-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsp800_90b_compression.py
executable file
·160 lines (125 loc) · 4.48 KB
/
sp800_90b_compression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#!/usr/bin/env python
# sp_800_90b_compression.py
#
from __future__ import print_function
from __future__ import division
import math
from common_functions import *
def bits_to_int(bits):
theint = 0
for i in range(len(bits)):
theint = (theint << 1) + bits[i]
return theint
def F(z,t,u):
if u < t:
return (z**2.0)*((1.0-z)**(u-1.0))
if u == t:
return z*((1.0-z)**(t-1.0))
# The equations in step 7 of 6.3.4 are downright misleading and do not work.
# This function more or less follows what NIST did in their code but it looks
# nothing like the equations in the spec.
def G(z, v, d, L):
g_sum = 0.0
st = [math.log(u, 2.0) * ((1.0-z)**(u-1.0)) for u in range((d+1), v+d+1)]
g_sum = v*z*z * sum([math.log(u, 2.0) * ((1.0-z)**(u-1.0)) for u in range(1,(d+1))])
g_sum += z*z * sum([(v-t-1) * st[t] for t in range(v-1)])
g_sum += z * sum(st)
return g_sum/v
def compression(bits,symbol_length=1,verbose=True, d=1000):
vprint(verbose,"COMPRESSION Test")
L = len(bits)
if symbol_length != 1:
vprint(verbose," Warning, Compression test treats data at 1 bit symbols. Setting symbol length to 1")
#vprint(verbose,bits)
vprint(verbose," Symbol Length 1")
vprint(verbose," Number of bits ",L)
# step 1
b = 6
blocks = L//b
s_prime = [0,]+[bits_to_int(bits[b*i:b*(i+1)]) for i in range(blocks)]
if blocks <= d:
vprint(verbose," Warning, not enough samples to run compression test need more than ",d)
min_entropy = 1.0
return(False,None,min_entropy)
vprint(verbose," Number of blocks ",blocks)
# Step 2
dict_data = s_prime[1:d+1]
v = blocks-d
test_data=s_prime[d+1:]
vprint(verbose," v ",v)
# Step 3
dictionary = [0 for i in range((2**b)+1)] # Make it 1 bigger and leave the zero element dangling
# so the indexes match the spec which uses 1 based arrays.
for i in range(1,d+1):
dictionary[s_prime[i]]=i
# Step 4
D = [0,]+[0 for i in range(v)]
for i in range(d+1,blocks+1):
#vprint(verbose," i = ",i,end="")
#vprint(verbose," s_prime[%d]=" % i,s_prime[i])
if dictionary[s_prime[i]] != 0:
#print ("D[i-d] = D[%d - %d] = D[%d]" % (i,d,i-d))
D[i-d] = i-dictionary[s_prime[i]]
dictionary[s_prime[i]] = i
if dictionary[s_prime[i]] == 0:
dictionary[s_prime[i]] = i
D[i-d] = i
# Step 5
x_sum = 0.0
for i in range(1,v+1):
#vprint(verbose," D[",i,"] = ",D[i], "log2(D[i])=",math.log(D[i],2))
x_sum += math.log(D[i],2)
x_bar = x_sum/v
vprint(verbose," x_bar ",x_bar)
c = 0.5907
s_sum = 0.0
for i in range(1,v+1):
s_sum += (math.log(D[i],2)**2)
s_sum = s_sum/(v-1.0)
s_sum = s_sum - (x_bar**2)
sigma_hat = c * math.sqrt(s_sum)
vprint(verbose," sigma_hat ",sigma_hat)
# Step 6
x_bar_prime = x_bar - ((2.576*sigma_hat)/math.sqrt(v))
vprint(verbose," x_bar_prime ",x_bar_prime)
# Step 7
p_min = 2.0 ** -b # binary search bounds
p_max = 1.0
p_mid = (p_min+p_max)/2.0
vprint(verbose," p_min ",p_min)
vprint(verbose," p_max ",p_max)
iterations = 1000
iteration = 0
found = False
while (iteration < iterations):
q = (1.0-p_mid)/((2.0**b)-1.0)
candidate = G(p_mid,v,d,L) + (((2.0**b)-1.0)*G(q,v,d,L))
if abs(candidate -x_bar_prime) < 0.00000000001:
found = True
break
elif candidate > x_bar_prime:
p_min = p_mid
p_mid = (p_min+p_max)/2.0
elif candidate < x_bar_prime:
p_max = p_mid
p_mid = (p_min+p_max)/2.0
iteration += 1
print(" p =",p_mid)
# Step 8
if found:
min_entropy = -math.log(p_mid,2)/b
vprint(verbose," min_entropy =",min_entropy)
return(False,None,min_entropy)
else:
min_entropy = 1.0
vprint(verbose," min_entropy = 1.0")
return(False,None,min_entropy)
if __name__ == "__main__":
bits = [1,0,0,0,1,1,1,0,
0,1,0,1,0,1,0,1,
1,1,0,0,1,1,0,0,
0,1,1,1,0,0,1,0,
1,0,1,0,1,1,1,0,
1,1,1,0,0,0,1,1]
(iid_assumption,T,min_entropy) = compression(bits,1,d=4)
vprint(verbose,"min_entropy = ",min_entropy)