-
-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathencoding.js
930 lines (875 loc) · 25.8 KB
/
encoding.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
/**
* Efficient schema-less binary encoding with support for variable length encoding.
*
* Use [lib0/encoding] with [lib0/decoding]. Every encoding function has a corresponding decoding function.
*
* Encodes numbers in little-endian order (least to most significant byte order)
* and is compatible with Golang's binary encoding (https://golang.org/pkg/encoding/binary/)
* which is also used in Protocol Buffers.
*
* ```js
* // encoding step
* const encoder = encoding.createEncoder()
* encoding.writeVarUint(encoder, 256)
* encoding.writeVarString(encoder, 'Hello world!')
* const buf = encoding.toUint8Array(encoder)
* ```
*
* ```js
* // decoding step
* const decoder = decoding.createDecoder(buf)
* decoding.readVarUint(decoder) // => 256
* decoding.readVarString(decoder) // => 'Hello world!'
* decoding.hasContent(decoder) // => false - all data is read
* ```
*
* @module encoding
*/
import * as math from './math.js'
import * as number from './number.js'
import * as binary from './binary.js'
import * as string from './string.js'
import * as array from './array.js'
/**
* A BinaryEncoder handles the encoding to an Uint8Array.
*/
export class Encoder {
constructor () {
this.cpos = 0
this.cbuf = new Uint8Array(100)
/**
* @type {Array<Uint8Array>}
*/
this.bufs = []
}
}
/**
* @function
* @return {Encoder}
*/
export const createEncoder = () => new Encoder()
/**
* @param {function(Encoder):void} f
*/
export const encode = (f) => {
const encoder = createEncoder()
f(encoder)
return toUint8Array(encoder)
}
/**
* The current length of the encoded data.
*
* @function
* @param {Encoder} encoder
* @return {number}
*/
export const length = encoder => {
let len = encoder.cpos
for (let i = 0; i < encoder.bufs.length; i++) {
len += encoder.bufs[i].length
}
return len
}
/**
* Check whether encoder is empty.
*
* @function
* @param {Encoder} encoder
* @return {boolean}
*/
export const hasContent = encoder => encoder.cpos > 0 || encoder.bufs.length > 0
/**
* Transform to Uint8Array.
*
* @function
* @param {Encoder} encoder
* @return {Uint8Array} The created ArrayBuffer.
*/
export const toUint8Array = encoder => {
const uint8arr = new Uint8Array(length(encoder))
let curPos = 0
for (let i = 0; i < encoder.bufs.length; i++) {
const d = encoder.bufs[i]
uint8arr.set(d, curPos)
curPos += d.length
}
uint8arr.set(new Uint8Array(encoder.cbuf.buffer, 0, encoder.cpos), curPos)
return uint8arr
}
/**
* Verify that it is possible to write `len` bytes wtihout checking. If
* necessary, a new Buffer with the required length is attached.
*
* @param {Encoder} encoder
* @param {number} len
*/
export const verifyLen = (encoder, len) => {
const bufferLen = encoder.cbuf.length
if (bufferLen - encoder.cpos < len) {
encoder.bufs.push(new Uint8Array(encoder.cbuf.buffer, 0, encoder.cpos))
encoder.cbuf = new Uint8Array(math.max(bufferLen, len) * 2)
encoder.cpos = 0
}
}
/**
* Write one byte to the encoder.
*
* @function
* @param {Encoder} encoder
* @param {number} num The byte that is to be encoded.
*/
export const write = (encoder, num) => {
const bufferLen = encoder.cbuf.length
if (encoder.cpos === bufferLen) {
encoder.bufs.push(encoder.cbuf)
encoder.cbuf = new Uint8Array(bufferLen * 2)
encoder.cpos = 0
}
encoder.cbuf[encoder.cpos++] = num
}
/**
* Write one byte at a specific position.
* Position must already be written (i.e. encoder.length > pos)
*
* @function
* @param {Encoder} encoder
* @param {number} pos Position to which to write data
* @param {number} num Unsigned 8-bit integer
*/
export const set = (encoder, pos, num) => {
let buffer = null
// iterate all buffers and adjust position
for (let i = 0; i < encoder.bufs.length && buffer === null; i++) {
const b = encoder.bufs[i]
if (pos < b.length) {
buffer = b // found buffer
} else {
pos -= b.length
}
}
if (buffer === null) {
// use current buffer
buffer = encoder.cbuf
}
buffer[pos] = num
}
/**
* Write one byte as an unsigned integer.
*
* @function
* @param {Encoder} encoder
* @param {number} num The number that is to be encoded.
*/
export const writeUint8 = write
/**
* Write one byte as an unsigned Integer at a specific location.
*
* @function
* @param {Encoder} encoder
* @param {number} pos The location where the data will be written.
* @param {number} num The number that is to be encoded.
*/
export const setUint8 = set
/**
* Write two bytes as an unsigned integer.
*
* @function
* @param {Encoder} encoder
* @param {number} num The number that is to be encoded.
*/
export const writeUint16 = (encoder, num) => {
write(encoder, num & binary.BITS8)
write(encoder, (num >>> 8) & binary.BITS8)
}
/**
* Write two bytes as an unsigned integer at a specific location.
*
* @function
* @param {Encoder} encoder
* @param {number} pos The location where the data will be written.
* @param {number} num The number that is to be encoded.
*/
export const setUint16 = (encoder, pos, num) => {
set(encoder, pos, num & binary.BITS8)
set(encoder, pos + 1, (num >>> 8) & binary.BITS8)
}
/**
* Write two bytes as an unsigned integer
*
* @function
* @param {Encoder} encoder
* @param {number} num The number that is to be encoded.
*/
export const writeUint32 = (encoder, num) => {
for (let i = 0; i < 4; i++) {
write(encoder, num & binary.BITS8)
num >>>= 8
}
}
/**
* Write two bytes as an unsigned integer in big endian order.
* (most significant byte first)
*
* @function
* @param {Encoder} encoder
* @param {number} num The number that is to be encoded.
*/
export const writeUint32BigEndian = (encoder, num) => {
for (let i = 3; i >= 0; i--) {
write(encoder, (num >>> (8 * i)) & binary.BITS8)
}
}
/**
* Write two bytes as an unsigned integer at a specific location.
*
* @function
* @param {Encoder} encoder
* @param {number} pos The location where the data will be written.
* @param {number} num The number that is to be encoded.
*/
export const setUint32 = (encoder, pos, num) => {
for (let i = 0; i < 4; i++) {
set(encoder, pos + i, num & binary.BITS8)
num >>>= 8
}
}
/**
* Write a variable length unsigned integer. Max encodable integer is 2^53.
*
* @function
* @param {Encoder} encoder
* @param {number} num The number that is to be encoded.
*/
export const writeVarUint = (encoder, num) => {
while (num > binary.BITS7) {
write(encoder, binary.BIT8 | (binary.BITS7 & num))
num = math.floor(num / 128) // shift >>> 7
}
write(encoder, binary.BITS7 & num)
}
/**
* Write a variable length integer.
*
* We use the 7th bit instead for signaling that this is a negative number.
*
* @function
* @param {Encoder} encoder
* @param {number} num The number that is to be encoded.
*/
export const writeVarInt = (encoder, num) => {
const isNegative = math.isNegativeZero(num)
if (isNegative) {
num = -num
}
// |- whether to continue reading |- whether is negative |- number
write(encoder, (num > binary.BITS6 ? binary.BIT8 : 0) | (isNegative ? binary.BIT7 : 0) | (binary.BITS6 & num))
num = math.floor(num / 64) // shift >>> 6
// We don't need to consider the case of num === 0 so we can use a different
// pattern here than above.
while (num > 0) {
write(encoder, (num > binary.BITS7 ? binary.BIT8 : 0) | (binary.BITS7 & num))
num = math.floor(num / 128) // shift >>> 7
}
}
/**
* A cache to store strings temporarily
*/
const _strBuffer = new Uint8Array(30000)
const _maxStrBSize = _strBuffer.length / 3
/**
* Write a variable length string.
*
* @function
* @param {Encoder} encoder
* @param {String} str The string that is to be encoded.
*/
export const _writeVarStringNative = (encoder, str) => {
if (str.length < _maxStrBSize) {
// We can encode the string into the existing buffer
/* c8 ignore next */
const written = string.utf8TextEncoder.encodeInto(str, _strBuffer).written || 0
writeVarUint(encoder, written)
for (let i = 0; i < written; i++) {
write(encoder, _strBuffer[i])
}
} else {
writeVarUint8Array(encoder, string.encodeUtf8(str))
}
}
/**
* Write a variable length string.
*
* @function
* @param {Encoder} encoder
* @param {String} str The string that is to be encoded.
*/
export const _writeVarStringPolyfill = (encoder, str) => {
const encodedString = unescape(encodeURIComponent(str))
const len = encodedString.length
writeVarUint(encoder, len)
for (let i = 0; i < len; i++) {
write(encoder, /** @type {number} */ (encodedString.codePointAt(i)))
}
}
/**
* Write a variable length string.
*
* @function
* @param {Encoder} encoder
* @param {String} str The string that is to be encoded.
*/
/* c8 ignore next */
export const writeVarString = (string.utf8TextEncoder && /** @type {any} */ (string.utf8TextEncoder).encodeInto) ? _writeVarStringNative : _writeVarStringPolyfill
/**
* Write a string terminated by a special byte sequence. This is not very performant and is
* generally discouraged. However, the resulting byte arrays are lexiographically ordered which
* makes this a nice feature for databases.
*
* The string will be encoded using utf8 and then terminated and escaped using writeTerminatingUint8Array.
*
* @function
* @param {Encoder} encoder
* @param {String} str The string that is to be encoded.
*/
export const writeTerminatedString = (encoder, str) =>
writeTerminatedUint8Array(encoder, string.encodeUtf8(str))
/**
* Write a terminating Uint8Array. Note that this is not performant and is generally
* discouraged. There are few situations when this is needed.
*
* We use 0x0 as a terminating character. 0x1 serves as an escape character for 0x0 and 0x1.
*
* Example: [0,1,2] is encoded to [1,0,1,1,2,0]. 0x0, and 0x1 needed to be escaped using 0x1. Then
* the result is terminated using the 0x0 character.
*
* This is basically how many systems implement null terminated strings. However, we use an escape
* character 0x1 to avoid issues and potenial attacks on our database (if this is used as a key
* encoder for NoSql databases).
*
* @function
* @param {Encoder} encoder
* @param {Uint8Array} buf The string that is to be encoded.
*/
export const writeTerminatedUint8Array = (encoder, buf) => {
for (let i = 0; i < buf.length; i++) {
const b = buf[i]
if (b === 0 || b === 1) {
write(encoder, 1)
}
write(encoder, buf[i])
}
write(encoder, 0)
}
/**
* Write the content of another Encoder.
*
* @TODO: can be improved!
* - Note: Should consider that when appending a lot of small Encoders, we should rather clone than referencing the old structure.
* Encoders start with a rather big initial buffer.
*
* @function
* @param {Encoder} encoder The enUint8Arr
* @param {Encoder} append The BinaryEncoder to be written.
*/
export const writeBinaryEncoder = (encoder, append) => writeUint8Array(encoder, toUint8Array(append))
/**
* Append fixed-length Uint8Array to the encoder.
*
* @function
* @param {Encoder} encoder
* @param {Uint8Array} uint8Array
*/
export const writeUint8Array = (encoder, uint8Array) => {
const bufferLen = encoder.cbuf.length
const cpos = encoder.cpos
const leftCopyLen = math.min(bufferLen - cpos, uint8Array.length)
const rightCopyLen = uint8Array.length - leftCopyLen
encoder.cbuf.set(uint8Array.subarray(0, leftCopyLen), cpos)
encoder.cpos += leftCopyLen
if (rightCopyLen > 0) {
// Still something to write, write right half..
// Append new buffer
encoder.bufs.push(encoder.cbuf)
// must have at least size of remaining buffer
encoder.cbuf = new Uint8Array(math.max(bufferLen * 2, rightCopyLen))
// copy array
encoder.cbuf.set(uint8Array.subarray(leftCopyLen))
encoder.cpos = rightCopyLen
}
}
/**
* Append an Uint8Array to Encoder.
*
* @function
* @param {Encoder} encoder
* @param {Uint8Array} uint8Array
*/
export const writeVarUint8Array = (encoder, uint8Array) => {
writeVarUint(encoder, uint8Array.byteLength)
writeUint8Array(encoder, uint8Array)
}
/**
* Create an DataView of the next `len` bytes. Use it to write data after
* calling this function.
*
* ```js
* // write float32 using DataView
* const dv = writeOnDataView(encoder, 4)
* dv.setFloat32(0, 1.1)
* // read float32 using DataView
* const dv = readFromDataView(encoder, 4)
* dv.getFloat32(0) // => 1.100000023841858 (leaving it to the reader to find out why this is the correct result)
* ```
*
* @param {Encoder} encoder
* @param {number} len
* @return {DataView}
*/
export const writeOnDataView = (encoder, len) => {
verifyLen(encoder, len)
const dview = new DataView(encoder.cbuf.buffer, encoder.cpos, len)
encoder.cpos += len
return dview
}
/**
* @param {Encoder} encoder
* @param {number} num
*/
export const writeFloat32 = (encoder, num) => writeOnDataView(encoder, 4).setFloat32(0, num, false)
/**
* @param {Encoder} encoder
* @param {number} num
*/
export const writeFloat64 = (encoder, num) => writeOnDataView(encoder, 8).setFloat64(0, num, false)
/**
* @param {Encoder} encoder
* @param {bigint} num
*/
export const writeBigInt64 = (encoder, num) => /** @type {any} */ (writeOnDataView(encoder, 8)).setBigInt64(0, num, false)
/**
* @param {Encoder} encoder
* @param {bigint} num
*/
export const writeBigUint64 = (encoder, num) => /** @type {any} */ (writeOnDataView(encoder, 8)).setBigUint64(0, num, false)
const floatTestBed = new DataView(new ArrayBuffer(4))
/**
* Check if a number can be encoded as a 32 bit float.
*
* @param {number} num
* @return {boolean}
*/
const isFloat32 = num => {
floatTestBed.setFloat32(0, num)
return floatTestBed.getFloat32(0) === num
}
/**
* Encode data with efficient binary format.
*
* Differences to JSON:
* • Transforms data to a binary format (not to a string)
* • Encodes undefined, NaN, and ArrayBuffer (these can't be represented in JSON)
* • Numbers are efficiently encoded either as a variable length integer, as a
* 32 bit float, as a 64 bit float, or as a 64 bit bigint.
*
* Encoding table:
*
* | Data Type | Prefix | Encoding Method | Comment |
* | ------------------- | -------- | ------------------ | ------- |
* | undefined | 127 | | Functions, symbol, and everything that cannot be identified is encoded as undefined |
* | null | 126 | | |
* | integer | 125 | writeVarInt | Only encodes 32 bit signed integers |
* | float32 | 124 | writeFloat32 | |
* | float64 | 123 | writeFloat64 | |
* | bigint | 122 | writeBigInt64 | |
* | boolean (false) | 121 | | True and false are different data types so we save the following byte |
* | boolean (true) | 120 | | - 0b01111000 so the last bit determines whether true or false |
* | string | 119 | writeVarString | |
* | object<string,any> | 118 | custom | Writes {length} then {length} key-value pairs |
* | array<any> | 117 | custom | Writes {length} then {length} json values |
* | Uint8Array | 116 | writeVarUint8Array | We use Uint8Array for any kind of binary data |
*
* Reasons for the decreasing prefix:
* We need the first bit for extendability (later we may want to encode the
* prefix with writeVarUint). The remaining 7 bits are divided as follows:
* [0-30] the beginning of the data range is used for custom purposes
* (defined by the function that uses this library)
* [31-127] the end of the data range is used for data encoding by
* lib0/encoding.js
*
* @param {Encoder} encoder
* @param {undefined|null|number|bigint|boolean|string|Object<string,any>|Array<any>|Uint8Array} data
*/
export const writeAny = (encoder, data) => {
switch (typeof data) {
case 'string':
// TYPE 119: STRING
write(encoder, 119)
writeVarString(encoder, data)
break
case 'number':
if (number.isInteger(data) && math.abs(data) <= binary.BITS31) {
// TYPE 125: INTEGER
write(encoder, 125)
writeVarInt(encoder, data)
} else if (isFloat32(data)) {
// TYPE 124: FLOAT32
write(encoder, 124)
writeFloat32(encoder, data)
} else {
// TYPE 123: FLOAT64
write(encoder, 123)
writeFloat64(encoder, data)
}
break
case 'bigint':
// TYPE 122: BigInt
write(encoder, 122)
writeBigInt64(encoder, data)
break
case 'object':
if (data === null) {
// TYPE 126: null
write(encoder, 126)
} else if (array.isArray(data)) {
// TYPE 117: Array
write(encoder, 117)
writeVarUint(encoder, data.length)
for (let i = 0; i < data.length; i++) {
writeAny(encoder, data[i])
}
} else if (data instanceof Uint8Array) {
// TYPE 116: ArrayBuffer
write(encoder, 116)
writeVarUint8Array(encoder, data)
} else {
// TYPE 118: Object
write(encoder, 118)
const keys = Object.keys(data)
writeVarUint(encoder, keys.length)
for (let i = 0; i < keys.length; i++) {
const key = keys[i]
writeVarString(encoder, key)
writeAny(encoder, data[key])
}
}
break
case 'boolean':
// TYPE 120/121: boolean (true/false)
write(encoder, data ? 120 : 121)
break
default:
// TYPE 127: undefined
write(encoder, 127)
}
}
/**
* Now come a few stateful encoder that have their own classes.
*/
/**
* Basic Run Length Encoder - a basic compression implementation.
*
* Encodes [1,1,1,7] to [1,3,7,1] (3 times 1, 1 time 7). This encoder might do more harm than good if there are a lot of values that are not repeated.
*
* It was originally used for image compression. Cool .. article http://csbruce.com/cbm/transactor/pdfs/trans_v7_i06.pdf
*
* @note T must not be null!
*
* @template T
*/
export class RleEncoder extends Encoder {
/**
* @param {function(Encoder, T):void} writer
*/
constructor (writer) {
super()
/**
* The writer
*/
this.w = writer
/**
* Current state
* @type {T|null}
*/
this.s = null
this.count = 0
}
/**
* @param {T} v
*/
write (v) {
if (this.s === v) {
this.count++
} else {
if (this.count > 0) {
// flush counter, unless this is the first value (count = 0)
writeVarUint(this, this.count - 1) // since count is always > 0, we can decrement by one. non-standard encoding ftw
}
this.count = 1
// write first value
this.w(this, v)
this.s = v
}
}
}
/**
* Basic diff decoder using variable length encoding.
*
* Encodes the values [3, 1100, 1101, 1050, 0] to [3, 1097, 1, -51, -1050] using writeVarInt.
*/
export class IntDiffEncoder extends Encoder {
/**
* @param {number} start
*/
constructor (start) {
super()
/**
* Current state
* @type {number}
*/
this.s = start
}
/**
* @param {number} v
*/
write (v) {
writeVarInt(this, v - this.s)
this.s = v
}
}
/**
* A combination of IntDiffEncoder and RleEncoder.
*
* Basically first writes the IntDiffEncoder and then counts duplicate diffs using RleEncoding.
*
* Encodes the values [1,1,1,2,3,4,5,6] as [1,1,0,2,1,5] (RLE([1,0,0,1,1,1,1,1]) ⇒ RleIntDiff[1,1,0,2,1,5])
*/
export class RleIntDiffEncoder extends Encoder {
/**
* @param {number} start
*/
constructor (start) {
super()
/**
* Current state
* @type {number}
*/
this.s = start
this.count = 0
}
/**
* @param {number} v
*/
write (v) {
if (this.s === v && this.count > 0) {
this.count++
} else {
if (this.count > 0) {
// flush counter, unless this is the first value (count = 0)
writeVarUint(this, this.count - 1) // since count is always > 0, we can decrement by one. non-standard encoding ftw
}
this.count = 1
// write first value
writeVarInt(this, v - this.s)
this.s = v
}
}
}
/**
* @param {UintOptRleEncoder} encoder
*/
const flushUintOptRleEncoder = encoder => {
if (encoder.count > 0) {
// flush counter, unless this is the first value (count = 0)
// case 1: just a single value. set sign to positive
// case 2: write several values. set sign to negative to indicate that there is a length coming
writeVarInt(encoder.encoder, encoder.count === 1 ? encoder.s : -encoder.s)
if (encoder.count > 1) {
writeVarUint(encoder.encoder, encoder.count - 2) // since count is always > 1, we can decrement by one. non-standard encoding ftw
}
}
}
/**
* Optimized Rle encoder that does not suffer from the mentioned problem of the basic Rle encoder.
*
* Internally uses VarInt encoder to write unsigned integers. If the input occurs multiple times, we write
* write it as a negative number. The UintOptRleDecoder then understands that it needs to read a count.
*
* Encodes [1,2,3,3,3] as [1,2,-3,3] (once 1, once 2, three times 3)
*/
export class UintOptRleEncoder {
constructor () {
this.encoder = new Encoder()
/**
* @type {number}
*/
this.s = 0
this.count = 0
}
/**
* @param {number} v
*/
write (v) {
if (this.s === v) {
this.count++
} else {
flushUintOptRleEncoder(this)
this.count = 1
this.s = v
}
}
/**
* Flush the encoded state and transform this to a Uint8Array.
*
* Note that this should only be called once.
*/
toUint8Array () {
flushUintOptRleEncoder(this)
return toUint8Array(this.encoder)
}
}
/**
* Increasing Uint Optimized RLE Encoder
*
* The RLE encoder counts the number of same occurences of the same value.
* The IncUintOptRle encoder counts if the value increases.
* I.e. 7, 8, 9, 10 will be encoded as [-7, 4]. 1, 3, 5 will be encoded
* as [1, 3, 5].
*/
export class IncUintOptRleEncoder {
constructor () {
this.encoder = new Encoder()
/**
* @type {number}
*/
this.s = 0
this.count = 0
}
/**
* @param {number} v
*/
write (v) {
if (this.s + this.count === v) {
this.count++
} else {
flushUintOptRleEncoder(this)
this.count = 1
this.s = v
}
}
/**
* Flush the encoded state and transform this to a Uint8Array.
*
* Note that this should only be called once.
*/
toUint8Array () {
flushUintOptRleEncoder(this)
return toUint8Array(this.encoder)
}
}
/**
* @param {IntDiffOptRleEncoder} encoder
*/
const flushIntDiffOptRleEncoder = encoder => {
if (encoder.count > 0) {
// 31 bit making up the diff | wether to write the counter
// const encodedDiff = encoder.diff << 1 | (encoder.count === 1 ? 0 : 1)
const encodedDiff = encoder.diff * 2 + (encoder.count === 1 ? 0 : 1)
// flush counter, unless this is the first value (count = 0)
// case 1: just a single value. set first bit to positive
// case 2: write several values. set first bit to negative to indicate that there is a length coming
writeVarInt(encoder.encoder, encodedDiff)
if (encoder.count > 1) {
writeVarUint(encoder.encoder, encoder.count - 2) // since count is always > 1, we can decrement by one. non-standard encoding ftw
}
}
}
/**
* A combination of the IntDiffEncoder and the UintOptRleEncoder.
*
* The count approach is similar to the UintDiffOptRleEncoder, but instead of using the negative bitflag, it encodes
* in the LSB whether a count is to be read. Therefore this Encoder only supports 31 bit integers!
*
* Encodes [1, 2, 3, 2] as [3, 1, 6, -1] (more specifically [(1 << 1) | 1, (3 << 0) | 0, -1])
*
* Internally uses variable length encoding. Contrary to normal UintVar encoding, the first byte contains:
* * 1 bit that denotes whether the next value is a count (LSB)
* * 1 bit that denotes whether this value is negative (MSB - 1)
* * 1 bit that denotes whether to continue reading the variable length integer (MSB)
*
* Therefore, only five bits remain to encode diff ranges.
*
* Use this Encoder only when appropriate. In most cases, this is probably a bad idea.
*/
export class IntDiffOptRleEncoder {
constructor () {
this.encoder = new Encoder()
/**
* @type {number}
*/
this.s = 0
this.count = 0
this.diff = 0
}
/**
* @param {number} v
*/
write (v) {
if (this.diff === v - this.s) {
this.s = v
this.count++
} else {
flushIntDiffOptRleEncoder(this)
this.count = 1
this.diff = v - this.s
this.s = v
}
}
/**
* Flush the encoded state and transform this to a Uint8Array.
*
* Note that this should only be called once.
*/
toUint8Array () {
flushIntDiffOptRleEncoder(this)
return toUint8Array(this.encoder)
}
}
/**
* Optimized String Encoder.
*
* Encoding many small strings in a simple Encoder is not very efficient. The function call to decode a string takes some time and creates references that must be eventually deleted.
* In practice, when decoding several million small strings, the GC will kick in more and more often to collect orphaned string objects (or maybe there is another reason?).
*
* This string encoder solves the above problem. All strings are concatenated and written as a single string using a single encoding call.
*
* The lengths are encoded using a UintOptRleEncoder.
*/
export class StringEncoder {
constructor () {
/**
* @type {Array<string>}
*/
this.sarr = []
this.s = ''
this.lensE = new UintOptRleEncoder()
}
/**
* @param {string} string
*/
write (string) {
this.s += string
if (this.s.length > 19) {
this.sarr.push(this.s)
this.s = ''
}
this.lensE.write(string.length)
}
toUint8Array () {
const encoder = new Encoder()
this.sarr.push(this.s)
this.s = ''
writeVarString(encoder, this.sarr.join(''))
writeUint8Array(encoder, this.lensE.toUint8Array())
return toUint8Array(encoder)
}
}