-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathSimSpeed.R
123 lines (79 loc) · 3.83 KB
/
SimSpeed.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
## ----preliminaries,echo=FALSE,results='hide',cache=FALSE-----------------
library(knitr)
library(ggplot2)
opts_chunk$set(fig.align='center',fig.pos="tb",cache=TRUE)
## ----expsamp-------------------------------------------------------------
N <- 100000
n <- 9
## ----replicate-----------------------------------------------------------
set.seed(123)
system.time(resRepl <- replicate(N, mean(rexp(n))))
## ------------------------------------------------------------------------
str(resRepl)
## ----resLoop1------------------------------------------------------------
set.seed(123)
resLoop1 <- numeric(N) # preallocate the result of correct size
system.time(for (i in 1:N) resLoop1[i] <- mean(rexp(n)))
## ------------------------------------------------------------------------
all.equal(resRepl, resLoop1)
## ----resLoop2------------------------------------------------------------
set.seed(123)
resLoop2 <- numeric() # empty numeric vector
system.time(for (i in 1:N) resLoop2[i] <- mean(rexp(n)))
## ------------------------------------------------------------------------
all.equal(resLoop2, resRepl)
## ----resLoop3------------------------------------------------------------
set.seed(123)
resLoop3 <- NULL # empty list
system.time(for (i in 1:N) resLoop3 <- c(resLoop3, mean(rexp(n))))
str(resLoop3)
## ----matrixsim-----------------------------------------------------------
set.seed(123)
str(MM <- matrix(rexp(n*N), nr = n))
## ----matrixsim2----------------------------------------------------------
set.seed(123)
system.time(resColMeans <- colMeans(matrix(rexp(n*N), nr = n)))
## ------------------------------------------------------------------------
all.equal(resColMeans, resRepl)
## ----resApply------------------------------------------------------------
resApply <- apply(MM, 2, mean)
all.equal(resApply, resRepl)
## ----resApply2-----------------------------------------------------------
set.seed(123)
system.time(resApply <- apply(matrix(rexp(n * N), nr = n), 2, mean))
## ----sapply--------------------------------------------------------------
set.seed(123)
system.time(resSapply <- sapply(1:N, function(i) mean(rexp(n))))
## ----lapply--------------------------------------------------------------
set.seed(123)
str(unlist(lapply(1:N, function(i) mean(rexp(n)))))
## ------------------------------------------------------------------------
system.time(unlist(lapply(1:N, function(i) mean(rexp(n)))))
## ----vapply--------------------------------------------------------------
set.seed(123)
str(vapply(1:N, function(i) mean(rexp(n)), 1))
system.time(vapply(1:N, function(i) mean(rexp(n)), 1))
## ----librarybenchmark----------------------------------------------------
library(rbenchmark)
## ------------------------------------------------------------------------
fRepl <- function(n, N) replicate(N, mean(rexp(n)))
fLoopPre <- function(n, N) {
ans <- numeric(N)
for(i in seq_len(N)) ans[i] <- mean(rexp(n))
ans
}
fColMeans <- function(n, N) colMeans(matrix(rexp(n * N), nr=n))
fApply <- function(n, N) apply(matrix(rexp(n * N), nr=n), 2, mean)
fSapply <- function(n, N) sapply(integer(N), function(...) mean(rexp(n)))
fLapply <- function(n, N) unlist(lapply(integer(N), function(...) mean(rexp(n))))
fVapply <- function(n, N) vapply(integer(N), function(...) mean(rexp(n)), 1)
N <- 1000
benchmark(fColMeans(n,N),
fVapply(n, N),
fRepl(n, N),
fLoopPre(n, N),
fApply(n, N),
fSapply(n, N),
fLapply(n, N),
columns = c("test", "elapsed", "relative", "user.self", "sys.self"),
order = "elapsed")