-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgg_predict.py
44 lines (33 loc) · 1.41 KB
/
vgg_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from __future__ import print_function
import keras
import numpy as np
import pandas as pd
import os
from vgg import cifar10vgg
import dataset
BATCH_SIZE = 100
if __name__ == '__main__':
idb_test = dataset.image_db("../test")
labels = dataset.cifar10_read_label("../trainLabels.csv")
# idb_test.transform_label(lambda x: labels.i2n(x))
name = 'cifar10vgg16_focus.h5py'
model = cifar10vgg(train_path=name)
df = pd.DataFrame(columns=['id', 'label'])
# for i in range(0, idb_test.get_size('list'), BATCH_SIZE): # uncomment for full predict
for i in range(0, BATCH_SIZE, BATCH_SIZE): # uncomment for test predict
print(i)
x_test, y_test = idb_test.get_batch(BATCH_SIZE, mode='list', cmap='rgb')
x_test = x_test.astype('float32')
y_pred = model.predict(x_test)
# print(y_pred)
# print(map(lambda x: labels.n2s(x), np.argmax(y_pred, 1)))
for x, y in zip(y_test, map(lambda x: labels.n2s(x), np.argmax(y_pred, 1))):
df = df.append({'id':x, 'label':y}, ignore_index=True)
# y_test = keras.utils.to_categorical(y_test, 10)
# residuals = np.argmax(y_pred,1)!=np.argmax(y_test,1)
# loss = sum(residuals)/len(residuals)
# print("the validation 0/1 loss is: ",loss)
df.id = pd.to_numeric(df.id, errors='coerce')
df = df.sort_values(['id'], ascending=[1])
print(df)
df.to_csv('pred.csv', index=False)