-
Notifications
You must be signed in to change notification settings - Fork 194
/
Copy pathtrain.py
147 lines (120 loc) · 5.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import math
import time
import argparse
import numpy as np
from tqdm import tqdm
from numpy.testing._private.utils import print_assert_equal
import torch
from torch import optim
from torch.utils.data import dataset
from numpy.core.fromnumeric import shape
from torchsummary import summary
import utils.loss
import utils.utils
import utils.datasets
import model.detector
if __name__ == '__main__':
# 指定训练配置文件
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='',
help='Specify training profile *.data')
opt = parser.parse_args()
cfg = utils.utils.load_datafile(opt.data)
print("训练配置:")
print(cfg)
# 数据集加载
train_dataset = utils.datasets.TensorDataset(cfg["train"], cfg["width"], cfg["height"], imgaug = True)
val_dataset = utils.datasets.TensorDataset(cfg["val"], cfg["width"], cfg["height"], imgaug = False)
batch_size = int(cfg["batch_size"] / cfg["subdivisions"])
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])
# 训练集
train_dataloader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=utils.datasets.collate_fn,
num_workers=nw,
pin_memory=True,
drop_last=True,
persistent_workers=True
)
#验证集
val_dataloader = torch.utils.data.DataLoader(val_dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=utils.datasets.collate_fn,
num_workers=nw,
pin_memory=True,
drop_last=False,
persistent_workers=True
)
# 指定后端设备CUDA&CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 判断是否加载预训练模型
load_param = False
premodel_path = cfg["pre_weights"]
if premodel_path != None and os.path.exists(premodel_path):
load_param = True
# 初始化模型结构
model = model.detector.Detector(cfg["classes"], cfg["anchor_num"], load_param).to(device)
summary(model, input_size=(3, cfg["height"], cfg["width"]))
# 加载预训练模型参数
if load_param == True:
model.load_state_dict(torch.load(premodel_path, map_location=device), strict = False)
print("Load finefune model param: %s" % premodel_path)
else:
print("Initialize weights: model/backbone/backbone.pth")
# 构建SGD优化器
optimizer = optim.SGD(params=model.parameters(),
lr=cfg["learning_rate"],
momentum=0.949,
weight_decay=0.0005,
)
# 学习率衰减策略
scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
milestones=cfg["steps"],
gamma=0.1)
print('Starting training for %g epochs...' % cfg["epochs"])
batch_num = 0
for epoch in range(cfg["epochs"]):
model.train()
pbar = tqdm(train_dataloader)
for imgs, targets in pbar:
# 数据预处理
imgs = imgs.to(device).float() / 255.0
targets = targets.to(device)
# 模型推理
preds = model(imgs)
# loss计算
iou_loss, obj_loss, cls_loss, total_loss = utils.loss.compute_loss(preds, targets, cfg, device)
# 反向传播求解梯度
total_loss.backward()
#学习率预热
for g in optimizer.param_groups:
warmup_num = 5 * len(train_dataloader)
if batch_num <= warmup_num:
scale = math.pow(batch_num/warmup_num, 4)
g['lr'] = cfg["learning_rate"] * scale
lr = g["lr"]
# 更新模型参数
if batch_num % cfg["subdivisions"] == 0:
optimizer.step()
optimizer.zero_grad()
# 打印相关信息
info = "Epoch:%d LR:%f CIou:%f Obj:%f Cls:%f Total:%f" % (
epoch, lr, iou_loss, obj_loss, cls_loss, total_loss)
pbar.set_description(info)
batch_num += 1
# 模型保存
if epoch % 10 == 0 and epoch > 0:
model.eval()
#模型评估
print("computer mAP...")
_, _, AP, _ = utils.utils.evaluation(val_dataloader, cfg, model, device)
print("computer PR...")
precision, recall, _, f1 = utils.utils.evaluation(val_dataloader, cfg, model, device, 0.3)
print("Precision:%f Recall:%f AP:%f F1:%f"%(precision, recall, AP, f1))
torch.save(model.state_dict(), "weights/%s-%d-epoch-%fap-model.pth" %
(cfg["model_name"], epoch, AP))
# 学习率调整
scheduler.step()