-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg.py
266 lines (208 loc) · 9.7 KB
/
vgg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from __future__ import print_function
import keras
from keras.datasets import cifar10
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from keras import optimizers
import numpy as np
from keras.layers.core import Lambda
from keras import backend as K
from keras import regularizers
import dataset
import os
class cifar10vgg:
def __init__(self, train_path=None, train=True):
self.num_classes = 10
self.weight_decay = 0.0005
self.x_shape = [32,32,3]
self.model = self.build_model()
self.train_path = train_path
if train_path and os.path.isfile(train_path):
self.model.load_weights(train_path)
def build_model(self):
# Build the network of vgg for 10 classes with massive dropout and weight decay as described in the paper.
model = Sequential()
weight_decay = self.weight_decay
model.add(Conv2D(64, (3, 3), padding='same',
input_shape=self.x_shape,kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.3))
model.add(Conv2D(64, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(128, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(512,kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(self.num_classes))
model.add(Activation('softmax'))
return model
def predict(self,x,normalize=True,batch_size=50):
return self.model.predict(x,batch_size)
def train(self,model,x_train,x_test,y_train,y_test):
#training parameters
batch_size = 128
maxepoches = 250
learning_rate = 0.1
lr_decay = 1e-6
lrf = learning_rate
#data augmentation
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=15, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(x_train)
#optimization details
sgd = optimizers.SGD(lr=lrf, decay=lr_decay, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=['accuracy'])
# training process in a for loop with learning rate drop every 25 epoches.
gen = datagen.flow(x_train, y_train, batch_size=batch_size)
for epoch in range(1,maxepoches):
if epoch%25==0 and epoch>0:
lrf/=2
sgd = optimizers.SGD(lr=lrf, decay=lr_decay, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
historytemp = model.fit_generator(gen,
steps_per_epoch=x_train.shape[0] // batch_size,
epochs=epoch,
validation_data=(x_test, y_test),initial_epoch=epoch-1)
model.save_weights(self.train_path)
return model
import skimage
def rgbfocus(vae, sess, imgs):
gimgs = []
for img in imgs:
gimgs.append(skimage.color.rgb2grey(img/255.0))
gimgs[-1] = gimgs[-1].reshape((gimgs[-1].shape[0], gimgs[-1].shape[1], 1))
gimgs = np.array(gimgs)
focus = []
for i in range(0, imgs.shape[0], 1000):
print(i)
focus.extend(vae.get_focus(sess, gimgs[i:i+1000]))
focus = np.array(focus)
del gimgs
fimgs = []
for img, f in zip(imgs, focus):
fimg = np.zeros((img.shape[0], img.shape[1], 3))
for k in range(3):
fimg[:, :, k] = img[:, :, k] * f[:, :, 0]
fimgs.append(255.0 * fimg / np.max(fimg))
fimgs = np.array(fimgs)
return fimgs
if __name__ == '__main__':
### from kaggle
#labels = dataset.cifar10_read_label("../trainLabels.csv")
#idb = dataset.image_db("../train")
#idb.transform_label(lambda x: labels.i2n(x))
#x_train, y_train = idb.get_batch(idb.get_size('list'), mode='list', cmap='rgb')
#x_test, y_test = idb.get_batch(idb.get_size('test'), mode='test', cmap='rgb')
labels = dataset.cifar10_read_label('../trainLabels.csv')
idb = dataset.image_db('../train', train_portion=0.9)
idb.transform_label(lambda x: labels.i2n(x))
x_train, y_train = idb.get_batch(idb.get_size('train'), mode='train', cmap='rgb')
x_test, y_test = idb.get_batch(idb.get_size('test'), mode='test', cmap='rgb')
### TODO: get small batches + classify + put in csv
#idb_test = dataset.image_db("../test")
#x_test, y_test = idb_test.get_batch(idb_test.get_size('test'), mode='test', cmap='rgb')
### vae attention ###
import tensorflow as tf
from vae_build import Vae
sess = tf.InteractiveSession()
vae = Vae(name="2d_vae_0", in_size=[32, 32], \
cnvlf=[32, 32, 16], kernel_size=[[5,5], [5,5], [3, 3]], strides=[2, 2,2], \
d_cnvlf=[32, 32, 1], d_kernel_size=[[5,5], [5,5], [3, 3]],
d_strides=[2, 2, 2], \
nlatent=16, lr=0.001)
sess.run(vae.init)
vae.restore(sess)
x_train = rgbfocus(vae, sess, x_train)
x_test = rgbfocus(vae, sess, x_test)
### pull all dataset
# (x_train, y_train), (x_test, y_test) = cifar10.load_data()
# x_train = x_train.astype('float32')
# x_test = x_test.astype('float32')
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
### dataset with focus ###
# x_train_f = rgbfocus(vae, sess, x_train)
# x_test_f = rgbfocus(vae, sess, x_test)
"""
import matplotlib.pyplot as plt
pc, pn = 20, 5
fig, axs = plt.subplots(ncols=2, nrows=pn)
for i in range(pn):
axs[i][0].imshow(x_train[i+pc]/255.0)
axs[i][1].imshow(x_train_f[i+pc]/255.0)
plt.show()
"""
# name = None
# name = 'cifar10vgg16.h5'
# name = 'cifar10vgg16_focus.h5'
name = 'cifar10vgg16_focus1.h5py'
# model = cifar10vgg()
model = cifar10vgg(train_path=name)
model.train(model.model, x_train, x_test, y_train, y_test)
predicted_x = model.predict(x_test)
residuals = np.argmax(predicted_x,1)!=np.argmax(y_test,1)
loss = sum(residuals)/len(residuals)
print("the validation 0/1 loss is: ",loss)