forked from torch/cutorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinit.c
1152 lines (985 loc) · 32.6 KB
/
init.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "utils.h"
#include "luaT.h"
#include "THCGeneral.h"
#include "THCCachingAllocator.h"
#include "THCCachingHostAllocator.h"
#include "THCSleep.h"
#include "THCTensorRandom.h"
#include "THCHalf.h" // for CUDA_HALF_TENSOR
extern void cutorch_CudaByteStorage_init(lua_State* L);
extern void cutorch_CudaCharStorage_init(lua_State* L);
extern void cutorch_CudaShortStorage_init(lua_State* L);
extern void cutorch_CudaIntStorage_init(lua_State* L);
extern void cutorch_CudaLongStorage_init(lua_State* L);
extern void cutorch_CudaStorage_init(lua_State* L);
extern void cutorch_CudaDoubleStorage_init(lua_State* L);
#ifdef CUDA_HALF_TENSOR
extern void cutorch_CudaHalfStorage_init(lua_State* L);
#else
extern void cutorch_HalfStorageCopy_init(lua_State *L);
#endif
extern void cutorch_CudaByteTensor_init(lua_State* L);
extern void cutorch_CudaCharTensor_init(lua_State* L);
extern void cutorch_CudaShortTensor_init(lua_State* L);
extern void cutorch_CudaIntTensor_init(lua_State* L);
extern void cutorch_CudaLongTensor_init(lua_State* L);
extern void cutorch_CudaTensor_init(lua_State* L);
extern void cutorch_CudaDoubleTensor_init(lua_State* L);
#ifdef CUDA_HALF_TENSOR
extern void cutorch_CudaHalfTensor_init(lua_State* L);
#else
extern void cutorch_HalfTensorCopy_init(lua_State *L);
#endif
extern void cutorch_CudaByteTensorOperator_init(lua_State* L);
extern void cutorch_CudaCharTensorOperator_init(lua_State* L);
extern void cutorch_CudaShortTensorOperator_init(lua_State* L);
extern void cutorch_CudaIntTensorOperator_init(lua_State* L);
extern void cutorch_CudaLongTensorOperator_init(lua_State* L);
extern void cutorch_CudaTensorOperator_init(lua_State* L);
extern void cutorch_CudaDoubleTensorOperator_init(lua_State* L);
#ifdef CUDA_HALF_TENSOR
extern void cutorch_CudaHalfTensorOperator_init(lua_State* L);
#endif
extern void cutorch_CudaByteTensorMath_init(lua_State* L);
extern void cutorch_CudaCharTensorMath_init(lua_State* L);
extern void cutorch_CudaShortTensorMath_init(lua_State* L);
extern void cutorch_CudaIntTensorMath_init(lua_State* L);
extern void cutorch_CudaLongTensorMath_init(lua_State* L);
extern void cutorch_CudaTensorMath_init(lua_State* L);
extern void cutorch_CudaDoubleTensorMath_init(lua_State* L);
#ifdef CUDA_HALF_TENSOR
extern void cutorch_CudaHalfTensorMath_init(lua_State* L);
#endif
/*
Iteration utilities for lists of streams and lists of gpus with streams
*/
int checkAndCountListOfStreams(lua_State *L, THCState *state, int arg,
int device)
{
if (!lua_istable(L, arg)) {
THError("expecting array of device streams");
}
/* Push table to top */
lua_pushvalue(L, arg);
/* Check that all values in the table are numeric and in bounds */
int streams = 0;
lua_pushnil(L);
while (lua_next(L, -2)) {
if (!lua_isnumber(L, -2)) {
THError("expected array of streams, not table");
}
if (!lua_isnumber(L, -1)) {
THError("array of stream ids must contain numeric ids");
}
int streamId = (int) lua_tonumber(L, -1);
/* This will error out if the stream is not in bounds */
THCState_getDeviceStream(state, device, streamId);
++streams;
lua_pop(L, 1);
}
/* Pop table from top */
lua_pop(L, 1);
return streams;
}
void checkAndCountListOfGPUStreamPairs(lua_State *L, THCState *state, int arg,
int* gpus,
int* streams)
{
if (!lua_istable(L, arg)) {
THError("expecting table of gpu={streams...}");
}
/* Push table to top */
lua_pushvalue(L, arg);
/* Check that all values in the table are tables of numeric and in bounds */
*gpus = 0;
*streams = 0;
lua_pushnil(L);
while (lua_next(L, -2)) {
/* -2 is key (device), -1 is value, in the form device={streams...} */
if (!lua_isnumber(L, -2) || !lua_istable(L, -1)) {
THError("expecting table of gpu={streams...}");
}
int device = (int) lua_tonumber(L, -2) - 1;
/* Verify device is in range */
if (device < 0 || device >= THCState_getNumDevices(state)) {
THError("%d is not a device", device + 1);
}
/* Verify that the list is a list of streams */
*streams += checkAndCountListOfStreams(L, state, -1, device);
++(*gpus);
lua_pop(L, 1);
}
/* Pop table from top */
lua_pop(L, 1);
}
int createSingleDeviceEvents(lua_State *L, THCState *state, int arg,
int device, cudaEvent_t* event)
{
/* Push table to top */
lua_pushvalue(L, arg);
/* Record events */
lua_pushnil(L);
int i = 0;
while (lua_next(L, -2)) {
int streamId = (int) lua_tonumber(L, -1);
cudaStream_t streamWaitingOn =
THCState_getDeviceStream(state, device, streamId);
THCudaCheck(cudaEventCreateWithFlags(&event[i], cudaEventDisableTiming));
THCudaCheck(cudaEventRecord(event[i], streamWaitingOn));
lua_pop(L, 1);
i++;
}
/* Pop table from top */
lua_pop(L, 1);
return i;
}
void createMultiDeviceEvents(lua_State *L, THCState *state, int arg,
cudaEvent_t* events)
{
/* Push {gpu={streams...}} table */
lua_pushvalue(L, arg);
/* Create and record events per each GPU */
int gpu = 0;
lua_pushnil(L);
while (lua_next(L, -2)) {
int device = (int) lua_tonumber(L, -2) - 1;
THCudaCheck(cudaSetDevice(device));
events += createSingleDeviceEvents(L, state, -1, device, events);
++gpu;
lua_pop(L, 1);
}
/* Pop {gpu={streams...}} table */
lua_pop(L, 1);
}
void waitSingleDeviceEvents(lua_State *L, THCState *state, int arg,
int device, cudaEvent_t * event, int numEvents)
{
/* Push table to top */
lua_pushvalue(L, arg);
/* Then, wait on the events. Each stream is actually waiting on itself here
too, but that's harmless and isn't worth weeding out. */
lua_pushnil(L);
while (lua_next(L, -2)) {
int streamId = (int) lua_tonumber(L, -1);
cudaStream_t stream =
THCState_getDeviceStream(state, device, streamId);
for (int i = 0; i < numEvents; i++) {
THCudaCheck(cudaStreamWaitEvent(stream, event[i], 0));
}
lua_pop(L, 1);
}
/* Pop table from top */
lua_pop(L, 1);
}
void waitMultiDeviceEvents(lua_State *L, THCState *state, int arg,
cudaEvent_t* events, int streams)
{
/* Push {gpu={streams...}} table */
lua_pushvalue(L, arg);
/* Then, wait on the events. Each stream is actually waiting on itself here
too, but that's harmless and isn't worth weeding out. */
lua_pushnil(L);
while (lua_next(L, -2)) {
int device = (int) lua_tonumber(L, -2) - 1;
THCudaCheck(cudaSetDevice(device));
/* Push stream table */
lua_pushvalue(L, -1);
lua_pushnil(L);
while (lua_next(L, -2)) {
int streamId = (int) lua_tonumber(L, -1);
cudaStream_t stream =
THCState_getDeviceStream(state, device, streamId);
/* Each stream waits on all events */
for (int i = 0; i < streams; ++i) {
THCudaCheck(cudaStreamWaitEvent(stream, events[i], 0));
}
lua_pop(L, 1);
}
/* Pop stream table and GPU entry */
lua_pop(L, 2);
}
/* Pop {gpu={streams...}} table */
lua_pop(L, 1);
}
/* Synchronizes the host with respect to the current device */
static int cutorch_synchronize(lua_State *L)
{
THCudaCheck(cudaDeviceSynchronize());
return 0;
}
/* Synchronizes the host with respect to all devices */
static int cutorch_synchronizeAll(lua_State *L)
{
int prevDev = -1;
THCudaCheck(cudaGetDevice(&prevDev));
int devices = -1;
THCudaCheck(cudaGetDeviceCount(&devices));
for (int i = 0; i < devices; ++i) {
THCudaCheck(cudaSetDevice(i));
THCudaCheck(cudaDeviceSynchronize());
}
THCudaCheck(cudaSetDevice(prevDev));
return 0;
}
/*
Usage:
cutorch.reserveStreams(n)
Allocates n user streams for every device present. If fewer than
n streams are currently allocated, an additional number will be added.
If more than n streams are currently allocated, does nothing.
The default CUDA stream is assumed to be stream 0 and is always present;
the allocated streams are user streams on top of the CUDA streams
(thus, reserveStreams(1) will create 1 user stream with two being available,
the default stream 0 and the user stream 1, on each device).
*/
static int cutorch_reserveStreams(lua_State *L)
{
THCState *state = cutorch_getstate(L);
int numStreams = (int) luaL_checknumber(L, 1);
int nonBlocking = lua_toboolean(L, 2);
THCState_reserveStreams(state, numStreams, nonBlocking);
return 0;
}
/*
Usage:
cutorch.reserveBlasHandles(n)
Allocates n blasHandles for every device present. If fewer than
n blasHandles are currently allocated, an additional number will be added.
If more than n blasHandles are currently allocated, does nothing.
Unlike for streams, there is no default blasHandle.
*/
static int cutorch_reserveBlasHandles(lua_State *L)
{
THCState *state = cutorch_getstate(L);
int numHandles = (int) luaL_checknumber(L, 1);
THCState_reserveBlasHandles(state, numHandles);
return 0;
}
/*
Usage:
n = cutorch.getNumStreams()
Returns the number of user streams allocated for every device present.
By default, is 0.
*/
static int cutorch_getNumStreams(lua_State *L)
{
THCState *state = cutorch_getstate(L);
lua_pushnumber(L, THCState_getNumStreams(state));
return 1;
}
/*
Usage:
n = cutorch.getNumBlasHandles()
Returns the number of user blasHandles allocated for every device present.
By default, is 1.
*/
static int cutorch_getNumBlasHandles(lua_State *L)
{
THCState *state = cutorch_getstate(L);
lua_pushnumber(L, THCState_getNumBlasHandles(state));
return 1;
}
/*
Usage:
cutorch.setStream(n)
For all devices, sets the current user stream in use to the index
specified. e.g.,
---
cutorch.setDevice(1)
cutorch.setStream(3)
-- device 1 stream 3 in use here
cutorch.setDevice(2)
-- device 2 stream 3 in use here
---
0 is the default stream on the device.
*/
static int cutorch_setStream(lua_State *L)
{
THCState *state = cutorch_getstate(L);
int stream = (int) luaL_checknumber(L, 1);
THCState_setCurrentStreamIndex(state, stream);
return 0;
}
/*
Usage:
cutorch.setBlasHandle(n)
For all devices, sets the current blasHandle in use to the index
specified. e.g.,
---
cutorch.setDevice(1)
cutorch.setBlasHandle(3)
-- device 1 blasHandle 3 in use here
cutorch.setDevice(2)
-- device 2 blasHandle 3 in use here
---
*/
static int cutorch_setBlasHandle(lua_State *L)
{
THCState *state = cutorch_getstate(L);
int handle = (int) luaL_checknumber(L, 1);
THCState_setCurrentBlasHandleIndex(state, handle);
return 0;
}
/*
Usage:
n = cutorch.getStream()
Returns the current user stream for all devices in use (as previously
set via cutorch.setStream(n). 0 is the default stream on the device
and is its initial value.
*/
static int cutorch_getStream(lua_State *L)
{
THCState *state = cutorch_getstate(L);
lua_pushnumber(L, THCState_getCurrentStreamIndex(state));
return 1;
}
/*
Usage:
n = cutorch.getBlasHandle()
Returns the current blasHandle for all devices in use (as previously
set via cutorch.setBlasHandle(n).
*/
static int cutorch_getBlasHandle(lua_State *L)
{
THCState *state = cutorch_getstate(L);
lua_pushnumber(L, THCState_getCurrentBlasHandleIndex(state));
return 1;
}
/*
Usage:
cutorch.setDefaultStream()
Equivalent to cutorch.setStream(0).
*/
static int cutorch_setDefaultStream(lua_State *L)
{
THCState *state = cutorch_getstate(L);
THCState_setStream(state, NULL);
return 0;
}
/*
Usage:
cutorch.streamWaitFor(waiterStream, {waitForStream1, ..., waitForStreamN})
for streams on the current device. Creates a one-way barrier where
waiterStream waits for waitForStream1-N to reach the current point.
*/
static int cutorch_streamWaitFor(lua_State *L)
{
THCState *state = cutorch_getstate(L);
int curDev = -1;
THCudaCheck(cudaGetDevice(&curDev));
/* Check that the waiting stream is in bounds; this will error out if not */
int waitingId = (int) luaL_checknumber(L, 1);
cudaStream_t streamWaiting =
THCState_getDeviceStream(state, curDev, waitingId);
/* Validate the streams that we are waiting on */
int streams = checkAndCountListOfStreams(L, state, 2, curDev);
if (streams < 1) {
/* nothing to synchronize */
return 0;
}
/* One-way dependency; streamWaiting will wait for the list of streams to
wait on to complete execution of pending scheduled kernels/events */
cudaEvent_t * events = (cudaEvent_t*)malloc(sizeof(cudaEvent_t) * streams);
createSingleDeviceEvents(L, state, 2, curDev, events);
/* Then, wait on them */
for (int i = 0; i < streams; i++) {
THCudaCheck(cudaStreamWaitEvent(streamWaiting, events[i], 0));
THCudaCheck(cudaEventDestroy(events[i]));
}
free(events);
return 0;
}
/*
Usage:
cutorch.streamWaitForMultiDevice(gpuWaiter, streamWaiter,
{[gpu1]={stream1_1, ..., stream1_N},
[gpuK]={streamK_1, ..., streamK_M}})
with a specified GPU per each list of streams.
Stream (gpuWaiter, streamWaiter) will wait on all of the other streams
(gpu1, stream1_1), ..., (gpu1, stream1_N), ...,
(gpuK, streamK_1), ..., (gpuK, streamK_M) to complete fully, as a one-way
barrier only (only streamWaiter is blocked).
The streams to wait on are bucketed per device. Equivalent to
streamWaitFor() if only one GPU's streams are listed.
*/
static int cutorch_streamWaitForMultiDevice(lua_State *L)
{
THCState *state = cutorch_getstate(L);
int prevDev = -1;
THCudaCheck(cudaGetDevice(&prevDev));
/* Validate waiting (gpu, stream); this will error out if not */
int gpuWaiter = (int) luaL_checknumber(L, 1) - 1;
int streamWaiter = (int) luaL_checknumber(L, 2);
cudaStream_t streamWaiting =
THCState_getDeviceStream(state, gpuWaiter, streamWaiter);
/* Validate and count set of {gpu={streams...}} we are waiting on */
int gpus = 0;
int streams = 0;
checkAndCountListOfGPUStreamPairs(L, state, 3, &gpus, &streams);
if (streams < 1) {
/* nothing to synchronize together */
return 0;
}
/*
Events can only be recorded on the same device on which they are created.
-For each GPU, create and record event per each stream given
for that GPU.
-For (gpuWaiter, streamWaiter), wait on all of the above events.
*/
cudaEvent_t* events = (cudaEvent_t*) malloc(sizeof(cudaEvent_t) * streams);
/* First, create an event per GPU and record events for the specified stream
on that GPU */
createMultiDeviceEvents(L, state, 3, events);
/* Then, wait on the events */
THCudaCheck(cudaSetDevice(gpuWaiter));
for (int i = 0; i < streams; ++i) {
THCudaCheck(cudaStreamWaitEvent(streamWaiting, events[i], 0));
}
/* Clean up events */
for (int i = 0; i < streams; ++i) {
THCudaCheck(cudaEventDestroy(events[i]));
}
free(events);
THCudaCheck(cudaSetDevice(prevDev));
return 0;
}
/*
Usage:
cutorch.streamBarrier({stream1, stream2, ..., streamN})
applies to streams for the current device. Creates a N-way barrier
to synchronize all of the streams given
*/
static int cutorch_streamBarrier(lua_State *L)
{
THCState *state = cutorch_getstate(L);
int curDev = -1;
THCudaCheck(cudaGetDevice(&curDev));
int streams = checkAndCountListOfStreams(L, state, 1, curDev);
if (streams < 2) {
/* nothing to synchronize together */
return 0;
}
/* Multi-way dependency (barrier); all streams must complete execution
of pending scheduled kernels/events */
cudaEvent_t * events = (cudaEvent_t*)malloc(sizeof(cudaEvent_t) * streams);
/* First, create an event and record them for all streams */
int eventsCreated = createSingleDeviceEvents(L, state, 1, curDev, events);
/* Then, wait on the event. Each stream is actually waiting on itself here
too, but that's harmless and isn't worth weeding out. */
waitSingleDeviceEvents(L, state, 1, curDev, events, eventsCreated);
for (int i = 0; i < eventsCreated; i++)
THCudaCheck(cudaEventDestroy(events[i]));
free(events);
return 0;
}
/* usage:
cutorch.streamBarrierMultiDevice({[gpu1]={stream1_1, ..., stream1_N},
[gpuK]={streamK_1, ..., streamK_M}})
with a specified GPU per each list of streams.
Each stream (gpu1, stream1_1), ..., (gpu1, stream1_N), ...,
(gpuK, streamK_1), ..., (gpuK, streamK_M) will wait
for all others to complete fully.
Streams are bucketed per device. Equivalent to streamBarrier() if only
one GPU is specified.
*/
static int cutorch_streamBarrierMultiDevice(lua_State *L)
{
THCState *state = cutorch_getstate(L);
int prevDev = -1;
THCudaCheck(cudaGetDevice(&prevDev));
/* Validate and count set of {gpu={streams...}} that are mutually waiting */
int gpus = 0;
int streams = 0;
checkAndCountListOfGPUStreamPairs(L, state, 1, &gpus, &streams);
if (streams < 2) {
/* nothing to synchronize together */
return 0;
}
/*
Events can only be recorded on the same device on which they are created.
-For each GPU, create an event, and record that event on each stream given
for that GPU.
-For each GPU, for each stream, wait on the event created by each other
GPU.
*/
cudaEvent_t* events = (cudaEvent_t*) malloc(sizeof(cudaEvent_t) * streams);
/* First, create an event per GPU and record events for the specified stream
on that GPU */
createMultiDeviceEvents(L, state, 1, events);
/* Then, wait on the events. Each stream is actually waiting on itself here
too, but that's harmless and isn't worth weeding out. */
waitMultiDeviceEvents(L, state, 1, events, streams);
/* Clean up events */
for (int i = 0; i < streams; ++i) {
THCudaCheck(cudaEventDestroy(events[i]));
}
free(events);
THCudaCheck(cudaSetDevice(prevDev));
return 0;
}
/*
Usage:
cutorch.streamSynchronize(n)
For the current device, synchronizes with the given stream only
(cudaStreamSynchronize).
0 is the default stream on the device.
*/
static int cutorch_streamSynchronize(lua_State *L)
{
THCState *state = cutorch_getstate(L);
int streamId = (int) luaL_checknumber(L, 1);
int curDev = -1;
THCudaCheck(cudaGetDevice(&curDev));
/* This also validates the stream */
cudaStream_t stream = THCState_getDeviceStream(state, curDev, streamId);
THCudaCheck(cudaStreamSynchronize(stream));
return 0;
}
static int cutorch_getDevice(lua_State *L)
{
int device;
THCudaCheck(cudaGetDevice(&device));
device++;
lua_pushnumber(L, device);
return 1;
}
static int cutorch_deviceReset(lua_State *L)
{
printf("WARNING: cutorch.deviceReset has been depreceated."
" Just remove the call from your code.\n");
return 0;
}
static int cutorch_getDeviceCount(lua_State *L)
{
int ndevice;
THCudaCheck(cudaGetDeviceCount(&ndevice));
lua_pushnumber(L, ndevice);
return 1;
}
static int cutorch_getPeerToPeerAccess(lua_State *L)
{
THCState *state = cutorch_getstate(L);
int dev = (int) luaL_checknumber(L, 1) - 1;
int devToAccess = (int) luaL_checknumber(L, 2) - 1;
/* device bounds checking is performed within */
int enabled = THCState_getPeerToPeerAccess(state, dev, devToAccess);
lua_pushboolean(L, enabled);
return 1;
}
static int cutorch_setPeerToPeerAccess(lua_State *L)
{
THCState *state = cutorch_getstate(L);
int dev = (int) luaL_checknumber(L, 1) - 1;
int devToAccess = (int) luaL_checknumber(L, 2) - 1;
int enable = lua_toboolean(L, 3);
/* device bounds checking is performed within */
THCState_setPeerToPeerAccess(state, dev, devToAccess, enable);
return 0;
}
static int cutorch_getKernelPeerToPeerAccess(lua_State *L)
{
THCState *state = cutorch_getstate(L);
lua_pushboolean(L, THCState_getKernelPeerToPeerAccessEnabled(state));
return 1;
}
static int cutorch_setKernelPeerToPeerAccess(lua_State *L)
{
THCState *state = cutorch_getstate(L);
int val = lua_toboolean(L, -1);
THCState_setKernelPeerToPeerAccessEnabled(state, val);
return 0;
}
static int cutorch_isCachingAllocatorEnabled(lua_State *L)
{
THCState *state = cutorch_getstate(L);
lua_pushboolean(L, THCState_isCachingAllocatorEnabled(state));
return 1;
}
static int cutorch_getMemoryUsage(lua_State *L) {
size_t freeBytes = 0;
size_t totalBytes = 0;
int curDevice;
THCudaCheck(cudaGetDevice(&curDevice));
THCState *state = cutorch_getstate(L);
int device = luaL_optint(L, 1, -10);
if (device == -10) { /* no argument passed, current device mem usage */
THCudaCheck(THCudaMemGetInfo(state, &freeBytes, &totalBytes));
} else { /* argument was given, particular device's memory usage */
THCudaCheck(cudaSetDevice(device-1)); /* zero indexed */
THCudaCheck(THCudaMemGetInfo(state, &freeBytes, &totalBytes));
THCudaCheck(cudaSetDevice(curDevice));
}
lua_pushnumber(L, freeBytes);
lua_pushnumber(L, totalBytes);
return 2;
}
static int cutorch_setDevice(lua_State *L)
{
THCState *state = cutorch_getstate(L);
int device = (int)luaL_checknumber(L, 1)-1;
THCudaCheck(cudaSetDevice(device));
return 0;
}
#define SET_DEVN_PROP(NAME) \
lua_pushnumber(L, prop.NAME); \
lua_setfield(L, -2, #NAME);
static int cutorch_getDeviceProperties(lua_State *L)
{
int device = (int)luaL_checknumber(L, 1)-1;
// switch context to given device so the call to cudaMemGetInfo is for the correct device
int oldDevice;
THCudaCheck(cudaGetDevice(&oldDevice));
THCudaCheck(cudaSetDevice(device));
struct cudaDeviceProp prop;
THCudaCheck(cudaGetDeviceProperties(&prop, device));
lua_newtable(L);
SET_DEVN_PROP(canMapHostMemory);
SET_DEVN_PROP(clockRate);
SET_DEVN_PROP(computeMode);
SET_DEVN_PROP(deviceOverlap);
SET_DEVN_PROP(integrated);
SET_DEVN_PROP(kernelExecTimeoutEnabled);
SET_DEVN_PROP(major);
SET_DEVN_PROP(maxThreadsPerBlock);
SET_DEVN_PROP(memPitch);
SET_DEVN_PROP(minor);
SET_DEVN_PROP(multiProcessorCount);
SET_DEVN_PROP(regsPerBlock);
SET_DEVN_PROP(sharedMemPerBlock);
SET_DEVN_PROP(textureAlignment);
SET_DEVN_PROP(totalConstMem);
SET_DEVN_PROP(totalGlobalMem);
SET_DEVN_PROP(warpSize);
SET_DEVN_PROP(pciBusID);
SET_DEVN_PROP(pciDeviceID);
SET_DEVN_PROP(pciDomainID);
SET_DEVN_PROP(maxTexture1D);
SET_DEVN_PROP(maxTexture1DLinear);
size_t freeMem;
THCudaCheck(cudaMemGetInfo (&freeMem, NULL));
lua_pushnumber(L, freeMem);
lua_setfield(L, -2, "freeGlobalMem");
lua_pushstring(L, prop.name);
lua_setfield(L, -2, "name");
// restore context
THCudaCheck(cudaSetDevice(oldDevice));
return 1;
}
static int cutorch_getRuntimeVersion(lua_State *L)
{
int version;
THCudaCheck(cudaRuntimeGetVersion(&version));
lua_pushnumber(L, version);
return 1;
}
static int cutorch_getDriverVersion(lua_State *L)
{
int version;
THCudaCheck(cudaDriverGetVersion(&version));
lua_pushnumber(L, version);
return 1;
}
static int cutorch_seed(lua_State *L)
{
unsigned long long seed = THCRandom_seed(cutorch_getstate(L));
lua_pushnumber(L, seed);
return 1;
}
static int cutorch_seedAll(lua_State *L)
{
unsigned long long seed = THCRandom_seedAll(cutorch_getstate(L));
lua_pushnumber(L, seed);
return 1;
}
static int cutorch_initialSeed(lua_State *L)
{
unsigned long long seed = THCRandom_initialSeed(cutorch_getstate(L));
lua_pushnumber(L, seed);
return 1;
}
static int cutorch_manualSeed(lua_State *L)
{
unsigned long long seed = luaL_checknumber(L, 1);
THCRandom_manualSeed(cutorch_getstate(L), seed);
return 0;
}
static int cutorch_manualSeedAll(lua_State* L)
{
unsigned long long seed = luaL_checknumber(L, 1);
THCRandom_manualSeedAll(cutorch_getstate(L), seed);
return 0;
}
static int cutorch_getRNGState(lua_State *L)
{
THByteTensor* t = THByteTensor_new();
THCRandom_getRNGState(cutorch_getstate(L), t);
luaT_pushudata(L, t, "torch.ByteTensor");
return 1;
}
static int cutorch_setRNGState(lua_State *L)
{
THByteTensor* t = luaT_checkudata(L, 1, "torch.ByteTensor");
THCRandom_setRNGState(cutorch_getstate(L), t);
return 0;
}
static int cutorch_getState(lua_State *L)
{
lua_getglobal(L, "cutorch");
lua_getfield(L, -1, "_state");
lua_remove(L, -2);
return 1;
}
static int cutorch_Event_new(lua_State *L)
{
cudaEvent_t *event = luaT_alloc(L, sizeof(cudaEvent_t));
THCudaCheck(cudaEventCreate(event));
THCState *state = cutorch_getstate(L);
THCudaCheck(cudaEventRecord(*event, THCState_getCurrentStream(state)));
luaT_pushudata(L, event, "cutorch.Event");
return 1;
}
static int cutorch_Event_free(lua_State *L)
{
cudaEvent_t *event = luaT_checkudata(L, 1, "cutorch.Event");
THCudaCheck(cudaEventDestroy(*event));
luaT_free(L, event);
return 0;
}
static int cutorch_Event_waitOn(lua_State *L)
{
cudaEvent_t *event = luaT_checkudata(L, 1, "cutorch.Event");
THCState *state = cutorch_getstate(L);
THCudaCheck(cudaStreamWaitEvent(THCState_getCurrentStream(state), *event, 0));
return 0;
}
static const struct luaL_Reg cutorch_Event__[] = {
{"waitOn", cutorch_Event_waitOn},
{NULL, NULL}
};
static void cutorch_Event_init(lua_State *L)
{
luaT_newmetatable(L, "cutorch.Event", NULL, cutorch_Event_new, cutorch_Event_free, NULL);
luaT_setfuncs(L, cutorch_Event__, 0);
lua_pop(L, 1);
}
static void luaCutorchGCFunction(void *data)
{
lua_State *L = data;
lua_gc(L, LUA_GCCOLLECT, 0);
}
static int cutorch_setHeapTracking(lua_State *L)
{
THCState *state = cutorch_getstate(L);
int enabled = luaT_checkboolean(L,1);
if(enabled) {
THCSetGCHandler(state, luaCutorchGCFunction, L);
} else {
THCSetGCHandler(state, NULL, NULL);
}
return 0;
}
static int cutorch_isManagedPtr(lua_State *L)
{
THCState *state = cutorch_getstate(L);
if(lua_type(L, 1) != LUA_TNUMBER) {
THError("Must receive a ptr cast as a number");
}
void* ptr = (void* )luaL_optinteger(L, 1, 0);
struct cudaPointerAttributes attributes;
cudaError_t res = cudaPointerGetAttributes(&attributes, ptr);
if (res == cudaErrorInvalidValue) {
lua_pushboolean(L, 0);
} else {
THCudaCheck(res);
lua_pushboolean(L, attributes.isManaged);
}
return 1;
}
static int cutorch_shutdown(lua_State *L)
{
THCState **state = (THCState **) lua_topointer(L, 1);
THCudaShutdown(*state);
THCState_free(*state);
return 0;
}
static int cutorch_hasHalfInstructions(lua_State *L) {
THCState *state = cutorch_getstate(L);
#ifdef CUDA_HALF_TENSOR
lua_pushboolean(L, THC_nativeHalfInstructions(state));
#else
lua_pushboolean(L, 0);
#endif
return 1;
}
static int cutorch_hasFastHalfInstructions(lua_State *L) {
THCState *state = cutorch_getstate(L);
#ifdef CUDA_HALF_TENSOR
lua_pushboolean(L, THC_fastHalfInstructions(state));
#else
lua_pushboolean(L, 0);
#endif
return 1;
}
static int cutorch_sleep(lua_State *L) {
THCState *state = cutorch_getstate(L);
if (!luaT_checklong(L, 1)) {
THError("expected number 'cycles'");
}
THC_sleep(state, luaT_tolong(L, 1));
return 0;
}
static const struct luaL_Reg cutorch_stuff__ [] = {
{"synchronize", cutorch_synchronize},
{"synchronizeAll", cutorch_synchronizeAll},
{"reserveBlasHandles", cutorch_reserveBlasHandles},
{"getNumBlasHandles", cutorch_getNumBlasHandles},
{"setBlasHandle", cutorch_setBlasHandle},
{"getBlasHandle", cutorch_getBlasHandle},
{"reserveStreams", cutorch_reserveStreams},
{"getNumStreams", cutorch_getNumStreams},
{"setStream", cutorch_setStream},
{"getStream", cutorch_getStream},
{"setDefaultStream", cutorch_setDefaultStream},
{"streamWaitFor", cutorch_streamWaitFor},
{"streamWaitForMultiDevice", cutorch_streamWaitForMultiDevice},
{"streamBarrier", cutorch_streamBarrier},
{"streamBarrierMultiDevice", cutorch_streamBarrierMultiDevice},
{"streamSynchronize", cutorch_streamSynchronize},
{"getDevice", cutorch_getDevice},
{"deviceReset", cutorch_deviceReset},
{"getDeviceCount", cutorch_getDeviceCount},
{"getPeerToPeerAccess", cutorch_getPeerToPeerAccess},