicee.models.dualE.DualE": [[18, 3, 1, "", "T"], [18, 2, 1, "", "entity_embeddings"], [18, 3, 1, "", "forward_k_vs_all"], [18, 3, 1, "", "forward_triples"], [18, 3, 1, "", "kvsall_score"], [18, 2, 1, "", "name"], [18, 2, 1, "", "num_ent"], [18, 2, 1, "", "relation_embeddings"]], "dicee.models.ensemble": [[19, 1, 1, "", "EnsembleKGE"]], "dicee.models.ensemble.EnsembleKGE": [[19, 3, 1, "", "__call__"], [19, 3, 1, "", "__iter__"], [19, 3, 1, "", "__len__"], [19, 3, 1, "", "__str__"], [19, 3, 1, "", "eval"], [19, 4, 1, "", "example_input_array"], [19, 2, 1, "", "loss_history"], [19, 3, 1, "", "mem_of_model"], [19, 2, 1, "", "models"], [19, 3, 1, "", "modules"], [19, 2, 1, "", "name"], [19, 3, 1, "", "named_children"], [19, 2, 1, "", "optimizers"], [19, 3, 1, "", "parameters"], [19, 3, 1, "", "step"], [19, 3, 1, "", "to"], [19, 2, 1, "", "train_mode"]], "dicee.models.function_space": [[20, 1, 1, "", "FMult"], [20, 1, 1, "", "FMult2"], [20, 1, 1, "", "GFMult"], [20, 1, 1, "", "LFMult"], [20, 1, 1, "", "LFMult1"]], "dicee.models.function_space.FMult": [[20, 3, 1, "", "chain_func"], [20, 3, 1, "", "compute_func"], [20, 2, 1, "", "entity_embeddings"], [20, 3, 1, "", "forward_triples"], [20, 2, 1, "", "gamma"], [20, 2, 1, "", "k"], [20, 2, 1, "", "name"], [20, 2, 1, "", "num_sample"], [20, 2, 1, "", "relation_embeddings"], [20, 2, 1, "", "roots"], [20, 2, 1, "", "weights"]], "dicee.models.function_space.FMult2": [[20, 3, 1, "", "build_chain_funcs"], [20, 3, 1, "", "build_func"], [20, 3, 1, "", "compute_func"], [20, 2, 1, "", "discrete_points"], [20, 2, 1, "", "entity_embeddings"], [20, 3, 1, "", "forward_triples"], [20, 3, 1, "", "function"], [20, 2, 1, "", "k"], [20, 2, 1, "", "n"], [20, 2, 1, "", "n_layers"], [20, 2, 1, "", "name"], [20, 2, 1, "", "relation_embeddings"], [20, 2, 1, "", "score_func"], [20, 3, 1, "", "trapezoid"]], "dicee.models.function_space.GFMult": [[20, 3, 1, "", "chain_func"], [20, 3, 1, "", "compute_func"], [20, 2, 1, "", "entity_embeddings"], [20, 3, 1, "", "forward_triples"], [20, 2, 1, "", "k"], [20, 2, 1, "", "name"], [20, 2, 1, "", "num_sample"], [20, 2, 1, "", "relation_embeddings"], [20, 2, 1, "", "roots"], [20, 2, 1, "", "weights"]], "dicee.models.function_space.LFMult": [[20, 3, 1, "", "comp_func"], [20, 3, 1, "", "construct_multi_coeff"], [20, 2, 1, "", "degree"], [20, 2, 1, "", "entity_embeddings"], [20, 3, 1, "", "forward_triples"], [20, 3, 1, "", "linear"], [20, 2, 1, "", "m"], [20, 2, 1, "", "name"], [20, 3, 1, "", "poly_NN"], [20, 3, 1, "", "polynomial"], [20, 3, 1, "", "pop"], [20, 2, 1, "", "relation_embeddings"], [20, 3, 1, "", "scalar_batch_NN"], [20, 3, 1, "", "tri_score"], [20, 3, 1, "", "vtp_score"], [20, 2, 1, "", "x_values"]], "dicee.models.function_space.LFMult1": [[20, 2, 1, "", "entity_embeddings"], [20, 3, 1, "", "forward_triples"], [20, 2, 1, "", "name"], [20, 2, 1, "", "relation_embeddings"], [20, 3, 1, "", "tri_score"], [20, 3, 1, "", "vtp_score"]], "dicee.models.octonion": [[22, 1, 1, "", "AConvO"], [22, 1, 1, "", "ConvO"], [22, 1, 1, "", "OMult"], [22, 6, 1, "", "octonion_mul"], [22, 6, 1, "", "octonion_mul_norm"]], "dicee.models.octonion.AConvO": [[22, 2, 1, "", "bn_conv2d"], [22, 2, 1, "", "conv2d"], [22, 2, 1, "", "fc1"], [22, 2, 1, "", "fc_num_input"], [22, 2, 1, "", "feature_map_dropout"], [22, 3, 1, "", "forward_k_vs_all"], [22, 3, 1, "", "forward_triples"], [22, 2, 1, "", "name"], [22, 2, 1, "", "norm_fc1"], [22, 3, 1, "", "octonion_normalizer"], [22, 3, 1, "", "residual_convolution"]], "dicee.models.octonion.ConvO": [[22, 2, 1, "", "bn_conv2d"], [22, 2, 1, "", "conv2d"], [22, 2, 1, "", "fc1"], [22, 2, 1, "", "fc_num_input"], [22, 2, 1, "", "feature_map_dropout"], [22, 3, 1, "", "forward_k_vs_all"], [22, 3, 1, "", "forward_triples"], [22, 2, 1, "", "name"], [22, 2, 1, "", "norm_fc1"], [22, 3, 1, "", "octonion_normalizer"], [22, 3, 1, "", "residual_convolution"]], "dicee.models.octonion.OMult": [[22, 3, 1, "", "forward_k_vs_all"], [22, 3, 1, "", "k_vs_all_score"], [22, 2, 1, "", "name"], [22, 3, 1, "", "octonion_normalizer"], [22, 3, 1, "", "score"]], "dicee.models.pykeen_models": [[23, 1, 1, "", "PykeenKGE"]], "dicee.models.pykeen_models.PykeenKGE": [[23, 2, 1, "", "args"], [23, 2, 1, "", "entity_embeddings"], [23, 3, 1, "", "forward_k_vs_all"], [23, 3, 1, "", "forward_k_vs_sample"], [23, 3, 1, "", "forward_triples"], [23, 2, 1, "", "loss_history"], [23, 2, 1, "", "model"], [23, 2, 1, "", "model_kwargs"], [23, 2, 1, "", "name"], [23, 2, 1, "", "relation_embeddings"]], "dicee.models.quaternion": [[24, 1, 1, "", "AConvQ"], [24, 1, 1, "", "ConvQ"], [24, 1, 1, "", "QMult"], [24, 6, 1, "", "quaternion_mul_with_unit_norm"]], "dicee.models.quaternion.AConvQ": [[24, 2, 1, "", "bn_conv1"], [24, 2, 1, "", "bn_conv2"], [24, 2, 1, "", "conv2d"], [24, 2, 1, "", "entity_embeddings"], [24, 2, 1, "", "fc1"], [24, 2, 1, "", "fc_num_input"], [24, 2, 1, "", "feature_map_dropout"], [24, 3, 1, "", "forward_k_vs_all"], [24, 3, 1, "", "forward_triples"], [24, 2, 1, "", "name"], [24, 2, 1, "", "relation_embeddings"], [24, 3, 1, "", "residual_convolution"]], "dicee.models.quaternion.ConvQ": [[24, 2, 1, "", "bn_conv1"], [24, 2, 1, "", "bn_conv2"], [24, 2, 1, "", "conv2d"], [24, 2, 1, "", "entity_embeddings"], [24, 2, 1, "", "fc1"], [24, 2, 1, "", "fc_num_input"], [24, 2, 1, "", "feature_map_dropout"], [24, 3, 1, "", "forward_k_vs_all"], [24, 3, 1, "", "forward_triples"], [24, 2, 1, "", "name"], [24, 2, 1, "", "relation_embeddings"], [24, 3, 1, "", "residual_convolution"]], "dicee.models.quaternion.QMult": [[24, 2, 1, "", "explicit"], [24, 3, 1, "", "forward_k_vs_all"], [24, 3, 1, "", "forward_k_vs_sample"], [24, 3, 1, "", "k_vs_all_score"], [24, 2, 1, "", "name"], [24, 3, 1, "", "quaternion_multiplication_followed_by_inner_product"], [24, 3, 1, "", "quaternion_normalizer"], [24, 3, 1, "", "score"]], "dicee.models.real": [[25, 1, 1, "", "DistMult"], [25, 1, 1, "", "Pyke"], [25, 1, 1, "", "Shallom"], [25, 1, 1, "", "TransE"]], "dicee.models.real.DistMult": [[25, 3, 1, "", "forward_k_vs_all"], [25, 3, 1, "", "forward_k_vs_sample"], [25, 3, 1, "", "k_vs_all_score"], [25, 2, 1, "", "name"], [25, 3, 1, "", "score"]], "dicee.models.real.Pyke": [[25, 2, 1, "", "dist_func"], [25, 3, 1, "", "forward_triples"], [25, 2, 1, "", "margin"], [25, 2, 1, "", "name"]], "dicee.models.real.Shallom": [[25, 3, 1, "", "forward_k_vs_all"], [25, 3, 1, "", "forward_triples"], [25, 3, 1, "", "get_embeddings"], [25, 2, 1, "", "name"], [25, 2, 1, "", "shallom"]], "dicee.models.real.TransE": [[25, 3, 1, "", "forward_k_vs_all"], [25, 2, 1, "", "margin"], [25, 2, 1, "", "name"], [25, 3, 1, "", "score"]], "dicee.models.static_funcs": [[26, 6, 1, "", "quaternion_mul"]], "dicee.models.transformers": [[27, 1, 1, "", "Block"], [27, 1, 1, "", "BytE"], [27, 1, 1, "", "CausalSelfAttention"], [27, 1, 1, "", "GPT"], [27, 1, 1, "", "GPTConfig"], [27, 1, 1, "", "LayerNorm"], [27, 1, 1, "", "MLP"]], "dicee.models.transformers.Block": [[27, 2, 1, "", "attn"], [27, 3, 1, "", "forward"], [27, 2, 1, "", "ln_1"], [27, 2, 1, "", "ln_2"], [27, 2, 1, "", "mlp"]], "dicee.models.transformers.BytE": [[27, 2, 1, "", "config"], [27, 3, 1, "", "forward"], [27, 3, 1, "", "generate"], [27, 2, 1, "", "lm_head"], [27, 3, 1, "", "loss_function"], [27, 2, 1, "", "name"], [27, 2, 1, "", "temperature"], [27, 2, 1, "", "topk"], [27, 3, 1, "", "training_step"], [27, 2, 1, "", "transformer"]], "dicee.models.transformers.CausalSelfAttention": [[27, 2, 1, "", "attn_dropout"], [27, 2, 1, "", "c_attn"], [27, 2, 1, "", "c_proj"], [27, 2, 1, "", "dropout"], [27, 2, 1, "", "flash"], [27, 3, 1, "", "forward"], [27, 2, 1, "", "n_embd"], [27, 2, 1, "", "n_head"], [27, 2, 1, "", "resid_dropout"]], "dicee.models.transformers.GPT": [[27, 2, 1, "", "config"], [27, 3, 1, "", "configure_optimizers"], [27, 3, 1, "", "crop_block_size"], [27, 3, 1, "", "estimate_mfu"], [27, 3, 1, "", "forward"], [27, 3, 1, "", "from_pretrained"], [27, 3, 1, "", "get_num_params"], [27, 2, 1, "", "lm_head"], [27, 2, 1, "", "transformer"]], "dicee.models.transformers.GPTConfig": [[27, 2, 1, "", "bias"], [27, 2, 1, "", "block_size"], [27, 2, 1, "", "dropout"], [27, 2, 1, "", "n_embd"], [27, 2, 1, "", "n_head"], [27, 2, 1, "", "n_layer"], [27, 2, 1, "", "vocab_size"]], "dicee.models.transformers.LayerNorm": [[27, 2, 1, "", "bias"], [27, 3, 1, "", "forward"], [27, 2, 1, "", "weight"]], "dicee.models.transformers.MLP": [[27, 2, 1, "", "c_fc"], [27, 2, 1, "", "c_proj"], [27, 2, 1, "", "dropout"], [27, 3, 1, "", "forward"], [27, 2, 1, "", "gelu"]], "dicee.query_generator": [[28, 1, 1, "", "QueryGenerator"]], "dicee.query_generator.QueryGenerator": [[28, 3, 1, "", "achieve_answer"], [28, 3, 1, "", "construct_graph"], [28, 2, 1, "", "ent2id"], [28, 2, 1, "", "ent_in"], [28, 2, 1, "", "ent_out"], [28, 3, 1, "", "fill_query"], [28, 2, 1, "", "gen_test"], [28, 2, 1, "", "gen_valid"], [28, 3, 1, "", "generate_queries"], [28, 3, 1, "", "get_queries"], [28, 3, 1, "", "ground_queries"], [28, 3, 1, "", "list2tuple"], [28, 3, 1, "", "load_queries"], [28, 3, 1, "", "load_queries_and_answers"], [28, 2, 1, "", "max_ans_num"], [28, 2, 1, "", "mode"], [28, 2, 1, "", "query_name_to_struct"], [28, 2, 1, "", "rel2id"], [28, 3, 1, "", "save_queries"], [28, 3, 1, "", "save_queries_and_answers"], [28, 2, 1, "", "seed"], [28, 3, 1, "", "set_global_seed"], [28, 2, 1, "", "test_path"], [28, 2, 1, "", "train_path"], [28, 3, 1, "", "tuple2list"], [28, 3, 1, "", "unmap"], [28, 3, 1, "", "unmap_query"], [28, 2, 1, "", "val_path"], [28, 3, 1, "", "write_links"]], "dicee.read_preprocess_save_load_kg": [[29, 1, 1, "", "LoadSaveToDisk"], [29, 1, 1, "", "PreprocessKG"], [29, 1, 1, "", "ReadFromDisk"], [30, 0, 0, "-", "preprocess"], [31, 0, 0, "-", "read_from_disk"], [32, 0, 0, "-", "save_load_disk"], [33, 0, 0, "-", "util"]], "dicee.read_preprocess_save_load_kg.LoadSaveToDisk": [[29, 2, 1, "", "kg"], [29, 3, 1, "", "load"], [29, 3, 1, "", "save"]], "dicee.read_preprocess_save_load_kg.PreprocessKG": [[29, 2, 1, "", "kg"], [29, 3, 1, "", "preprocess_with_byte_pair_encoding"], [29, 3, 1, "", "preprocess_with_byte_pair_encoding_with_padding"], [29, 3, 1, "", "preprocess_with_pandas"], [29, 3, 1, "", "preprocess_with_polars"], [29, 3, 1, "", "sequential_vocabulary_construction"], [29, 3, 1, "", "start"]], "dicee.read_preprocess_save_load_kg.ReadFromDisk": [[29, 3, 1, "", "add_noisy_triples_into_training"], [29, 2, 1, "", "kg"], [29, 3, 1, "", "start"]], "dicee.read_preprocess_save_load_kg.preprocess": [[30, 1, 1, "", "PreprocessKG"]], "dicee.read_preprocess_save_load_kg.preprocess.PreprocessKG": [[30, 2, 1, "", "kg"], [30, 3, 1, "", "preprocess_with_byte_pair_encoding"], [30, 3, 1, "", "preprocess_with_byte_pair_encoding_with_padding"], [30, 3, 1, "", "preprocess_with_pandas"], [30, 3, 1, "", "preprocess_with_polars"], [30, 3, 1, "", "sequential_vocabulary_construction"], [30, 3, 1, "", "start"]], "dicee.read_preprocess_save_load_kg.read_from_disk": [[31, 1, 1, "", "ReadFromDisk"]], "dicee.read_preprocess_save_load_kg.read_from_disk.ReadFromDisk": [[31, 3, 1, "", "add_noisy_triples_into_training"], [31, 2, 1, "", "kg"], [31, 3, 1, "", "start"]], "dicee.read_preprocess_save_load_kg.save_load_disk": [[32, 1, 1, "", "LoadSaveToDisk"]], "dicee.read_preprocess_save_load_kg.save_load_disk.LoadSaveToDisk": [[32, 2, 1, "", "kg"], [32, 3, 1, "", "load"], [32, 3, 1, "", "save"]], "dicee.read_preprocess_save_load_kg.util": [[33, 6, 1, "", "apply_reciprical_or_noise"], [33, 6, 1, "", "create_constraints"], [33, 6, 1, "", "create_recipriocal_triples"], [33, 6, 1, "", "dataset_sanity_checking"], [33, 6, 1, "", "get_ee_vocab"], [33, 6, 1, "", "get_er_vocab"], [33, 6, 1, "", "get_re_vocab"], [33, 6, 1, "", "load_numpy_ndarray"], [33, 6, 1, "", "load_pickle"], [33, 6, 1, "", "load_with_pandas"], [33, 6, 1, "", "pandas_dataframe_indexer"], [33, 6, 1, "", "polars_dataframe_indexer"], [33, 6, 1, "", "read_from_disk"], [33, 6, 1, "", "read_from_triple_store"], [33, 6, 1, "", "read_with_pandas"], [33, 6, 1, "", "read_with_polars"], [33, 6, 1, "", "save_numpy_ndarray"], [33, 6, 1, "", "save_pickle"], [33, 6, 1, "", "timeit"]], "dicee.sanity_checkers": [[34, 6, 1, "", "is_sparql_endpoint_alive"], [34, 6, 1, "", "sanity_checking_with_arguments"], [34, 6, 1, "", "validate_knowledge_graph"]], "dicee.scripts": [[36, 0, 0, "-", "index"], [37, 0, 0, "-", "run"], [38, 0, 0, "-", "serve"]], "dicee.scripts.index": [[36, 6, 1, "", "get_default_arguments"], [36, 6, 1, "", "main"]], "dicee.scripts.run": [[37, 6, 1, "", "get_default_arguments"], [37, 6, 1, "", "main"]], "dicee.scripts.serve": [[38, 1, 1, "", "NeuralSearcher"], [38, 5, 1, "", "app"], [38, 6, 1, "", "get_default_arguments"], [38, 6, 1, "", "main"], [38, 5, 1, "", "neural_searcher"], [38, 6, 1, "", "retrieve_embeddings"], [38, 6, 1, "", "root"], [38, 6, 1, "", "search_embeddings"]], "dicee.scripts.serve.NeuralSearcher": [[38, 2, 1, "", "collection_name"], [38, 3, 1, "", "get"], [38, 2, 1, "", "model"], [38, 2, 1, "", "qdrant_client"], [38, 3, 1, "", "search"]], "dicee.static_funcs": [[39, 6, 1, "", "add_noisy_triples"], [39, 6, 1, "", "continual_training_setup_executor"], [39, 6, 1, "", "create_experiment_folder"], [39, 6, 1, "", "create_recipriocal_triples"], [39, 6, 1, "", "deploy_head_entity_prediction"], [39, 6, 1, "", "deploy_relation_prediction"], [39, 6, 1, "", "deploy_tail_entity_prediction"], [39, 6, 1, "", "deploy_triple_prediction"], [39, 6, 1, "", "download_file"], [39, 6, 1, "", "download_files_from_url"], [39, 6, 1, "", "download_pretrained_model"], [39, 6, 1, "", "evaluate"], [39, 6, 1, "", "exponential_function"], [39, 6, 1, "", "from_pretrained_model_write_embeddings_into_csv"], [39, 6, 1, "", "get_ee_vocab"], [39, 6, 1, "", "get_er_vocab"], [39, 6, 1, "", "get_re_vocab"], [39, 6, 1, "", "intialize_model"], [39, 6, 1, "", "load_json"], [39, 6, 1, "", "load_model"], [39, 6, 1, "", "load_model_ensemble"], [39, 6, 1, "", "load_numpy"], [39, 6, 1, "", "load_pickle"], [39, 6, 1, "", "load_term_mapping"], [39, 6, 1, "", "numpy_data_type_changer"], [39, 6, 1, "", "random_prediction"], [39, 6, 1, "", "read_or_load_kg"], [39, 6, 1, "", "save_checkpoint_model"], [39, 6, 1, "", "save_embeddings"], [39, 6, 1, "", "save_numpy_ndarray"], [39, 6, 1, "", "save_pickle"], [39, 6, 1, "", "select_model"], [39, 6, 1, "", "store"], [39, 6, 1, "", "timeit"], [39, 6, 1, "", "vocab_to_parquet"], [39, 6, 1, "", "write_csv_from_model_parallel"]], "dicee.static_funcs_training": [[40, 6, 1, "", "efficient_zero_grad"], [40, 6, 1, "", "evaluate_bpe_lp"], [40, 6, 1, "", "evaluate_lp"], [40, 6, 1, "", "make_iterable_verbose"]], "dicee.static_preprocess_funcs": [[41, 6, 1, "", "create_constraints"], [41, 5, 1, "", "enable_log"], [41, 6, 1, "", "get_ee_vocab"], [41, 6, 1, "", "get_er_vocab"], [41, 6, 1, "", "get_re_vocab"], [41, 6, 1, "", "mapping_from_first_two_cols_to_third"], [41, 6, 1, "", "preprocesses_input_args"], [41, 6, 1, "", "timeit"]], "dicee.trainer": [[43, 1, 1, "", "DICE_Trainer"], [42, 0, 0, "-", "dice_trainer"], [44, 0, 0, "-", "model_parallelism"], [45, 0, 0, "-", "torch_trainer"], [46, 0, 0, "-", "torch_trainer_ddp"]], "dicee.trainer.DICE_Trainer": [[43, 2, 1, "", "args"], [43, 3, 1, "", "continual_start"], [43, 2, 1, "", "evaluator"], [43, 2, 1, "", "form_of_labelling"], [43, 3, 1, "", "init_dataloader"], [43, 3, 1, "", "init_dataset"], [43, 3, 1, "", "initialize_or_load_model"], [43, 3, 1, "", "initialize_trainer"], [43, 2, 1, "", "is_continual_training"], [43, 3, 1, "", "k_fold_cross_validation"], [43, 2, 1, "", "report"], [43, 3, 1, "", "start"], [43, 2, 1, "", "storage_path"], [43, 2, 1, "", "trainer"]], "dicee.trainer.dice_trainer": [[42, 1, 1, "", "DICE_Trainer"], [42, 6, 1, "", "get_callbacks"], [42, 6, 1, "", "initialize_trainer"], [42, 6, 1, "", "load_term_mapping"]], "dicee.trainer.dice_trainer.DICE_Trainer": [[42, 2, 1, "", "args"], [42, 3, 1, "", "continual_start"], [42, 2, 1, "", "evaluator"], [42, 2, 1, "", "form_of_labelling"], [42, 3, 1, "", "init_dataloader"], [42, 3, 1, "", "init_dataset"], [42, 3, 1, "", "initialize_or_load_model"], [42, 3, 1, "", "initialize_trainer"], [42, 2, 1, "", "is_continual_training"], [42, 3, 1, "", "k_fold_cross_validation"], [42, 2, 1, "", "report"], [42, 3, 1, "", "start"], [42, 2, 1, "", "storage_path"], [42, 2, 1, "", "trainer"]], "dicee.trainer.model_parallelism": [[44, 1, 1, "", "TensorParallel"], [44, 6, 1, "", "extract_input_outputs"], [44, 6, 1, "", "find_good_batch_size"], [44, 6, 1, "", "forward_backward_update_loss"]], "dicee.trainer.model_parallelism.TensorParallel": [[44, 3, 1, "", "fit"], [44, 3, 1, "", "get_ensemble"], [44, 2, 1, "", "models"]], "dicee.trainer.torch_trainer": [[45, 1, 1, "", "TorchTrainer"]], "dicee.trainer.torch_trainer.TorchTrainer": [[45, 3, 1, "", "extract_input_outputs_set_device"], [45, 3, 1, "", "fit"], [45, 3, 1, "", "forward_backward_update"], [45, 2, 1, "", "loss_function"], [45, 2, 1, "", "model"], [45, 2, 1, "", "optimizer"], [45, 2, 1, "", "process"], [45, 2, 1, "", "train_dataloaders"], [45, 2, 1, "", "training_step"]], "dicee.trainer.torch_trainer_ddp": [[46, 1, 1, "", "NodeTrainer"], [46, 1, 1, "", "TorchDDPTrainer"], [46, 6, 1, "", "make_iterable_verbose"]], "dicee.trainer.torch_trainer_ddp.NodeTrainer": [[46, 2, 1, "", "callbacks"], [46, 2, 1, "", "ctx"], [46, 3, 1, "", "extract_input_outputs"], [46, 2, 1, "", "global_rank"], [46, 2, 1, "", "local_rank"], [46, 2, 1, "", "loss_func"], [46, 2, 1, "", "loss_history"], [46, 2, 1, "", "model"], [46, 2, 1, "", "num_epochs"], [46, 2, 1, "", "optimizer"], [46, 2, 1, "", "scaler"], [46, 3, 1, "", "train"], [46, 2, 1, "", "train_dataset_loader"], [46, 2, 1, "", "trainer"]], "dicee.trainer.torch_trainer_ddp.TorchDDPTrainer": [[46, 3, 1, "", "fit"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "data", "Python data"], "6": ["py", "function", "Python function"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:attribute", "3": "py:method", "4": "py:property", "5": "py:data", "6": "py:function"}, "terms": {"": [0, 3, 5, 6, 7, 11, 14, 15, 21, 37], "0": [0, 1, 3, 5, 6, 7, 11, 13, 14, 20, 21, 22, 23, 24, 25, 27, 28, 33, 39, 44, 46, 51, 52], "000000": 1, "001": [11, 13, 14, 21], "02": [0, 51], "023": 52, "047391": 1, "05": 44, "06": [1, 14, 21], "065": 0, "07": [0, 51], "09090": [11, 21, 25], "1": [0, 1, 6, 7, 10, 11, 13, 15, 16, 17, 20, 21, 22, 23, 24, 25, 27, 28, 33, 42, 43, 46, 51, 52], "10": [1, 6, 11, 13, 51, 52], "100": 51, "100000": 52, "1000000": [11, 28], "1002": 51, "1006": 51, "101": 51, "1019": 51, "102": 51, "1023": 1, "1024": [6, 27, 51], "1029": 51, "103": 51, "1032": 51, "1037": 51, "104": 51, "1042": 51, "1047": 51, "105": 51, "1051": 51, "1053": 51, "1055": 51, "106": 51, "1063": 1, "1064": 51, "1065": 51, "107": 51, "108": 51, "1084": 51, "109": 51, "1090": 1, "1093": 1, "1095": 51, "11": 51, "110": 51, "1102": 51, "1107": [1, 51], "111": 51, "112": 51, "113": 51, "1135": 51, "1139": 51, "114": 51, "1145": 51, "1149": 51, "115": 51, "116": 51, "1167": 51, "117": 51, "1176": 51, "1177": 51, "118": 51, "1186": 51, "1190": 1, "1194": 51, "12": [1, 27, 51], "120": 51, "1200": 51, "121": 51, "121181249": 0, "1212": 51, "1214": 51, "122": 51, "1227": 51, "123": 51, "1232": 51, "1234": 51, "125": 51, "1250": 51, "1252": 51, "126": 51, "1265": 51, "127": [0, 51], "128": 51, "13": 51, "131": 51, "133": 51, "133871": 1, "134": 51, "136": 51, "137": 51, "138": 51, "139": 51, "139366172": 0, "13946": 0, "13954": 0, "13th": 51, "14": 51, "140": 51, "141": 51, "1412": [11, 21, 25], "142": 51, "143": 51, "146": 51, "147": 51, "148": 51, "149": [0, 51], "149152137": 0, "15": 51, "150": 6, "151": 51, "152": 51, "155": 51, "156": 51, "157": 51, "1571": 1, "159": 51, "15th": 51, "16": [1, 11, 15, 16, 21, 51, 52], "161": 51, "1627": 1, "163": 51, "164": 51, "165": 51, "1653": 1, "1656": 1, "16657": [11, 18, 21], "1666": 1, "167": 51, "168": 51, "16850": [11, 18, 21], "17": 51, "170": 51, "172": 51, "1746": 1, "177": 51, "179": 51, "18": [1, 51], "180": 51, "182": 51, "184": 51, "185": 51, "186": 51, "187": 51, "188": 51, "189": 51, "19": 51, "190": 51, "192": 51, "193": 51, "194": 51, "195": 51, "196": 51, "197": 51, "198": 51, "199": 51, "1999": [0, 51], "1cecc7a77928ca8133fa24680a88d2f9": [11, 21, 25], "1e": [14, 21], "1p": 51, "1vsall": [7, 11, 51, 52], "2": [0, 1, 7, 10, 11, 13, 15, 16, 20, 21, 23, 24, 27, 33, 41, 42, 43, 51], "20": [11, 15, 16, 17, 21, 22, 24, 27, 51], "200": 51, "2002": [0, 51], "2004": 0, "200679": 1, "201": 51, "2013": [11, 21, 25], "2021": 51, "2022": [1, 51], "2023": 51, "20247486": 0, "203": 51, "204": 51, "205": 51, "206": 51, "20640": 1, "207": 51, "208": 51, "209": 51, "21": 51, "210": 51, "2101": [11, 21, 25], "211732": 1, "212": 51, "213": 51, "214": 51, "215": 51, "217": 51, "219": 51, "219531": 1, "22": [0, 1, 51], "220": 51, "221": 51, "223": 51, "224": 51, "226": 51, "226317": 1, "227": 51, "228": 51, "229": 51, "23": 51, "230": 51, "230564": 1, "234": 51, "235": 51, "236": 51, "237": [51, 52], "24": 51, "240": 51, "241": 51, "243": 51, "243103258": 0, "245": 51, "246": 51, "248": 51, "249": 51, "25": [1, 51], "250": [20, 21, 51], "251": 51, "252": 51, "254": 51, "256": 51, "257": 51, "258": 51, "259": 51, "260": 51, "262": 51, "263": 51, "265": 51, "266": 51, "267": 51, "268": 51, "269": 51, "27": [1, 51], "271": 51, "272": 51, "274": 51, "275": 51, "276": 51, "279": 51, "28": [7, 11, 51], "280": 51, "282": 51, "2828": 51, "286": 51, "287": 51, "287544": 1, "288": 51, "289": 51, "290": 51, "291": 51, "292": 51, "294": 51, "295": 51, "296": 51, "297": 51, "299": 51, "2p": [11, 13, 51], "3": [1, 6, 7, 10, 11, 15, 16, 20, 21, 23, 33, 39, 42, 43, 51], "30": 51, "301": 51, "302": 51, "303": 51, "3030": 51, "304": 51, "305": 51, "307": 51, "309": 51, "31": 51, "310": 51, "311": 51, "314": 51, "315": 51, "316": 51, "317": 51, "319": 51, "32": [1, 6, 11, 13, 51], "320": 51, "324": 51, "325": 51, "327": 51, "328": 51, "329": 51, "33": 51, "330": 51, "332": 51, "333": 51, "334": 51, "335": 51, "336": 51, "338": 51, "33rd": 51, "34": 51, "340": 51, "342": 51, "34356092": 0, "344": 51, "345": 51, "346": 51, "348": 51, "351": 51, "352": [0, 51], "353": 51, "354": 51, "355": 51, "356": 51, "357": 51, "358": 51, "36": 51, "360": 51, "362": 51, "363": 51, "364": 51, "366": 51, "367": 51, "368": 51, "368515": 1, "37": 51, "370": 51, "372": 51, "374": 51, "375": 51, "376": [0, 51], "38": 51, "381": 51, "384": 51, "386": 51, "387": 51, "388": 51, "389": 51, "39": 51, "390": 51, "392": 51, "393": 51, "398": 51, "399": 51, "3p": 51, "4": [1, 7, 10, 11, 21, 23, 25, 33, 51, 52], "40": [1, 51], "402": 0, "404": 51, "405": 51, "406": 51, "41": 51, "410": 51, "411": 51, "413": 51, "414": 51, "416": 51, "417": 51, "418": 51, "419": 51, "42": 51, "420": 51, "424": 51, "426": 51, "427": 51, "428": 51, "429": 51, "43": 51, "433": 51, "438": 51, "439": 51, "44": 51, "443": 51, "444": 51, "446": 51, "45": 51, "450": 51, "453": 51, "455": 51, "46": 51, "46062877": 0, "461": 51, "46107647": 0, "463": 0, "465": 51, "467": 51, "468": 51, "47": [1, 51], "470": 51, "472": 51, "474": [0, 51], "478": 51, "479": 51, "480": 51, "482": 51, "4829831": 51, "483": 51, "484": 51, "486": 51, "487": 51, "49": 51, "491": 51, "492": 51, "495": 51, "495965": 1, "498": 51, "499": 51, "4tfqax": 51, "5": [1, 7, 11, 15, 16, 17, 21, 22, 24, 27, 33, 51, 52], "50": [1, 20, 21, 51], "500": 51, "501": 51, "50121317": 0, "502": 51, "503": 51, "50304": 27, "5051694": 51, "508": 51, "509": 51, "51": [1, 51], "511": 51, "512": 51, "514": 51, "517": 51, "519": 51, "52": 51, "522": 51, "524": 51, "525": [0, 51], "526": 51, "527": 51, "528": 51, "53": 51, "533": 51, "536": 51, "538": 51, "539": 51, "54": 51, "542": 51, "543": 51, "54475293": 0, "547": 51, "549": 0, "55": 51, "550": 51, "555": 51, "556": 51, "557": 51, "559": [0, 51], "56": 51, "567": 51, "57": 51, "571": 51, "575": 51, "58": 51, "581": [0, 51], "582": 51, "585": 51, "586": 0, "589": 51, "59": 51, "591": [0, 51], "592": 51, "597": 0, "598": 51, "6": [1, 7, 11, 15, 21], "60": 51, "6010134": 51, "601478": 1, "607": 51, "60755075": 0, "61": 51, "610": 51, "614693": 1, "615": 51, "617": 51, "6181": 51, "62": 51, "625": 51, "627": 51, "63": 51, "630": 51, "631": 51, "631540": 1, "633": 51, "6333": [11, 13, 51], "6334": 51, "634447": 1, "636": 51, "64": [6, 51, 52], "644": 51, "647": 51, "65": 51, "652": 51, "656": 51, "657": 51, "6575": [11, 21, 25], "658": 51, "66": 51, "661": 51, "669": 51, "67": 51, "671": 51, "67126536": 51, "68": 51, "686": 51, "688": 51, "69": 51, "692": 51, "6932515337423313": 51, "6951588502269289": 51, "6t45": 51, "7": [7, 11, 51, 52], "70": 51, "700": 51, "704755": 1, "705": 51, "707": 51, "708": 51, "710": 51, "713": 51, "714": 51, "716": 0, "718": 51, "72": 51, "728": 51, "73": 51, "735188046": 0, "737": 51, "738": 0, "74": 51, "75": [1, 51], "753": 51, "754": 51, "76": 51, "768": [27, 52], "77": 51, "774": 51, "775281": 1, "78": 51, "79": 51, "799873202": 0, "8": [1, 7, 11, 21, 22, 24, 51, 52], "80": 51, "8000": 51, "8064032293278861": 51, "806948": 1, "8072362996241839": 51, "8072499937521418": 51, "809817": 1, "81": 51, "8155": 51, "82": 51, "823181": 1, "83": 51, "84": 51, "845": 51, "847": 0, "85": 51, "856": 51, "859": 51, "86": 51, "866": 1, "87": 51, "877": 0, "879": 1, "88": 51, "883685": 1, "884": 51, "88831385": 0, "89": 51, "895093": 1, "896": 1, "896592": 1, "898": 1, "9": [1, 7, 11, 14, 21, 51], "90": 51, "9039334341906202": 51, "9041411042944786": 51, "909": 51, "91": 51, "915": 1, "92": 51, "929": 1, "93": 51, "933": 51, "95": 51, "9518788343558282": 51, "96": 51, "966": 51, "97": 51, "9750378214826021": 51, "9753123402351737": 51, "9754601226993865": 51, "98": 51, "988": 0, "99": 51, "991": 0, "9912": 51, "9988496932515337": 51, "9999": [14, 21], "A": [3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 21, 23, 25, 27, 33, 46, 51, 52], "As": [11, 15, 16, 17, 21, 22, 24, 27], "At": [7, 11], "But": [15, 21], "For": [7, 11, 15, 16, 21, 27, 42, 43, 51, 52], "IFS": 0, "If": [11, 13, 15, 21, 51, 52], "In": [5, 7, 11, 15, 21, 27, 51], "It": [15, 21], "NOT": [7, 11], "Not": 6, "Of": [11, 39], "The": [5, 6, 7, 11, 13, 15, 21, 24, 27, 33, 51], "Then": [11, 16, 21], "There": [7, 11, 15, 21], "To": [7, 11, 15, 21, 27, 51, 52], "With": 51, "_": 51, "__call__": [11, 15, 19, 21], "__getitem__": [7, 11], "__getitems__": [7, 11], "__init__": [7, 11, 15, 16, 17, 21, 22, 24, 27, 51], "__iter__": [6, 11, 12, 19], "__len__": [7, 11, 12, 19], "__main__": 11, "__setstate__": [14, 21], "__str__": [11, 13, 19], "__version__": 11, "_i": [7, 11], "a0": [11, 16, 21], "a100": 27, "a_i": [11, 20, 21], "a_k": [11, 20, 21], "aaai": [11, 18, 21], "ab": [11, 21, 25], "abc": 3, "about": [6, 7, 10, 11, 15, 21], "abov": [7, 11, 15, 16, 17, 21, 22, 24, 27], "absolut": [11, 21, 24], "abstract": [5, 7, 11, 13, 21, 23, 28, 44, 45, 46, 51], "abstractcallback": [3, 5], "abstractppecallback": 3, "abstracttrain": [3, 44, 45, 46], "accept": [0, 7, 11, 51], "access": [11, 15, 21, 39], "accord": [11, 16, 21], "accordingli": 5, "accumul": [11, 39], "accumulate_grad_batch": [11, 15, 21, 27], "accumulateepochlosscallback": 5, "accuraci": 1, "achiev": [11, 28, 51], "achieve_answ": [11, 28], "acm": 51, "aconex": [11, 17, 21, 51], "aconvo": [11, 21, 22], "aconvq": [11, 21, 24], "acquired_abnorm": 51, "activ": [1, 51], "actual": 27, "ad": [6, 9], "adam": [6, 51], "adapt": [5, 6], "adaptive_swa": [6, 51], "add": [7, 11, 15, 21, 29, 30, 33, 39, 52], "add_new_entity_embed": 3, "add_noise_r": [6, 11, 12, 39], "add_noisy_tripl": [11, 39], "add_noisy_triples_into_train": [29, 31], "add_recipr": 33, "add_reciproc": 12, "addit": [6, 11, 15, 17, 21, 22, 24, 27], "adjust": [7, 11], "adopt": 21, "adress": 0, "advanc": 52, "affiliatedclub": 0, "after": [9, 11, 13, 15, 21], "again": [10, 11], "aggregated_query_for_all_ent": [11, 13], "agnost": [47, 51], "alga": 51, "algebra": 51, "algorithm": 14, "alic": 33, "all": [6, 7, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 27, 51, 52], "all_bpe_shaped_ent": 40, "all_ent": [11, 21, 23], "allow": [11, 15, 16, 17, 20, 21, 22, 24, 27, 39, 51, 52], "allvsal": [7, 11, 51], "along": [11, 16, 21], "alpha": [3, 5], "alreadi": [11, 42, 43], "also": [7, 11, 15, 16, 17, 20, 21, 22, 24, 27, 51], "an": [0, 1, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 21, 22, 24, 27, 39, 46, 47], "analys": 4, "analyse_experi": 11, "anatomical_abnorm": 51, "ani": [7, 11, 15, 21, 27, 51, 52], "answer": [11, 13, 28, 39, 47], "answer_multi_hop_queri": [11, 13, 51], "anyth": [7, 11], "ap": [11, 16, 21], "apart": 51, "api": [14, 51], "app": 38, "append": [11, 15, 16, 21], "appli": [6, 7, 11, 21, 23, 24, 51], "applic": 51, "apply_coeffici": [11, 16, 21], "apply_reciprical_or_nois": 33, "apply_semantic_constraint": 3, "apply_to_collect": [7, 11], "apply_unit_norm": [11, 15, 21], "approach": [51, 52], "approv": 51, "aq": [11, 16, 21], "ar": [0, 5, 6, 7, 9, 11, 14, 15, 16, 21, 27, 33, 41, 51, 52], "arbitrari": [7, 11, 15, 21], "arg": [3, 4, 5, 7, 9, 10, 11, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 34, 38, 39, 41, 42, 43, 44, 45, 46, 51], "argmax_": [11, 13], "argpars": 6, "argument": [6, 7, 9, 11, 37, 39, 41, 42, 43, 45, 46], "arrai": [7, 11], "art": 51, "articl": [11, 18, 21, 51], "arxiv": [11, 21, 25], "as_list": [11, 13], "as_numpi": [11, 13], "as_pytorch": [11, 13], "ascending_ord": [11, 39], "asian": 51, "assert": [11, 16, 21, 51], "assign": [7, 11, 15, 16, 17, 21, 22, 24, 27], "associ": [15, 21], "asw": 5, "aswa": [4, 5], "async": 38, "at_most": [11, 13], "attn": 27, "attn_dropout": 27, "attribut": [3, 6, 9, 15, 16, 17, 21, 22, 24, 27, 29, 31, 47], "author": 51, "automat": [6, 11, 15, 21, 27], "automatic_optim": [11, 15, 21, 27], "automaticali": 51, "avail": [6, 15, 21, 29, 31, 51], "averag": [5, 6, 11, 42, 43], "axel": 51, "b": [5, 11, 15, 16, 20, 21, 24, 27], "b_i": [11, 20, 21], "b_j": [11, 20, 21], "b_k": [11, 20, 21], "back": [11, 27], "backend": [6, 12, 33, 51], "backward": [15, 21, 45], "bad": [7, 11], "balasubramanian": 51, "bar": [11, 15, 21, 27], "base": [3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 33, 41, 44, 45, 46, 52], "base_model": [11, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 39, 42, 43, 51], "base_url": [11, 39], "baseinteractivekg": [3, 11, 13], "basekg": [11, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 39, 42, 43], "basekgelightn": [11, 15, 21], "batch": [3, 5, 6, 7, 11, 15, 16, 20, 21, 22, 24, 27, 45], "batch_dim": [11, 21, 24], "batch_idx": [5, 11, 15, 21, 27], "batch_kronecker_product": 5, "batch_shaped_bpe_tripl": [7, 11], "batch_siz": [4, 5, 6, 7, 8, 11, 13, 16, 20, 21, 51, 52], "batchnorm1d": 6, "becom": 51, "been": [7, 11, 21, 24], "befor": [3, 7, 11, 15, 16, 17, 21, 22, 24, 27], "begin": [3, 5, 7, 11], "being": 6, "belong": [7, 11], "below": [7, 11, 15, 21], "benchmark": [51, 52], "benchmark_rich_background": 51, "beta": [14, 21, 27], "beta1": 14, "beta2": 14, "between": [6, 11, 14, 15, 16, 20, 21, 33], "bfloat16": 27, "bh": [11, 20, 21], "bi": [11, 21, 24], "bia": 27, "billion": 51, "binari": [7, 11], "bit": [15, 21], "blob": 27, "block": [6, 27], "block_siz": [6, 7, 11, 15, 21, 27], "bn": [11, 21, 23], "bn_conv1": [11, 21, 24], "bn_conv2": [11, 21, 24], "bn_conv2d": [11, 17, 21, 22], "bob": 33, "boilerpl": 51, "booktitl": 51, "bool": [3, 6, 11, 12, 13, 14, 15, 16, 17, 21, 22, 24, 27, 28, 33, 39, 42, 43], "boolean": [3, 11, 15, 16, 17, 21, 22, 24, 27], "both": [7, 11], "box": [7, 11], "bpe": 3, "bpe_head_ent_emb": [11, 16, 21, 22, 24], "bpe_negativesamplingdataset": [7, 11], "bpe_rel_ent_emb": [11, 16, 21, 22, 24], "br": [11, 20, 21], "broadcast": 5, "broader": 0, "brother": 51, "bt": [11, 20, 21], "build": [7, 11, 51], "build_chain_func": [20, 21], "build_func": [20, 21], "byte": [6, 11, 15, 21, 27], "byte_pair_encod": [4, 6, 7, 11, 12, 15, 21], "bz2": 52, "bzip2": 0, "c": [1, 11, 20, 21, 23, 24], "c10d": 51, "c_1": [11, 17, 21], "c_2": [11, 17, 21], "c_attn": 27, "c_fc": 27, "c_j": [11, 20, 21], "c_k": [11, 20, 21], "c_proj": 27, "cach": [15, 21], "caglar": 51, "calcul": [11, 15, 21, 27], "california_wo_label": 1, "call": [3, 5, 7, 11, 15, 16, 17, 21, 22, 23, 24, 27, 51], "callabl": [8, 14, 21], "callback": [3, 4, 6, 11, 15, 21, 42, 43, 44, 45, 46, 51], "can": [5, 7, 10, 11, 15, 16, 17, 21, 22, 23, 24, 27, 51, 52], "captur": [11, 14, 16, 21], "carcinogenesi": 52, "case": [11, 15, 21, 27], "causalselfattent": 27, "cc": [11, 21, 25], "cd": [0, 11, 39, 51], "cdot": [11, 16, 21], "certif": 51, "chain_func": [20, 21], "challeng": 51, "charli": 33, "check": [7, 11, 41, 51, 52], "child": [11, 15, 16, 17, 21, 22, 24, 27], "choic": 6, "choos": [15, 21, 51], "chose": 51, "cite": 47, "cj": [11, 21, 24], "cl": [11, 16, 21, 39], "cl_": [11, 16, 21], "cl_pqr": [11, 16, 21], "class": [39, 47, 51], "classif": [7, 11], "classmethod": 27, "clear": [15, 21], "clifford": [6, 21, 51], "clifford_multipl": [11, 16, 21], "clip_lambda": [14, 21], "clone": [1, 51], "closur": [14, 15, 21], "cluster": 51, "co": 51, "code": [11, 28, 51], "coeff": [11, 20, 21], "coeff_h": [11, 20, 21], "coeff_r": [11, 20, 21], "coeff_t": [11, 20, 21], "coeffici": [11, 16, 20, 21], "coefh": [11, 20, 21], "coefr": [11, 20, 21], "coeft": [11, 20, 21], "collact_fn": [7, 11], "collat": [7, 11], "collate_fn": [7, 11], "collect": [0, 7, 11, 14, 15, 21, 28], "collect_fn": [7, 11], "collection_loc": 51, "collection_nam": [11, 13, 38, 51], "column": [1, 29, 30, 33], "com": [0, 1, 27, 51], "combin": [11, 20, 21, 51, 52], "command": [0, 51], "common": [11, 42, 43], "comp_func": [11, 20, 21], "complet": [11, 21, 22, 24, 27], "complex": [11, 20, 21, 47, 52], "compon": [5, 11, 16, 21], "composit": [11, 20, 21], "compress": 52, "comput": [0, 11, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 27, 40, 42, 43, 45, 51], "compute_converg": 5, "compute_func": [20, 21], "compute_mrr": 5, "compute_sigma_pp": [11, 16, 21], "compute_sigma_pq": [11, 16, 21], "compute_sigma_pr": [11, 16, 21], "compute_sigma_qq": [11, 16, 21], "compute_sigma_qr": [11, 16, 21], "compute_sigma_rr": [11, 16, 21], "compute_sigmas_multivect": [11, 16, 21], "compute_sigmas_singl": [11, 16, 21], "concaten": [7, 11], "conda": [1, 51], "condit": [11, 15, 21, 27, 29, 30], "conex": [11, 17, 21, 51, 52], "confer": [51, 52], "confid": [11, 13], "config": [3, 11, 27, 51], "configur": [11, 15, 21, 42, 43], "configure_optim": [15, 21, 27], "conform": 52, "consid": [11, 20, 21], "consist": [7, 11, 14, 21], "constraint": [11, 21, 24, 33, 41], "construct": [3, 7, 11, 16, 20, 21, 28, 29, 30, 39, 45], "construct_batch_selected_cl_multivector": [11, 16, 21], "construct_cl_multivector": [11, 16, 21], "construct_dataset": [7, 11], "construct_ensembl": [3, 11, 13], "construct_graph": [11, 28], "construct_input_and_output": 3, "construct_multi_coeff": [11, 20, 21], "contact": [51, 52], "contain": [3, 6, 7, 10, 11, 14, 15, 16, 17, 21, 22, 24, 27, 33, 52], "context": 5, "continu": [6, 10, 51], "continual_learn": 6, "continual_start": [10, 11, 42, 43], "continual_training_setup_executor": [11, 39], "continuous_train": [10, 11], "continuousexecut": 10, "control": [11, 15, 21, 27], "conv1": [11, 15, 16, 17, 21, 22, 24, 27], "conv2": [11, 15, 16, 17, 21, 22, 24, 27], "conv2d": [11, 15, 16, 17, 21, 22, 24, 27], "converg": 5, "convert": [7, 11, 15, 16, 17, 21, 22, 24, 27, 28], "convo": [11, 21, 22, 51, 52], "convolut": [6, 11, 17, 21, 22, 24, 51, 52], "convq": [11, 21, 24, 51, 52], "core": [0, 11, 39], "correct": [7, 11, 15, 21], "correspond": [3, 6, 11, 13, 15, 17, 21, 33], "corrupt": [7, 11], "could": [7, 11, 15, 21], "count": [1, 27], "countri": 51, "countryembed": 51, "cover": 51, "coverag": 47, "cpu": [6, 7, 10, 11, 42, 43, 45, 51, 52], "creat": [1, 6, 7, 10, 11, 28, 39, 41, 47, 52], "create_constraint": [33, 41], "create_experiment_fold": [11, 39], "create_random_data": 5, "create_recipriocal_tripl": [11, 33, 39], "create_toy_data": 1, "create_vector_databas": [11, 13], "credal": 52, "crete": 33, "crop_block_s": 27, "cross": [7, 11, 42, 43, 52], "csv": [0, 1, 6, 11, 39], "ctx": 46, "cuda_visible_devic": 51, "curl": [0, 51], "current": [7, 10, 11, 51], "custom": [7, 11, 15, 21], "custombatch": [7, 11], "cv": 6, "cvdatamodul": [7, 11], "cyril": 51, "d": [7, 11, 13, 15, 16, 20, 21, 24, 27, 51], "daikiri_storag": 52, "dask": [0, 11, 33, 39, 52], "data": [0, 3, 6, 7, 10, 11, 15, 21, 25, 27, 28, 29, 30, 31, 33, 39, 41, 42, 43, 46, 48, 51], "data_modul": 5, "data_path": 33, "data_split": [7, 11], "databas": 47, "databu": 0, "datafram": [0, 11, 29, 30, 33, 39], "dataload": [7, 11, 15, 21, 27, 42, 43, 46], "dataloader_idx": [7, 11, 15, 21, 27], "dataset": [6, 7, 9, 11, 13, 15, 21, 29, 30, 42, 43, 46, 51, 52], "dataset_class": [11, 51], "dataset_dir": [6, 12, 51], "dataset_sanity_check": 33, "dave": 33, "dbpedia": 51, "dbpedia_03_2022": 0, "dbpedia_only_03_2022": [0, 52], "dc": 0, "ddf": 0, "ddp": [7, 11, 42, 43, 46, 51, 52], "ddp_fully_shard": 52, "de": 51, "decai": 6, "decal": [11, 16, 21], "decid": 5, "decod": [11, 15, 21, 27], "decomposit": [51, 52], "decoupl": [14, 21], "decreas": 52, "deepspe": [11, 15, 21, 27, 51], "def": [7, 11, 15, 16, 17, 21, 22, 24, 27], "default": [7, 11, 14, 15, 21, 27, 40, 46, 51], "defaultdict": [11, 28], "defin": [7, 11], "definit": 27, "degre": [11, 20, 21], "delim_whitespac": 0, "demir": 51, "demir2021convolut": 51, "demir2021shallow": 51, "demir2022hardwar": 51, "demir2022kroneck": 51, "demir2023clifford": 51, "demir2023litcqd": 51, "demir21a": 51, "denomin": [11, 20, 21], "denot": [5, 7, 11, 13, 16, 21], "depend": [1, 11, 28], "deploi": [11, 13, 47], "deploy": 51, "deploy_head_entity_predict": [11, 39], "deploy_relation_predict": [11, 39], "deploy_tail_entity_predict": [11, 39], "deploy_triple_predict": [11, 39], "dept_read_preprocess_index_serialize_data": [10, 11], "desc": [40, 46], "descen": [11, 13], "describ": [12, 51], "descript": 37, "description_of_input": 12, "deseri": 33, "destination_fold": [11, 39], "detect": [11, 39, 51], "determinist": [14, 21], "dev_typ": 0, "develop": 51, "deviat": 52, "devic": [7, 11, 13, 19, 44, 45], "device_typ": 27, "df": [0, 1, 33], "df_panda": 33, "df_polar": 33, "dfrac": [11, 20, 21], "diagon": [11, 16, 21], "dice": 1, "dice_train": [11, 43, 51], "diceeindex": 51, "diceembed": [11, 39, 51], "diceeserv": 51, "dict": [3, 7, 8, 10, 11, 14, 15, 21, 22, 23, 27, 28, 33, 39, 40, 41, 42, 43], "dictionari": [11, 14, 15, 21, 27, 45], "dictonari": [7, 11], "did": 0, "diego": 51, "differ": [7, 11, 16, 20, 21, 39], "differenti": [14, 21], "dim": [11, 16, 21, 24], "dim128": [11, 39, 51], "dimens": [5, 11, 16, 21], "directli": 51, "directori": [6, 51], "discoveri": 51, "discrete_point": [20, 21], "disjunct": [11, 13], "disk": [3, 7, 10, 11, 28, 29, 31, 39], "dist_func": [11, 21, 25], "distanc": [11, 13], "distmult": [11, 21, 25, 51, 52], "distribut": [7, 11, 15, 21, 51], "distributed_backend": 52, "distributeddataparallel": [11, 42, 43, 46], "divisor": [11, 16, 21], "dk": [11, 21, 24], "do": [0, 7, 11, 15, 21, 27], "doc": [7, 11, 42, 43], "docker": 47, "document": [11, 28], "doe": 52, "doesn": [14, 21, 27], "domain": [33, 41], "don": [7, 11, 14, 15, 21], "done": [0, 11, 13], "download": [7, 11, 15, 18, 21, 47], "download_data": [7, 11], "download_fil": [11, 39], "download_files_from_url": [11, 39], "download_pretrained_model": [11, 39], "downstream": 9, "drawn": [7, 11], "drive": 46, "drop": 1, "dropout": [6, 11, 21, 23, 27], "dt": 27, "dtype": [0, 1], "dual": [11, 21, 51], "due": 27, "dummi": 51, "dummy_ev": 9, "dummy_id": 12, "dummyfold": 52, "dure": [3, 5, 6, 10], "during_train": 9, "dx": [11, 20, 21], "dynam": [7, 11], "e": [1, 6, 7, 11, 13, 15, 16, 20, 21, 22, 24, 27, 29, 30, 39, 51, 52], "e1e1": [11, 16, 21], "e1e2": [11, 16, 21], "e1e3": [11, 16, 21], "e2e1": [11, 16, 21], "e2e2": [11, 16, 21], "e2e3": [11, 16, 21], "e3e1": [11, 16, 21], "e3e2": [11, 16, 21], "e3e3": [11, 16, 21], "e_1": [11, 16, 21], "e_1_h": [11, 18, 21], "e_1_t": [11, 18, 21], "e_2": [11, 16, 21], "e_2_h": [11, 18, 21], "e_2_t": [11, 18, 21], "e_3": [11, 16, 21], "e_3_h": [11, 18, 21], "e_3_t": [11, 18, 21], "e_4_h": [11, 18, 21], "e_4_t": [11, 18, 21], "e_5_h": [11, 18, 21], "e_5_t": [11, 18, 21], "e_6_h": [11, 18, 21], "e_6_t": [11, 18, 21], "e_7_h": [11, 18, 21], "e_7_t": [11, 18, 21], "e_8_h": [11, 18, 21], "e_8_t": [11, 18, 21], "e_i": [7, 11, 16, 21], "e_j": [11, 16, 21], "e_k": [11, 16, 21], "each": [3, 5, 7, 11, 13, 16, 20, 21, 27, 28, 40, 42, 43, 52], "eas": 51, "easi": [6, 11, 39], "easili": 51, "easy_answ": [11, 39], "edg": [11, 28], "editor": 51, "ee_vocab": 9, "effect": 51, "effici": [11, 39], "efficient_zero_grad": 40, "effort": 51, "ei": [11, 16, 21], "eighteenth": 51, "either": [7, 11, 13, 52], "ej": [11, 16, 21], "eje1": [11, 16, 21], "element": [5, 11, 20, 21], "elif": [7, 11], "ellipsi": [11, 13], "els": [7, 11, 21, 23], "elsevi": 51, "emb_": [11, 17, 21, 25], "emb_dim": [11, 16, 21], "emb_h": [11, 17, 21, 25], "emb_r": [11, 17, 21, 25], "emb_rel_e0": [11, 21, 22], "emb_rel_e1": [11, 21, 22], "emb_rel_e2": [11, 21, 22], "emb_rel_e3": [11, 21, 22], "emb_rel_e4": [11, 21, 22], "emb_rel_e5": [11, 21, 22], "emb_rel_e6": [11, 21, 22], "emb_rel_e7": [11, 21, 22], "embed": [3, 5, 6, 7, 10, 11, 13, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 39, 44, 52], "embedding_dim": [1, 4, 6, 11, 15, 21, 23, 51, 52], "empti": 45, "en": [0, 11, 42, 43, 52], "enable_log": 41, "enc": 12, "encod": [6, 11, 15, 21, 27], "end": [3, 5, 10, 11, 15, 21], "endpoint": [6, 33, 51], "enforc": [15, 21], "engin": 0, "enorm": 46, "ensembl": [5, 11, 21, 39], "ensemble_model": 44, "ensemble_state_dict": 5, "ensemblekg": [11, 19], "ensur": [1, 7, 11, 51], "ent2id": [11, 28], "ent_in": [11, 28], "ent_out": [11, 28], "entiti": [3, 5, 6, 7, 11, 13, 16, 20, 21, 22, 23, 24, 25, 33, 38, 40, 41, 51], "entities_str": 12, "entity_embed": [11, 16, 18, 20, 21, 23, 24], "entity_idx": [7, 11, 46], "entity_nam": 3, "entity_to_idx": [7, 11, 12, 39], "environ": [1, 7, 11], "ep": [5, 14, 21], "epfo": [11, 13], "epoch": [3, 5, 11, 13, 15, 21, 52], "epoch256": [11, 39, 51], "epoch_count": [3, 5], "epoch_mean": [15, 21], "epoch_ratio": 5, "epoch_to_start": 3, "eq": [11, 16, 21], "equal": 6, "equival": 51, "er_vocab": [8, 9, 40], "error": [0, 1], "esp": 5, "estim": [5, 27], "estimate_mfu": 27, "estimate_q": 5, "etc": [7, 11, 15, 16, 17, 21, 22, 24, 27, 52], "europ": 51, "european": 51, "ev": 33, "eval": [3, 5, 9, 10, 11, 19, 27, 40], "eval_lp_perform": [11, 13], "eval_model": [6, 12, 33, 51], "eval_rank_of_head_and_tail_byte_pair_encoded_ent": 9, "eval_rank_of_head_and_tail_ent": 9, "eval_static_func": [11, 51], "eval_with_bpe_vs_al": 9, "eval_with_byt": 9, "eval_with_data": 9, "eval_with_vs_al": 9, "evalu": [6, 10, 11, 15, 16, 17, 20, 21, 22, 24, 27, 39, 40, 42, 43, 51, 52], "evaluate_bpe_lp": 40, "evaluate_link_prediction_perform": 8, "evaluate_link_prediction_performance_with_bp": 8, "evaluate_link_prediction_performance_with_bpe_reciproc": 8, "evaluate_link_prediction_performance_with_reciproc": 8, "evaluate_lp": [9, 40], "evaluate_lp_bpe_k_vs_al": [8, 9], "evaluate_lp_k_vs_al": 9, "evaluate_lp_with_byt": 9, "everi": [7, 11, 15, 20, 21], "every_x_epoch": 5, "exampl": [1, 7, 11, 14, 15, 16, 17, 21, 22, 24, 27, 51], "example_input_arrai": [11, 19], "except": 27, "execut": [0, 6, 7, 11, 51, 52], "executor": [9, 11, 39], "exist": [7, 11, 12, 51, 52], "exp_avg": 14, "exp_avg_sq": 14, "expect": [7, 11], "experi": [1, 4, 6, 11, 39], "experimental_model_of_diseas": 51, "explicit": [11, 21, 23, 24], "exponential_funct": [11, 39], "extend": [7, 11, 37, 51], "extra": 51, "extract": [6, 33, 41], "extract_input_output": [44, 46], "extract_input_outputs_set_devic": 45, "f": [0, 5, 11, 13, 15, 16, 17, 20, 21, 22, 24, 27, 48], "f9f141": 51, "f9f158": 51, "f9m142": 51, "f9m157": 51, "f9m167": 51, "face": 51, "facilit": [6, 51], "factor": [7, 11], "fail": 51, "failur": 51, "fairscal": 51, "fals": [0, 3, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 21, 27, 28, 39, 41], "famili": [51, 52], "fancier": [11, 15, 21, 27], "fashion": 51, "father": 51, "favorit": 52, "fb15k": 52, "fc1": [11, 17, 21, 22, 24], "fc_num_input": [11, 17, 21, 22, 24], "featur": 6, "feature_map_dropout": [11, 17, 21, 22, 24], "feature_map_dropout_r": [6, 11, 15, 21], "feed": [11, 27, 52], "feel": 51, "fetch": [1, 7, 11], "few": 6, "ff": 51, "file": [6, 7, 10, 11, 21, 25, 27, 39, 51, 52], "file_path": [11, 33, 39, 42], "fill_queri": [11, 28], "filter": [9, 11, 13, 40], "final": [27, 33], "find": [11, 13], "find_good_batch_s": 44, "find_missing_tripl": [11, 13], "finder": 6, "first": [6, 7, 11, 15, 20, 21, 51], "fit": [7, 11, 15, 21, 42, 43, 44, 45, 46], "flash": 27, "float": [5, 6, 7, 11, 12, 13, 14, 21, 27, 33, 39, 44, 45], "float16": [7, 11], "float64": 1, "floattensor": [3, 11, 13, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 39], "flop": 27, "fmult": [20, 21], "fmult2": [20, 21], "fn_answer": [11, 28], "focus": 51, "fold": [6, 11, 42, 43, 52], "folder": [1, 6, 10, 51, 52], "folder_nam": [11, 39], "follow": [0, 7, 11, 15, 21, 51, 52], "footprint": [10, 11], "foreach": [14, 21], "form": [7, 11, 46, 51], "form_of_label": [7, 9, 10, 11, 42, 43], "format": [0, 51], "formerteamm": 0, "forum": 51, "forward": [11, 15, 16, 17, 18, 21, 22, 24, 27, 45, 52], "forward_backward_upd": 45, "forward_backward_update_loss": 44, "forward_byte_pair_encoded_k_vs_al": [11, 15, 21], "forward_byte_pair_encoded_tripl": [11, 15, 21], "forward_k_vs_al": [11, 15, 16, 17, 18, 21, 22, 23, 24, 25], "forward_k_vs_sampl": [11, 15, 16, 17, 21, 23, 24, 25], "forward_k_vs_with_explicit": [11, 16, 21], "forward_tripl": [11, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25], "found": [15, 21], "found_inf": 14, "fp_answer": [11, 28], "framework": [1, 47, 51], "frank": 33, "free": [15, 21, 51], "frequenc": [5, 15, 21], "from": [0, 1, 5, 6, 7, 10, 11, 20, 21, 23, 28, 29, 31, 33, 39, 41, 42, 43, 45, 47], "from_pretrain": 27, "from_pretrained_model_write_embeddings_into_csv": [11, 39], "full": 27, "full_path": 3, "full_storage_path": [4, 11, 39], "fulldbpedia": 0, "fulli": [51, 52], "func": [11, 33, 39, 41], "func_triple_to_bpe_represent": [8, 9, 12], "funciton": [11, 16, 21], "function": [3, 9, 13, 15, 16, 17, 18, 20, 27, 47], "function_spac": [21, 51], "fuse": [14, 21], "futur": 9, "fwdbwd_per_it": 27, "g": [0, 1, 6, 7, 11, 13, 15, 16, 21, 27, 29, 30, 39, 48, 51, 52], "gamma": [20, 21], "gan": [11, 15, 21, 27], "gelu": 27, "gen_num": [11, 28], "gen_test": [11, 28], "gen_valid": [11, 28], "gener": [1, 6, 7, 11, 13, 20, 21, 23, 27, 28, 42, 43, 51, 52], "generate_queri": [11, 28], "germani": 51, "get": [5, 11, 27, 28, 38, 51], "get_aswa_state_dict": 5, "get_bpe_head_and_relation_represent": [11, 15, 21], "get_bpe_token_represent": 3, "get_callback": 42, "get_default_argu": [4, 36, 37, 38], "get_ee_vocab": [11, 33, 39, 41], "get_embed": [11, 15, 21, 25], "get_ensembl": 44, "get_entity_embed": 3, "get_entity_index": 3, "get_er_vocab": [11, 33, 39, 41], "get_eval_report": 3, "get_head_relation_represent": [11, 15, 21, 23], "get_kronecker_triple_represent": 5, "get_num_param": 27, "get_padded_bpe_triple_represent": 3, "get_queri": [11, 28], "get_re_vocab": [11, 33, 39, 41], "get_relation_embed": 3, "get_relation_index": 3, "get_sentence_represent": [11, 15, 21], "get_transductive_entity_embed": [11, 13], "get_triple_represent": [11, 15, 21, 23], "gfmult": [20, 21], "gigant": 51, "git": [1, 51], "github": [1, 27, 51], "given": [3, 7, 11, 13, 21, 22, 23, 24, 39], "global_rank": [3, 7, 11, 46], "goal": 51, "gold": 0, "good": [7, 11], "gpt": 27, "gpt2": 27, "gptconfig": 27, "gpu": [6, 7, 11, 15, 21, 27, 42, 43, 45, 51, 52], "grad": 14, "grad_scal": 14, "gradient": 46, "gradient_accumulation_step": 6, "gradio": 51, "grandfath": 51, "graph": [3, 5, 6, 7, 10, 11, 12, 13, 17, 18, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 34, 44, 47], "great": [7, 11], "ground": [11, 28], "ground_queri": [11, 28], "group": [1, 14, 21, 51], "grow": 51, "gz": 52, "h": [0, 7, 11, 12, 13, 16, 20, 21, 22, 23, 24, 25, 48, 51], "h0": [11, 16, 21], "h_": [11, 16, 21], "h_0": [11, 16, 21], "h_0r_0t_0": [11, 16, 21], "h_0r_it_i": [11, 16, 21], "h_i": [11, 16, 21], "h_ir_": [11, 16, 21], "h_ir_0t_i": [11, 16, 21], "h_ir_it_0": [11, 16, 21], "h_ir_j": [11, 16, 21], "h_ir_k": [11, 16, 21], "h_j": [11, 16, 21], "h_jr_": [11, 16, 21], "h_jr_i": [11, 16, 21], "h_jr_jt_0": [11, 16, 21], "h_jr_k": [11, 16, 21], "h_k": [11, 16, 21], "h_kr_": [11, 16, 21], "h_kr_i": [11, 16, 21], "h_kr_j": [11, 16, 21], "ha": [7, 11, 15, 21, 24, 27, 51], "handl": [15, 21], "happen": [15, 21], "hard": [5, 46], "hard_answ": [11, 39], "hardwar": [7, 11, 15, 21, 47, 51], "has_complex": 14, "haschild": 51, "haspar": 51, "hassibl": 51, "have": [11, 14, 15, 16, 17, 21, 22, 24, 27, 33, 51, 52], "head": [6, 7, 11, 13, 16, 21, 22, 23, 24, 40, 51], "head_ent": [3, 7, 11, 13], "head_ent_emb": [11, 17, 21, 22, 24, 25], "header": 0, "heindorf": 51, "henc": [7, 11, 16, 21], "here": [11, 15, 16, 21, 27], "hidden": 6, "hidden_dropout": [11, 15, 21], "hidden_dropout_r": [6, 11, 15, 21], "hidden_norm": [11, 15, 21], "highest": [11, 13], "hit": 51, "hk": [11, 16, 21], "hood": 51, "hook": [7, 11, 15, 21], "hop": [11, 13, 39, 51], "hor": [11, 20, 21], "hot": 48, "how": [7, 11, 15, 21, 47], "howev": [7, 11, 15, 21], "hp": [11, 16, 21], "hq": [11, 16, 21], "html": [7, 11, 42, 43, 51, 52], "http": [1, 7, 11, 18, 21, 25, 27, 39, 42, 43, 51, 52], "hug": 51, "huggingfac": [27, 51], "hypercomplex": 51, "hypernym": 0, "hypertext": 51, "i": [5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 20, 21, 22, 24, 27, 29, 30, 40, 51, 52], "icsc": 51, "id": [7, 11, 51], "id2ent": [11, 28], "id2rel": [11, 28], "ident": [11, 16, 21], "identityclass": [15, 21], "idx": [7, 11, 27], "idx_ent": 33, "idx_entity_to_bpe_shap": 12, "idx_hrt": [11, 15, 21], "idx_rel": 33, "idx_tripl": [11, 18, 20, 21], "ieee": 51, "im": [11, 13], "im_1": [11, 21, 24], "im_2": [11, 21, 24], "im_3": [11, 21, 24], "imag": 51, "imit": 0, "impact": 51, "implement": [6, 7, 11, 15, 16, 20, 21, 23, 27, 42, 43], "import": [0, 1, 11, 15, 16, 17, 21, 22, 24, 27, 51], "importantli": 51, "includ": [7, 11, 13, 15, 21, 27, 52], "incom": [11, 28], "incomplet": 51, "index": [3, 6, 7, 10, 11, 15, 18, 21, 27, 29, 30, 33, 35, 39, 42, 43], "index_col": 1, "index_tripl": 3, "indexed_tripl": [5, 11, 15, 21, 24], "indic": [7, 11, 13, 27, 33], "ineffici": [11, 16, 21], "infer": [11, 21, 25], "infin": 46, "info": [9, 10, 11, 33, 40], "inform": [7, 10, 11, 15, 21, 52], "inherit": [7, 11], "init_dataload": [11, 42, 43], "init_dataset": [11, 42, 43], "init_param": 6, "init_params_with_sanity_check": [11, 15, 21], "initi": [10, 11, 39, 42, 43], "initial_eval_set": 5, "initialize_distribut": [7, 11], "initialize_or_load_model": [11, 42, 43], "initialize_train": [11, 42, 43], "inner": [11, 16, 21], "inplac": 1, "inproceed": 51, "input": [5, 6, 7, 10, 13, 16, 20, 27, 29, 30, 33, 41, 42, 43, 45, 48], "input_dp_ent_r": [11, 15, 21], "input_dp_rel_r": [11, 15, 21], "input_dropout_r": [6, 11, 15, 21], "insert": [11, 39], "instal": 47, "instanc": [11, 15, 16, 21, 29, 30, 39, 45], "instead": [7, 11, 16, 21], "int": [3, 5, 6, 7, 11, 12, 13, 14, 16, 21, 27, 28, 33, 39, 46], "int64": 0, "int_": [11, 20, 21], "integ": [3, 7, 11, 15, 20, 21, 29, 30], "integr": [7, 11], "interact": [3, 11, 13, 16, 21, 23], "interactionsn": [11, 16, 21], "interest": 0, "intermedi": [11, 13], "intern": [11, 15, 21, 27, 51], "interv": [15, 21], "intialize_model": [11, 39], "inttensor": [7, 11], "invers": [11, 33, 39], "io": [11, 42, 43, 52], "is_continual_train": [9, 10, 11, 39, 42, 43], "is_global_zero": 3, "is_seen": 3, "is_sparql_endpoint_al": 34, "isa": 51, "isinst": [7, 11], "item": [3, 11, 13], "iter": [7, 11, 13, 14, 15, 21, 27, 40, 46], "iterable_object": [40, 46], "its": [3, 5, 7, 11, 15, 16, 21], "itself": [11, 13], "ivor": 51, "j": [11, 16, 20, 21], "join": 33, "joint": 51, "journal": 51, "json": [10, 11, 51], "julian": 51, "k": [11, 13, 16, 20, 21, 42, 43, 51], "k_fold_cross_valid": [11, 42, 43], "k_vs_all_scor": [11, 16, 17, 21, 22, 24, 25], "keci": [6, 11, 16, 21, 39, 51], "keci_uml": 51, "kecibas": [11, 16, 21], "kecifamilyrun": 51, "keep": 5, "kei": [7, 11, 15, 21, 27], "kernel": 6, "kernel_s": [6, 11, 15, 21], "keyword": [6, 15, 21], "kg": [5, 7, 9, 10, 11, 12, 13, 29, 30, 31, 32, 42, 43, 51], "kg_name": 1, "kge": [6, 8, 9, 11, 13, 42, 43, 51], "kgesavecallback": 5, "kinship": [11, 39, 51], "kix": [20, 21], "know": [7, 11, 15, 21, 33], "knowledg": [3, 5, 6, 7, 10, 11, 12, 13, 17, 18, 20, 21, 22, 23, 24, 25, 29, 30, 31, 34, 44, 47], "knowledge_graph": [9, 10, 11, 42, 43, 51], "knowledge_graph_embed": [8, 11, 51], "krone": [5, 51], "kroneck": [5, 51, 52], "kvsall": [6, 7, 11, 16, 18, 21, 39, 51, 52], "kvsall_scor": [11, 18, 21], "kvssampl": [7, 11], "kvssampledataset": [7, 11], "kwarg": [3, 5, 6, 7, 11, 15, 21, 27, 44, 45, 46], "l": [15, 21, 48, 52], "l1": [7, 11], "l2": [11, 21, 24], "label": [1, 3, 7, 11, 13, 52], "label_smoothing_r": [6, 7, 11, 46], "lam": [11, 39], "lambda": [11, 13, 14, 21], "lambda_": [11, 13], "land": [11, 13, 51], "languag": 27, "larg": [47, 51, 52], "larger": 52, "last": 51, "last_dim": [11, 21, 23], "last_percent_to_consid": [3, 6], "launch": 47, "layer": [11, 20, 21, 27], "layernorm": [6, 27], "lbfg": [15, 21], "lead": [5, 51], "learn": [6, 10, 11, 15, 16, 20, 21, 25, 47, 52], "learning_r": [11, 15, 21, 27], "learningratemonitor": [15, 21], "leav": [40, 46], "left": 33, "len": [0, 11, 21, 23], "length": [0, 7, 11, 21, 24], "less": [7, 11], "let": [7, 11, 16, 21], "level": 5, "leverag": 52, "lf": 51, "lfmult": [11, 20, 21], "lfmult1": [20, 21], "licencearea": 0, "licens": 51, "lienen": 51, "lighn": 51, "lightn": [3, 7, 11, 15, 21, 42, 43, 52], "lightningdatamodul": [7, 11], "lightningmodul": [15, 21], "like": [11, 15, 21, 27, 51], "line": 51, "linear": [1, 7, 11, 20, 21], "linguist": 0, "link": [9, 11, 15, 21, 40, 47, 52], "list": [3, 7, 8, 9, 11, 12, 13, 14, 15, 16, 21, 28, 40, 42, 43, 44, 45, 46], "list2tupl": [11, 28], "list_b": [20, 21], "list_data": [11, 28], "list_h_emb": [11, 16, 21], "list_r_emb": [11, 16, 21], "list_t_emb": [11, 16, 21], "list_vec": [20, 21], "list_w": [20, 21], "litcqd": 51, "litdatamodul": [7, 11], "liter": 51, "litmodel": [7, 11], "lives_in": 33, "ll": [11, 27], "llm": 6, "lm_head": [11, 27], "ln_1": 27, "ln_2": 27, "load": [6, 7, 10, 11, 28, 29, 32, 33, 39, 42, 43, 47, 48], "load_data": [7, 11], "load_json": [11, 39], "load_model": [11, 39], "load_model_ensembl": [11, 39], "load_numpi": [11, 39], "load_numpy_ndarrai": 33, "load_pickl": [11, 33, 39], "load_queri": [11, 28], "load_queries_and_answ": [11, 28], "load_term_map": [11, 39, 42], "load_with_panda": 33, "loadsavetodisk": [29, 32], "local": 51, "local_rank": [3, 7, 11, 46], "localhost": [11, 13, 51], "locat": [11, 13, 51, 52], "location_of": 51, "log": [15, 21], "logger": [11, 15, 21, 27], "logic": [7, 11, 28], "logist": 1, "logit": [11, 13], "longtensor": [3, 5, 7, 11, 13, 15, 16, 17, 18, 21, 23, 25, 27], "look": 51, "loop": [11, 15, 16, 20, 21, 46], "loss": [5, 11, 14, 15, 21, 27, 45, 48], "loss_func": 46, "loss_funct": [11, 15, 21, 27, 45], "loss_histori": [11, 15, 19, 21, 23, 46], "lr": [4, 6, 11, 13, 14, 15, 21, 51], "lr_schedul": [15, 21], "lr_scheduler_config": [15, 21], "lu": 51, "m": [7, 11, 16, 20, 21, 51], "machin": 51, "made": [11, 15, 16, 17, 21, 22, 24, 27], "mai": 52, "main": [1, 27, 33, 36, 37, 38, 51, 52], "mainli": 51, "maintain": 51, "make": [7, 11, 27], "make_iterable_verbos": [40, 46], "male": 51, "mani": [7, 11, 15, 21], "manifestation_of": 51, "manner": 51, "manual": [11, 15, 21, 27, 47], "manuscript": 51, "map": [6, 7, 11, 33, 41, 42, 43, 46], "mapping_from_first_two_cols_to_third": [11, 41], "margin": [11, 21, 25], "marri": 51, "master": 27, "math": [11, 16, 21], "mathbb": [11, 16, 21], "matric": 5, "matrix": [11, 16, 20, 21], "max": 1, "max_ans_num": [11, 28], "max_available_gpu_memori": 44, "max_epoch": 5, "max_length_subword_token": [11, 12, 15, 21], "max_new_token": [11, 27], "max_num_of_class": [7, 11], "maxim": [14, 21], "maxsiz": [11, 13], "mb": [15, 21], "mean": [1, 5, 11, 15, 21, 27, 40, 42, 43, 52], "media": 51, "mem_of_model": [11, 15, 19, 21], "memmap": [11, 42, 43], "memori": [10, 11, 15, 21, 28, 29, 30, 31, 39, 42, 43, 52], "method": [5, 7, 11, 15, 21, 28], "metric": [11, 15, 21, 27, 52], "metric_to_track": [15, 21], "metric_v": [15, 21], "mfu": 27, "michel": 51, "might": [15, 21], "min": [1, 11, 13, 51], "min_unique_val_per_column": 1, "mind": 52, "mini": [3, 5, 6, 7, 11, 45], "minradiu": 0, "miss": [11, 13, 40, 47], "mit": 51, "mkdir": [0, 1], "mlp": 27, "mlr": 51, "mode": [3, 10, 11, 15, 16, 17, 21, 22, 24, 27, 28], "model": [1, 3, 5, 6, 7, 8, 9, 10, 11, 13, 38, 39, 40, 42, 43, 44, 45, 46, 47], "model_kwarg": [11, 21, 23], "model_nam": [3, 4, 11, 13, 39], "model_parallel": [11, 42, 43, 52], "model_typ": 27, "modeling_gpt2": 27, "modifi": [7, 10, 11], "modin": 51, "modul": [11, 21], "monitor": [15, 21], "month": 51, "more": [7, 11, 15, 21, 51, 52], "moreov": [51, 52], "most": [11, 27, 39, 51, 52], "moussallem": 51, "move": [1, 4, 7, 11], "move_data_to_devic": [7, 11], "mrr": [11, 42, 43, 51, 52], "mrr_updated_ensemble_model": 5, "multi": [7, 11, 15, 21, 25, 27, 39, 42, 43, 45, 51], "multi_hop_query_answ": 51, "multiclassclassificationdataset": [7, 11], "multilabeldataset": [7, 11], "multipl": [7, 11, 15, 16, 20, 21, 26, 27, 52], "multipli": [11, 16, 20, 21], "multivector": [11, 16, 21], "mush": 5, "must": [7, 11, 15, 16, 17, 21, 22, 24, 27, 33, 52], "mutagenesi": 51, "mv": [0, 1, 52], "mxn": [11, 18, 21], "mylightningmodul": [15, 21], "n": [0, 1, 3, 7, 11, 13, 16, 18, 20, 21, 51, 52], "n3": 51, "n_embd": 27, "n_head": 27, "n_layer": [20, 21, 27], "na": 0, "name": [0, 3, 6, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 33, 39, 51, 52], "named_children": [11, 19], "namespac": [6, 11, 39, 51], "nccl_p2p_disabl": 51, "ndarrai": [7, 9, 11, 13, 15, 21, 25, 33, 39, 41], "ndim": 27, "nebula": 51, "necessari": [7, 10, 11, 15, 21, 51, 52], "ned": 3, "need": [7, 11, 13, 14, 15, 21, 42, 43], "neg": [6, 7, 11, 13, 18, 21], "neg_norm": [11, 13], "neg_ratio": [6, 7, 11], "neg_sampl": [7, 11], "neg_sample_ratio": [7, 11, 13], "negat": [11, 13], "negnorm": [11, 13], "negsampl": [6, 51], "negsampledataset": [7, 11], "nest": [7, 11, 13, 15, 16, 17, 21, 22, 24, 27, 28], "net": 51, "network": [11, 15, 16, 17, 20, 21, 22, 24, 27], "neural": [11, 15, 16, 17, 20, 21, 22, 24, 25, 27, 51, 52], "neural_search": 38, "neuralsearch": 38, "neurip": [11, 21, 25], "new": [7, 11], "new_i": [7, 11], "newli": 51, "next": [11, 15, 21, 27], "ngomo": 51, "ngonga": 51, "nn": [7, 11, 15, 16, 17, 20, 21, 22, 24, 27, 42, 43, 46], "nnode": 51, "node": [7, 11, 45, 51], "node_rank": 51, "nodetrain": 46, "nois": 52, "noisi": [29, 30, 33], "non": [7, 11, 27], "non_embed": 27, "none": [0, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 37, 38, 39, 40, 42, 43, 44, 45, 46], "nor": [7, 11], "norm": [11, 13, 21, 24, 51], "norm_fc1": [11, 17, 21, 22], "normal": [4, 6, 11, 15, 21, 23, 24, 27, 39], "normalize_head_entity_embed": [11, 15, 21], "normalize_relation_embed": [11, 15, 21], "normalize_tail_entity_embed": [11, 15, 21], "normalizer_class": [11, 15, 21], "northern_europ": 51, "note": [10, 11, 21, 23], "nov": 51, "now": 51, "np": [7, 11], "nproc_per_nod": 51, "nt": [0, 1, 51], "num": [11, 39], "num_bpe_ent": [7, 11, 12], "num_class": [7, 11], "num_cor": 6, "num_datapoint": [7, 11], "num_ent": [7, 9, 11, 12, 15, 18, 21, 23, 33, 40], "num_epoch": [1, 3, 4, 5, 6, 10, 46, 51, 52], "num_folds_for_cv": [6, 52], "num_of_data_point": [7, 11], "num_of_epoch": 5, "num_of_output_channel": [6, 11, 15, 21], "num_param": 4, "num_quantil": 1, "num_rel": [7, 9, 11, 12, 15, 21, 33], "num_sampl": [20, 21], "num_token": [11, 12, 15, 21], "num_work": [7, 11, 13], "number": [5, 6, 7, 11, 13, 15, 16, 20, 21, 27], "numer": 51, "numpi": [7, 9, 11, 13, 15, 21, 25, 33, 39, 41, 42, 43], "numpy_data_type_chang": [11, 39], "nvidia": 52, "nxm": [11, 18, 21], "o_1": [11, 21, 22], "o_2": [11, 21, 22], "object": [0, 6, 7, 9, 10, 11, 14, 21, 33, 39], "objectproperti": 51, "obtain": [7, 11, 42, 43, 52], "octonion": [11, 21, 51], "octonion_mul": [21, 22], "octonion_mul_norm": [21, 22], "octonion_norm": [11, 21, 22], "offici": 27, "often": [15, 21, 52], "oj": [11, 18, 21], "omult": [11, 21, 22, 51, 52], "on_epoch_end": 5, "on_fit_end": [3, 5], "on_fit_start": [3, 5], "on_init_end": 3, "on_init_start": 3, "on_train_batch_end": [3, 5], "on_train_batch_start": 5, "on_train_epoch_end": [3, 5, 15, 21], "onc": [7, 11], "one": [7, 11, 15, 21, 48, 51, 52], "onevsalldataset": [7, 11], "onevssampl": [7, 11], "onli": [0, 6, 7, 10, 11, 15, 21, 27, 33, 51], "only_scor": [11, 13], "ontologi": 51, "openai": 27, "openreview": 51, "oper": [6, 11, 13, 27], "opt1": [11, 15, 21, 27], "opt2": [11, 15, 21, 27], "optim": [6, 11, 13, 14, 15, 19, 21, 27, 45, 46, 51], "optimizer_nam": [11, 15, 21], "optimizer_step": [15, 21], "option": [7, 11, 14, 15, 21, 27], "oral": [7, 11, 13], "order": [11, 13, 14, 21], "ordered_bpe_ent": [7, 9, 11, 12, 15, 21], "ordered_shaped_bpe_ent": [7, 11], "ordered_shaped_bpe_token": 12, "org": [7, 11, 18, 21, 25, 39, 42, 43, 51], "organ": 51, "orignal_train": 52, "osi": 51, "other": [7, 11, 15, 16, 17, 21, 22, 24, 27, 51], "otin": [11, 13], "our": [11, 16, 21, 37, 51, 52], "out": [7, 11, 15, 21, 27], "outgo": [11, 28], "outlier": 46, "output": [5, 13, 15, 16, 20, 27, 45], "outsid": [33, 41], "over": [6, 11, 13, 14, 20, 21], "overrid": [7, 11, 15, 21], "override_arg": 27, "overwrit": [7, 11], "owl": [0, 51], "p": [6, 11, 16, 21, 39, 51], "packag": [47, 51], "pad": 12, "page": 51, "pair": [6, 11, 15, 21], "panda": [1, 6, 11, 29, 30, 33, 39, 51], "pandas_dataframe_index": 33, "paper": [11, 20, 21, 25, 52], "parallel": [11, 20, 21, 42, 43, 46, 51], "param": [3, 6, 9, 11, 13, 14, 15, 17, 21, 26, 27, 33, 39, 40, 41], "param_ensembl": 3, "param_init": [11, 15, 21], "paramet": [6, 7, 8, 9, 14, 15, 17, 19, 20, 22, 24, 25, 27, 39, 45, 51], "paramref": [7, 11, 15, 21], "paramst": [14, 21], "parent": [11, 15, 16, 17, 21, 22, 24, 27], "parquet": [0, 52], "pars": 0, "parsed_sort": 0, "part": [7, 11, 20, 21], "particular": 0, "pass": [6, 7, 11, 15, 18, 21, 27, 28], "path": [3, 5, 6, 7, 11, 13, 28, 39, 51], "path_dataset_fold": [1, 4, 52], "path_entity_embed": 1, "path_experiment_fold": 51, "path_for_deseri": 12, "path_for_seri": [11, 12, 39], "path_kg": 1, "path_model": 51, "path_of_experiment_fold": [11, 39], "path_of_pretrained_model_dir": 3, "path_single_kg": [6, 12, 51], "path_tabular_csv": 1, "path_to_store_single_run": [6, 51], "pattern": [7, 11, 15, 21], "pd": [1, 33], "pdf": [11, 21, 25, 51], "peak": 27, "peopl": 51, "per": [7, 11, 15, 16, 17, 21, 22, 24, 27], "perform": [5, 11, 14, 16, 20, 21, 26, 42, 43, 51], "person": 51, "pertain": 1, "perturb": 5, "php": [11, 18, 21], "physic": [11, 21, 25], "physiologic_funct": 51, "pip": 51, "pip3": [1, 51], "pl": [33, 51], "pl_modul": 5, "pleas": [51, 52], "plugin": 52, "pmid": 0, "pmlr": 51, "point": [3, 7, 11, 20, 21], "polar": [6, 33, 51], "polars_dataframe_index": 33, "poly_nn": [11, 20, 21], "polynom": [11, 20, 21], "polynomi": [11, 20, 21], "pop": [11, 20, 21], "popular": 51, "port": [11, 13], "posit": [7, 11, 15, 21, 27, 40, 46], "possibl": [7, 11, 21, 22, 24], "pp": [11, 16, 21], "ppe": 6, "pq": [4, 11, 16, 21], "practition": 51, "pre": [11, 13, 51], "pre_trained_kg": [11, 39, 51], "precis": [15, 21, 52], "predict": [7, 9, 11, 13, 15, 21, 25, 27, 40, 47, 52], "predict_dataload": [7, 11, 15, 21], "predict_missing_head_ent": [11, 13], "predict_missing_rel": [11, 13], "predict_missing_tail_ent": [11, 13], "predict_topk": [11, 13, 51], "predictor": [11, 15, 21], "prepar": [1, 7, 11, 15, 21], "prepare_data": [7, 11, 15, 21], "prepare_data_per_nod": [7, 11], "preprocess": [10, 11, 29, 33, 48, 51], "preprocess_with_byte_pair_encod": [29, 30], "preprocess_with_byte_pair_encoding_with_pad": [29, 30], "preprocess_with_panda": [29, 30], "preprocess_with_polar": [29, 30], "preprocesses_input_arg": 41, "preprocesskg": [29, 30], "present": 52, "press": 51, "pretrain": [6, 11, 13, 42, 43, 47], "print": [0, 11, 16, 21, 51], "print_into": [11, 39], "printcallback": 5, "privat": [11, 28], "problem": [7, 11, 51], "procedur": 51, "proceed": [11, 21, 25, 51], "process": [6, 7, 11, 15, 21, 33, 45], "prod": [11, 13], "produc": [11, 15, 21, 27, 46], "product": [5, 11, 16, 20, 21], "progress": [11, 15, 21, 27], "project": [11, 39, 51], "properti": [3, 11, 12, 14, 19, 21], "protect": 0, "prov": 0, "provid": [6, 7, 11, 42, 43, 51], "pseudo": 52, "pseudolabellingcallback": 5, "pt": [11, 39], "publish": 51, "puerto_rico": 51, "pull": 51, "purl": 0, "put": 45, "pwd": 51, "py": [1, 27, 51, 52], "pyarrow": 0, "pyke": [11, 21, 25], "pykeen": [6, 11, 21, 23, 51], "pykeen_complex": [11, 21, 23], "pykeen_cp": [11, 21, 23], "pykeen_distmult": [11, 21, 23], "pykeen_hol": [11, 21, 23], "pykeen_model": [21, 51], "pykeen_model_kwarg": 6, "pykeen_mur": [11, 21, 23], "pykeen_qu": [11, 21, 23], "pykeenkg": [11, 21, 23], "pytest": 51, "python": [1, 51, 52], "pytorch": [3, 7, 11, 13, 15, 17, 21, 27, 39, 42, 43, 51, 52], "pytorch_lightn": [7, 11, 37], "pytorchlightn": 51, "q": [5, 6, 11, 16, 21, 38, 51], "q_1": [11, 21, 24, 26], "q_2": [11, 21, 24, 26], "qdrant": 47, "qdrant_client": 38, "qdrant_storag": 51, "qmult": [1, 11, 21, 24, 51, 52], "qmult_entity_embed": 1, "qq": [11, 16, 21], "qualiti": 52, "quaternion": [11, 18, 21, 26, 51], "quaternion_mul": [21, 26], "quaternion_mul_with_unit_norm": [21, 24], "quaternion_multiplication_followed_by_inner_product": [11, 21, 24], "quaternion_norm": [11, 21, 24], "queri": [0, 11, 13, 28, 39, 47], "query_gener": [11, 51], "query_nam": [11, 28], "query_name_to_struct": [11, 28], "query_scor": 51, "query_struct": [11, 28], "query_structur": [11, 28], "query_typ": [11, 13, 28, 51], "querygener": [11, 28], "question": 51, "quit": [11, 16, 21], "r": [0, 1, 7, 11, 12, 13, 16, 20, 21, 22, 23, 24, 25, 48, 51], "r0": [11, 16, 21], "r_0": [11, 16, 21], "r_1": [11, 18, 21], "r_2": [11, 18, 21], "r_3": [11, 18, 21], "r_4": [11, 18, 21], "r_5": [11, 18, 21], "r_6": [11, 18, 21], "r_7": [11, 18, 21], "r_8": [11, 18, 21], "r_i": [11, 16, 21], "r_j": [11, 16, 21], "r_k": [11, 16, 21], "random": 6, "random_predict": [11, 39], "random_se": 6, "randomli": [5, 11, 39], "rang": [11, 16, 20, 21, 33, 41, 51], "rank": [11, 13, 40, 42, 43, 51, 52], "rate": [5, 6, 7, 11, 15, 21], "ratio": [5, 6, 7, 11], "raw": 52, "raw_test_set": 9, "raw_train_set": 9, "raw_valid_set": 9, "rdf": [0, 1, 51], "rdflib": [6, 51], "rdzv_backend": 51, "rdzv_endpoint": 51, "rdzv_id": 51, "re": [11, 16, 21, 24], "re_vocab": [8, 9, 40], "read": [0, 6, 10, 11, 29, 30, 31, 33, 42, 43, 51, 52], "read_csv": [0, 1], "read_from_disk": [29, 33, 51], "read_from_triple_stor": 33, "read_only_few": [6, 12, 33], "read_or_load_kg": [11, 39], "read_preprocess_save_load_kg": [11, 51], "read_with_panda": 33, "read_with_polar": 33, "readfromdisk": [29, 31], "readthedoc": [11, 42, 43, 52], "real": [11, 16, 21, 51], "realli": 51, "reason": 51, "recent": 51, "reciprioc": [29, 30], "reciproc": [9, 11, 33, 42, 43, 52], "recommend": [15, 21], "reduc": 52, "reducelronplateau": [15, 21], "reevalu": [14, 21], "refactor": [11, 13], "refer": [7, 11, 27, 51, 52], "regist": [11, 15, 16, 17, 21, 22, 24, 27], "regular": [11, 15, 16, 17, 21, 22, 24, 27, 52], "reject": 5, "rel2id": [11, 28], "rel_ent_emb": [11, 17, 21, 22, 24, 25], "relat": [3, 5, 6, 7, 10, 11, 13, 16, 20, 21, 22, 23, 24, 25, 33, 41, 51], "relation_embed": [11, 16, 18, 20, 21, 23, 24], "relation_idx": [7, 11, 46], "relation_to_idx": [7, 11, 12], "relations_str": 12, "releas": 27, "reli": [51, 52], "reload": [7, 11, 15, 21], "reload_dataloaders_every_n_epoch": [7, 11, 15, 21], "reload_dataset": [7, 11], "relu": [11, 15, 16, 17, 21, 22, 24, 27], "remov": [1, 29, 30, 51], "renam": [1, 11, 39], "renzhong": 51, "replac": [5, 33], "repo": 0, "report": [5, 9, 10, 11, 42, 43, 47], "repositori": [1, 51], "repres": [7, 11, 15, 16, 17, 20, 21, 22, 24, 27], "represent": [3, 6, 7, 11, 13, 21, 24, 39, 51], "request": [7, 11], "requir": [1, 7, 10, 11, 15, 21, 27, 52], "requires_grad_for_interact": [11, 16, 21], "research": [11, 39, 51, 52], "reshap": [11, 21, 23], "resid_dropout": 27, "residu": [11, 17, 21], "residual_convolut": [11, 17, 21, 22, 24], "resourc": 0, "respect": [11, 42, 43, 52], "rest": 51, "result": [7, 11, 16, 21, 33, 51, 52], "retrain": [10, 11, 13], "retriev": [7, 11, 16, 21, 23], "retrieve_embed": 38, "return": [7, 9, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 39, 40, 41, 42, 43, 45, 46], "return_multi_hop_query_result": [11, 13], "rk": [11, 16, 21], "rm": 51, "root": [20, 21, 38], "rp": [11, 16, 21], "rq": [11, 16, 21], "rtype": [3, 5, 10, 11, 16, 21, 29, 30, 31], "run": [14, 15, 21, 35, 51], "running_model_state_dict": 5, "runtim": [4, 10, 11, 52], "s0": [11, 16, 21], "s1": [11, 16, 21, 51], "s2": [11, 16, 21], "s3": [11, 16, 21], "s4": [11, 16, 21], "s5": [11, 16, 21], "safe": [7, 11], "same": [0, 10, 11, 16, 21], "samea": 0, "sampl": [6, 7, 11, 13, 15, 18, 21], "sample_count": 3, "sample_ent": 3, "sample_rel": 3, "sample_triples_ratio": [6, 12, 33], "sampler": [7, 11, 15, 21], "saniti": 41, "sanity_check": [11, 51], "sanity_checking_with_argu": 34, "satisfi": [14, 21], "save": [3, 7, 10, 11, 28, 29, 32, 39], "save_checkpoint": 3, "save_checkpoint_model": [11, 39], "save_embed": [11, 39], "save_embeddings_as_csv": [1, 6, 11, 39], "save_experi": 4, "save_load_disk": [29, 51], "save_model_at_every_epoch": 6, "save_numpy_ndarrai": [11, 33, 39], "save_path": [11, 28], "save_pickl": [11, 33, 39], "save_queri": [11, 28], "save_queries_and_answ": [11, 28], "save_trained_model": [10, 11], "scalar": [11, 16, 21], "scalar_batch_nn": [11, 20, 21], "scale": [11, 16, 21, 47, 51], "scaler": [5, 46], "schedul": [15, 21], "score": [3, 6, 11, 13, 16, 17, 18, 20, 21, 22, 23, 24, 25, 39, 42, 43, 51], "score_func": [20, 21], "score_t": [11, 21, 23], "scoring_techniqu": [4, 6, 7, 11, 51, 52], "script": [4, 11, 51], "search": 38, "search_embed": 38, "second": [11, 15, 20, 21], "section": [7, 11, 15, 21], "sed": 0, "see": [1, 7, 11, 15, 21, 39, 51, 52], "seed": [6, 7, 10, 11, 28], "seed_model": [11, 19], "select": [3, 11, 13, 16, 21, 33, 45], "select_model": [11, 39], "selected_optim": [11, 15, 21], "self": [7, 11, 15, 16, 17, 21, 22, 23, 24, 27, 33, 42, 43, 52], "semant": 51, "send": [10, 11], "separ": [6, 12, 33, 52], "seq": 5, "sequenc": [5, 11, 15, 21, 27], "sequential_vocabulary_construct": [29, 30], "seri": 51, "serial": [10, 11, 29, 30], "serv": 35, "set": [3, 7, 11, 13, 14, 15, 21, 28, 51], "set_global_se": [11, 28], "set_model_eval_mod": 3, "set_model_train_mod": 3, "setup": [7, 11, 15, 21, 42, 43], "setup_executor": [10, 11], "shallom": [11, 21, 25, 51, 52], "shallow": [11, 21, 25, 51], "shape": [3, 11, 15, 16, 18, 21, 22, 24, 27], "shard": 51, "share": [7, 11, 13, 27, 51], "should": [4, 7, 11, 13, 14, 15, 16, 17, 21, 22, 24, 27], "shown": [15, 21], "sibl": 51, "sigma": [11, 20, 21], "sigma_": [11, 16, 21], "sigma_0": [11, 16, 21], "sigma_0t": [11, 16, 21], "sigma_p": [11, 16, 21], "sigma_pp": [11, 16, 21], "sigma_pq": [11, 16, 21], "sigma_pr": [11, 16, 21], "sigma_q": [11, 16, 21], "sigma_qq": [11, 16, 21], "sigma_qr": [11, 16, 21], "sigma_rr": [11, 16, 21], "sigmoid": [11, 13], "signal": 1, "similar": [15, 21, 51], "similarli": 51, "simpl": 6, "simpli": [15, 21, 27], "simultan": 52, "sinc": [7, 11, 51], "singl": [6, 7, 11, 14, 15, 21, 27, 28, 29, 30, 45, 51, 52], "single_hop_query_answ": [11, 13], "size": [6, 7, 11, 15, 16, 20, 21, 22, 24, 51], "skip": [7, 11, 15, 21, 27], "sko": 0, "slice": 6, "slice_dim": [11, 21, 23], "slice_s": [11, 21, 23], "small_ent_in": [11, 28], "small_ent_out": [11, 28], "smi": 52, "smooth": [7, 11], "snapshot": 0, "so": [7, 11, 27], "social": 51, "softwar": [5, 51], "some": [6, 11, 15, 21, 27], "some_other_st": [7, 11], "some_st": [7, 11], "someth": [7, 11, 15, 21, 27, 52], "sort": [11, 13], "sourc": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52], "southern_europ": 51, "space": [11, 20, 21], "sparql": 0, "sparql_endpoint": [6, 12, 34, 51], "special": [11, 15, 21, 27], "specif": [11, 15, 21, 27], "specifi": [7, 11, 14, 15, 21], "speedup": [7, 11], "split": [1, 7, 11, 15, 16, 21, 42, 43, 52], "springer": 51, "sqrt": [11, 21, 24], "squar": [1, 6], "src": 27, "stabl": [7, 11, 42, 43, 52], "stack": [11, 15, 16, 21], "stage": [7, 11], "standalon": 51, "standard": [11, 13, 40, 51, 52], "start": [3, 10, 11, 29, 30, 31, 40, 42, 43, 45, 51], "start_tim": [5, 10, 11], "startswith": 0, "stat": [10, 11], "state": [7, 11, 14, 15, 21, 51], "state_step": 14, "static": [3, 5, 11, 13, 15, 17, 21, 22, 24, 28], "static_func": [11, 21, 51], "static_funcs_train": [11, 51], "static_preprocess_func": [11, 51], "statist": [10, 11], "std": 1, "stefan": 51, "step": [11, 14, 15, 19, 21, 27, 48], "stmt": 51, "stochast": [5, 6], "stop": [11, 13, 15, 21], "storag": 51, "storage_path": [6, 11, 39, 42, 43, 52], "store": [5, 6, 7, 10, 11, 29, 30, 33, 39, 41, 46, 51, 52], "store_ensembl": 3, "str": [0, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 28, 33, 34, 38, 39, 42, 43, 44], "str_entity_or_rel": 3, "str_object": [11, 39], "str_predic": [11, 39], "str_subject": [11, 39], "str_to_bpe_entity_to_idx": 8, "strategi": [3, 7, 11], "strict": [15, 21], "string": [3, 6, 7, 11, 13, 29, 30, 39], "struct": [11, 28], "structur": [7, 11, 15, 16, 17, 21, 22, 24, 27], "style": [7, 11], "subclass": [7, 10, 11, 15, 16, 17, 21, 22, 24, 27], "subject": [0, 33], "submodul": [15, 16, 17, 22, 24, 27, 47], "subquery_scor": [11, 13], "subsampl": [7, 11], "substitut": [11, 13], "subtract": 27, "subword_unit": [7, 11], "sugeno": [11, 13], "sum": [7, 11, 16, 20, 21], "sum_": [11, 16, 20, 21, 24], "super": [7, 11, 15, 16, 17, 21, 22, 24, 27], "supervis": 52, "support": [7, 11, 15, 21, 27, 51], "sure": [11, 27], "swa": 6, "switch": [11, 15, 21, 27], "sy": [11, 13], "syntax": [0, 51], "system": [7, 11], "t": [7, 11, 12, 13, 14, 15, 16, 18, 20, 21, 23, 24, 25, 27, 48, 51], "t_0": [11, 16, 21], "t_conorm": [11, 13], "t_norm": [11, 13], "tabularpath": 1, "tail": [0, 6, 7, 11, 13, 21, 23, 24, 40, 51], "tail_ent": [3, 7, 11, 13], "tail_ent_emb": [11, 17, 21, 22, 24, 25], "take": [11, 16, 20, 21, 27, 40], "taken": [11, 16, 21], "target": [7, 11, 27, 46], "target_dim": [7, 11, 12], "target_entity_idx": [11, 16, 17, 21, 23, 24, 25], "task": [9, 40], "tconorm": [11, 13], "teammat": 0, "techniqu": [6, 11, 20, 21, 51, 52], "temperatur": [11, 27], "tens_1": [11, 13], "tens_2": [11, 13], "tensor": [3, 5, 7, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, 45], "tensor_t_norm": [11, 13], "tensorflow": 27, "tensorparallel": [11, 42, 43, 44], "term": [0, 11, 20, 21], "test": [6, 7, 9, 10, 11, 15, 21, 29, 30, 42, 43, 51, 52], "test_dataload": [7, 11, 15, 21], "test_epoch_end": [15, 21], "test_h1": 4, "test_h10": 4, "test_h3": 4, "test_mrr": 4, "test_path": [11, 28], "test_set": [7, 9, 11, 29, 31], "test_step": [15, 21], "text": [0, 11, 28], "than": [7, 11, 51, 52], "thei": 52, "them": [5, 7, 11, 14, 15, 16, 17, 21, 22, 24, 27], "thi": [4, 7, 11, 15, 16, 17, 20, 21, 22, 23, 24, 27, 33, 39, 51, 52], "thing": [11, 15, 21, 27, 51], "those": [14, 21], "three": [5, 11, 20, 21, 33, 51], "threshold": [11, 13], "through": [0, 51], "throw": 0, "thu": [15, 21], "tikhonov": 52, "time": [6, 10, 11, 27, 51], "timeit": [11, 33, 39, 41], "titl": 51, "tnorm": [11, 13, 51], "to_csv": 1, "to_df": 4, "to_parquet": 0, "todo": [7, 11, 13, 28, 39], "token": [3, 7, 11, 27], "too": [11, 15, 16, 17, 21, 22, 24, 27], "top": [11, 13], "top_ent": 51, "top_k": [11, 13, 27, 39, 51], "topk": [11, 13, 27, 51], "topk_ent": 51, "torch": [3, 5, 7, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 39, 42, 43, 45, 46], "torch_ordered_shaped_bpe_ent": [7, 11], "torch_train": [11, 42, 43, 51], "torch_trainer_ddp": [11, 42, 43, 51], "torchcputrain": 6, "torchddp": 51, "torchddptrain": [11, 42, 43, 46], "torchrun": 51, "torchtrain": [11, 42, 43, 45], "total": [7, 11, 51], "toward": 51, "toy_dataset_nam": 1, "tp_answer": [11, 28], "tpu": [7, 11, 15, 21, 27, 51], "track": [5, 51], "train": [0, 1, 3, 5, 6, 7, 10, 11, 13, 15, 16, 17, 21, 22, 24, 27, 28, 29, 30, 42, 43, 44, 45, 46, 47], "train1": 52, "train2": 52, "train_": 0, "train_data": [7, 11], "train_dataload": [7, 11, 15, 21, 45], "train_dataset_load": 46, "train_h1": 4, "train_h10": 4, "train_h3": 4, "train_indices_target": [7, 11], "train_k_vs_al": [11, 13], "train_load": 44, "train_mod": [11, 19], "train_mrr": 4, "train_ontologi": 0, "train_path": [11, 28], "train_set": [7, 9, 11, 29, 31, 33, 39], "train_set_idx": [7, 11, 41], "train_set_target": 12, "train_split": 52, "train_target": [7, 11], "train_target_indic": [7, 11, 12], "train_tripl": [11, 13], "train_val": 6, "train_val_test": [6, 51], "trainabl": 6, "trained_model": [9, 10, 11, 39], "trainer": [3, 5, 6, 7, 10, 11, 15, 21, 37, 39, 51], "training_epoch_mean": [15, 21], "training_step": [11, 15, 21, 27, 45], "training_step_output": [15, 21], "training_techniqu": [6, 12], "trans": [11, 21, 25, 51], "transfer": [7, 11], "transfer_batch_to_devic": [7, 11], "transform": [11, 21, 51], "translat": [11, 21, 25], "transpos": [11, 18, 21], "trapezoid": [20, 21], "tree": [11, 15, 16, 17, 21, 22, 24, 27], "tri": [7, 11, 15, 21], "tri_scor": [11, 20, 21], "triangular": [11, 16, 21], "trigonometr": [20, 21], "trilinear": [11, 20, 21], "tripl": [3, 5, 6, 7, 8, 9, 11, 12, 13, 20, 21, 22, 23, 24, 28, 29, 30, 33, 39, 40, 41, 51, 52], "triple_idx": [9, 40], "triple_scor": [11, 13], "triplepredictiondataset": [7, 11], "true": [0, 1, 3, 6, 7, 11, 13, 15, 16, 19, 21, 24, 27, 28, 39, 40, 46, 51], "tsang": 51, "tupl": [5, 7, 8, 14, 15, 16, 17, 21, 25, 26, 28, 33, 39, 40, 41, 42, 43, 44, 45], "tuple2list": [11, 28], "turtl": 51, "two": [5, 7, 11, 15, 16, 17, 20, 21, 51], "txt": [1, 6, 51, 52], "type": [0, 3, 5, 6, 7, 9, 11, 13, 39, 45, 46, 51], "u": [11, 20, 21, 51, 52], "uml": [51, 52], "under": [6, 11, 39, 51], "uniformli": 6, "union": [11, 13], "uniqu": [7, 11], "unit": [15, 21, 27], "unlabelled_s": 5, "unless": [7, 11, 15, 21], "unmap": [11, 28], "unmap_queri": [11, 28], "unnorm": [11, 13], "unzip": 51, "up": [15, 21], "upb": 51, "updat": [5, 10, 11, 15, 21, 45], "uri": [29, 30], "url": [3, 11, 13, 39, 51], "urlencod": 0, "us": [3, 6, 7, 11, 14, 15, 20, 21, 23, 27, 33, 45, 46, 51, 52], "usag": [6, 11, 13, 52], "usecol": 0, "user": 51, "usncesdistrictid": 0, "util": [7, 11, 15, 21, 27, 29, 42, 43, 46, 51], "v": [11, 13, 51], "v157": 51, "val_aswa": 5, "val_dataload": [7, 11, 15, 21], "val_h1": 4, "val_h10": 4, "val_h3": 4, "val_loss": [15, 21], "val_mrr": 4, "val_path": [11, 28], "val_running_model": 5, "valid": [5, 6, 7, 10, 11, 15, 21, 28, 29, 30, 34, 42, 43, 51, 52], "valid_set": [7, 9, 11, 29, 31], "validate_knowledge_graph": 34, "validation_step": [15, 21], "valu": [6, 11, 14, 15, 16, 17, 21, 24, 33], "value_count": 0, "variabl": [11, 13, 15, 16, 17, 21, 22, 24, 27], "variou": 9, "vec": [20, 21], "vectograph": 1, "vector": [6, 7, 11, 16, 20, 21, 24, 47], "verbos": [11, 39, 40, 46], "veri": [15, 21], "version": [11, 21, 23, 51], "via": [3, 7, 11, 13, 33, 51], "vineeth": 51, "virtual": 1, "vocab_prepar": 9, "vocab_s": 27, "vocab_to_idx": [11, 39], "vocab_to_parquet": [11, 39], "vocabulari": [29, 30], "volum": 51, "vtp_score": [11, 20, 21], "w": [11, 20, 21], "w3": [0, 51], "wai": [7, 11, 15, 16, 17, 21, 22, 24, 27], "wait": 9, "want": [11, 27, 51, 52], "warn": [15, 21, 51], "wasderivedfrom": 0, "watch": 52, "we": [0, 7, 10, 11, 16, 20, 21, 22, 23, 24, 27, 42, 43, 51, 52], "web": 51, "webservic": 47, "weight": [5, 6, 11, 20, 21, 23, 27, 39, 46], "weight_decai": [6, 11, 14, 15, 21, 27], "well": 51, "western_europ": 51, "wget": [0, 51], "wh": [11, 20, 21], "what": [7, 11, 14, 15, 21, 51], "when": [5, 7, 11, 14, 15, 16, 17, 21, 22, 24, 27], "where": [7, 11, 13, 16, 21, 29, 30, 51], "wherea": [15, 21], "whether": [11, 15, 16, 17, 21, 22, 24, 27], "which": [7, 11, 15, 21, 27], "while": 0, "who": 51, "whom": 51, "whose": [15, 21], "why": 51, "wide": 51, "wiebesiek": 51, "wikipageusestempl": 0, "wikipagewikilink": 0, "wip": 6, "wise": [11, 20, 21], "wish": [7, 11, 51], "within": [7, 11, 13], "within_ent": 8, "without": [7, 11, 15, 16, 20, 21, 51], "wk": [20, 21], "wn18rr": 52, "work": [7, 11, 15, 21, 51], "works_with": 33, "world": 51, "would": [11, 16, 21, 27, 52], "wr": [11, 20, 21], "wrap": [7, 11], "write": 51, "write_csv_from_model_parallel": [11, 39], "write_link": [11, 28], "write_report": [10, 11], "wt": [11, 20, 21], "www": [0, 51], "x": [1, 3, 4, 5, 7, 11, 13, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 33, 39, 48, 51], "x_": [11, 16, 21], "x_batch": [11, 19, 45], "x_i": [11, 21, 24], "x_iy_": [11, 16, 21], "x_jy_": [11, 16, 21], "x_ky_": [11, 16, 21], "x_valu": [11, 20, 21], "xavier_norm": 6, "xml": 51, "y": [1, 7, 11, 15, 21, 27, 48], "y_batch": [11, 15, 21, 27, 45], "y_i": [7, 11, 16, 21], "y_idx": [7, 11, 15, 21], "y_j": [11, 16, 21], "y_k": [11, 16, 21], "y_vec": [7, 11], "yager": [11, 13], "yago3": 52, "year": 51, "yet": [11, 16, 21, 24, 51], "yhat_batch": [11, 15, 21, 27], "yield": [7, 11], "you": [7, 11, 15, 16, 17, 21, 22, 24, 27, 51, 52], "your": [7, 11, 15, 16, 17, 21, 22, 24, 27, 52], "yourself": [7, 11, 15, 21], "z": [11, 15, 21, 27, 44, 46, 51], "zero": [11, 16, 21], "zip": [0, 51, 52]}, "titles": ["Downloading and Preprocessing DBpedia 2022-03 for Knowledge Graph Embeddings", "Knowledge Graph Embedding Boost on Tabular Data", "dicee.__main__", "dicee.abstracts", "dicee.analyse_experiments", "dicee.callbacks", "dicee.config", "dicee.dataset_classes", "dicee.eval_static_funcs", "dicee.evaluator", "dicee.executer", "dicee", "dicee.knowledge_graph", "dicee.knowledge_graph_embeddings", "dicee.models.adopt", "dicee.models.base_model", "dicee.models.clifford", "dicee.models.complex", "dicee.models.dualE", "dicee.models.ensemble", "dicee.models.function_space", "dicee.models", "dicee.models.octonion", "dicee.models.pykeen_models", "dicee.models.quaternion", "dicee.models.real", "dicee.models.static_funcs", "dicee.models.transformers", "dicee.query_generator", "dicee.read_preprocess_save_load_kg", "dicee.read_preprocess_save_load_kg.preprocess", "dicee.read_preprocess_save_load_kg.read_from_disk", "dicee.read_preprocess_save_load_kg.save_load_disk", "dicee.read_preprocess_save_load_kg.util", "dicee.sanity_checkers", "dicee.scripts", "dicee.scripts.index", "dicee.scripts.run", "dicee.scripts.serve", "dicee.static_funcs", "dicee.static_funcs_training", "dicee.static_preprocess_funcs", "dicee.trainer.dice_trainer", "dicee.trainer", "dicee.trainer.model_parallelism", "dicee.trainer.torch_trainer", "dicee.trainer.torch_trainer_ddp", "Welcome to DICE Embeddings!", "1vsAll Training Technique", "KvsAll Training Technique", "Negative Sampling Technique", "Dicee Manual", "Training"], "titleterms": {"03": 0, "10fold": 1, "1vsall": 48, "2022": 0, "__main__": 2, "abstract": 3, "adopt": 14, "all": 0, "an": 51, "analyse_experi": 4, "answer": 51, "attribut": [11, 38, 41], "avail": 52, "base_model": 15, "benchmark": 1, "binari": 1, "boost": 1, "california": 1, "callback": 5, "cite": 51, "class": [3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 38, 42, 43, 44, 45, 46], "classif": 1, "clifford": 16, "complex": [17, 51], "config": 6, "content": [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47], "coverag": 51, "creat": 51, "cv": 1, "data": 1, "databas": 51, "dataset": 1, "dataset_class": 7, "dbpedia": 0, "deploi": 51, "detail": 1, "dice": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51], "dice_train": 42, "docker": 51, "download": [0, 51], "dual": 18, "embed": [0, 1, 47, 51], "ensembl": 19, "eval_static_func": 8, "evalu": 9, "exampl": [33, 52], "execut": 10, "featur": 52, "file": 0, "filter": 0, "format": 52, "from": 51, "function": [4, 5, 7, 8, 11, 14, 21, 22, 24, 26, 33, 34, 36, 37, 38, 39, 40, 41, 42, 44, 46], "function_spac": 20, "graph": [0, 1, 51], "have": 0, "hous": 1, "how": 51, "http": 0, "index": 36, "input": [11, 18, 21, 52], "instal": [1, 51], "kg": 52, "kge": [1, 52], "knowledg": [0, 1, 51], "knowledge_graph": 12, "knowledge_graph_embed": 13, "kvsall": 49, "launch": 51, "learn": 51, "link": 51, "liter": 0, "load": 51, "manual": 51, "miss": 51, "model": [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 51, 52], "model_parallel": 44, "modul": [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46], "neg": 50, "octonion": 22, "ontologi": 0, "org": 0, "output": [11, 18, 21], "packag": [11, 21, 29, 43], "paramet": [3, 5, 10, 11, 13, 16, 21, 29, 30, 31, 33, 42, 43, 44], "predict": 51, "preprocess": [0, 30], "pretrain": 51, "properti": 0, "pykeen_model": 23, "qdrant": 51, "quaternion": 24, "queri": 51, "query_gener": 28, "read_from_disk": 31, "read_preprocess_save_load_kg": [29, 30, 31, 32, 33], "real": 25, "regress": 1, "relat": 0, "remov": 0, "report": 51, "result": 1, "retriev": 51, "return": [3, 11, 13, 33], "run": 37, "sampl": 50, "sanity_check": 34, "save_load_disk": 32, "script": [35, 36, 37, 38], "search": 51, "serv": 38, "shard": 52, "sourc": 51, "start": 0, "static_func": [26, 39], "static_funcs_train": 40, "static_preprocess_func": 41, "step": 33, "submodul": [11, 21, 29, 35, 43], "tabular": 1, "techniqu": [48, 49, 50], "templat": 0, "todo": 1, "torch_train": 45, "torch_trainer_ddp": 46, "train": [48, 49, 51, 52], "trainer": [42, 43, 44, 45, 46], "transform": 27, "tripl": 0, "tupl": [3, 11, 13], "ues": 0, "usag": [1, 33], "util": 33, "vector": 51, "webservic": 51, "welcom": 47, "wiki": 0, "wikipag": 0, "xmln": 0}}) \ No newline at end of file