-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdrivers.py
368 lines (329 loc) · 13.6 KB
/
drivers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import operator
import random
import sys
import typing
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from datetime import datetime
from functools import reduce
from bees import count_gaps
from domino_puzzle import (Board, BoardGraph, GraphLimitExceeded, DiceSet,
ArrowSet, MoveDescription, Domino, BoardError)
from evo import Individual, Evolution
class DriversProblem(Individual):
def __repr__(self):
return f'DriversProblem({self.value!r}'
def pair(self, other, pair_params):
return DriversProblem(self.value)
def mutate(self, mutate_params):
self.value: dict
max_pips = self.value['max_pips']
board = DriversBoard.create(self.value['start'],
max_pips=max_pips)
while True:
new_board = board.mutate(random, DriversBoard)
if self.is_valid(new_board):
break
self.value = dict(start=new_board.display(),
max_pips=max_pips)
def _random_init(self, init_params: dict):
while True:
board = DriversBoard(**init_params)
while True:
if board.fill(random):
break
if self.is_valid(board):
break
return dict(start=board.display(),
max_pips=board.max_pips)
@staticmethod
def is_valid(board):
board.place_dice()
return len(board.dice_set.items()) == 4
class DriversFitnessCalculator:
def __init__(self, target_length=100, size_limit=11_200):
self.target_length = target_length
self.size_limit = size_limit
self.details = []
self.summaries = []
def format_summaries(self):
display = '\n'.join(self.summaries)
self.summaries.clear()
return display
def format_details(self):
display = '\n\n'.join(self.details)
self.details.clear()
return display
def calculate(self, problem):
""" Calculate fitness score based on the solution.
Categories (most valuable to least:
-100,000 when the graph had more than 10,000 nodes and stopped exploring
-1,000,000 when the problem was unsolved.
10,000 * variey of move types
-1,000 * difference from target length
10* max choices at any step
average choices at any step
"""
value = problem.value
fitness = value.get('fitness')
if fitness is not None:
return fitness
board = DriversBoard.create(value['start'])
fitness = 0
graph = DriversGraph(process_count=2)
try:
graph.walk(board, size_limit=self.size_limit)
except GraphLimitExceeded:
fitness -= 100_000
except BaseException:
print('Failed to solve:', file=sys.stderr)
print(board.display(), file=sys.stderr)
raise
min_remaining = graph.min_remaining
if min_remaining is None:
min_remaining = board.width + board.height
if graph.last is None:
fitness -= 1_000_000
fitness -= min_remaining
self.summaries.append('unsolved')
else:
solution_nodes = graph.get_solution_nodes()
solution_moves = graph.get_solution(solution_nodes=solution_nodes)
move_types = {str(pips): 0.1 for pos, pips in board.dice_set.items()}
move_types['domino'] = 0.1
for move in solution_moves:
if len(move) == 3:
move_types['domino'] += 1
move_type = move[0]
move_types[move_type] += 1
variety_score = reduce(operator.mul, move_types.values(), 1)
fitness += variety_score * 10000
if self.target_length is None:
fitness += len(solution_nodes)*1000
else:
fitness -= 1000*abs(len(solution_nodes) - self.target_length)
max_choices = graph.get_max_choices(solution_nodes)
average_choices = graph.get_average_choices(solution_nodes)
fitness -= max_choices*10
fitness -= average_choices
self.summaries.append(', '.join(solution_moves))
self.details.append(
f'{board.width}x{board.height}: {len(solution_moves)} moves, '
f'max {max_choices}, avg {average_choices}, '
f'variety {variety_score}, '
f'{len(graph.graph)} states')
value['fitness'] = fitness
return fitness
class DriversBoard(Board):
@classmethod
def create(cls, state, border=0, max_pips=None) -> 'DriversBoard':
board = super().create(state, border, max_pips)
if board.max_pips is None:
board.max_pips = max(board[x][y].pips
for x in range(board.width)
for y in range(board.height))
if board.dice_set is None:
board.place_dice()
return board
def __init__(self,
width: int,
height: int,
max_pips: int = None,
dice_set: DiceSet = None,
arrows: ArrowSet = None):
super().__init__(width, height, max_pips, dice_set, arrows)
def place_dice(self):
self.dice_set = DiceSet()
placed_pips = set()
for x, y in ((0, self.height-1),
(self.width-1, self.height-1),
(0, 0),
(self.width-1, 0),):
pips = self[x][y].pips
if pips != 0 and pips not in placed_pips:
self.dice_set.dice[x, y] = pips
placed_pips.add(pips)
# Add a graph or search mode for moving dominoes until blanks are connected.
# When you get to a connected state, find the path and then calculate the weight
# of each step by moving dice until the required die is on the domino that
# needs to move. If the dice can't move, then delete the edge. Hold the dice
# positions as an attribute on the domino position's node?
# Another option: nonlinear planning using constraint posting.
class DriversGraph(BoardGraph):
def __init__(self,
board_class=DriversBoard,
process_count: int = 0):
super().__init__(board_class, process_count)
def generate_moves(self, board: DriversBoard) -> typing.Iterator[
MoveDescription]:
""" Generate all moves from the board's current state.
:param Board board: the current state
"""
generated_moves = set()
dice_set = board.dice_set
forced_pips = None
for (x, y), pips in dice_set.items():
cell = board[x][y]
if cell.pips != pips:
forced_pips = pips
break
for (x, y), pips in list(dice_set.items()):
if forced_pips is not None and pips != forced_pips:
# Another die must walk.
continue
# Try to walk die.
for dx, dy in Domino.directions:
x2 = x+dx
y2 = y+dy
if (x2, y2) in dice_set:
continue
cell = board[x2][y2]
if cell is None:
continue
if pips < cell.pips:
continue
positions = [(x, y), (x2, y2)]
move = dice_set.move(*positions, show_length=False)
combined_display = board.display(cropped=True)
total_gaps = self.check_progress(board)
yield MoveDescription(move,
combined_display,
heuristic=total_gaps,
remaining=total_gaps)
positions.reverse()
dice_set.move(*positions)
# Try to drive domino
cell = board[x][y]
if cell.pips != pips:
# Must walk, not drive.
continue
domino = cell.domino
partner_cell = cell.partner
dx = cell.x - partner_cell.x
dy = cell.y - partner_cell.y
partner_position = (partner_cell.x, partner_cell.y)
dice_start_positions = [(x, y)]
if partner_position in dice_set:
dice_start_positions.append(partner_position)
move_sets = (((dx, dy), dice_start_positions),
((-dx, -dy), list(reversed(dice_start_positions))))
for (dx, dy), dice_start_positions in move_sets:
try:
domino.move(dx, dy)
except BoardError:
continue
if board.is_connected():
x, y = dice_start_positions[0]
positions = [(x, y), (x+dx, y+dy)]
move = dice_set.move(*positions, show_length=False)
move = move[0] + 'd' + move[1:]
if len(dice_start_positions) == 2:
x2, y2 = dice_start_positions[1]
positions2 = [(x2, y2), (x2+dx, y2+dy)]
dice_set.move(*positions2)
else:
positions2 = None
combined_display = board.display(cropped=True)
total_gaps = self.check_progress(board)
if move not in generated_moves:
generated_moves.add(move)
yield MoveDescription(move,
combined_display,
remaining=total_gaps,
heuristic=total_gaps)
if len(dice_start_positions) == 2:
positions2.reverse()
dice_set.move(*positions2)
positions.reverse()
dice_set.move(*positions)
domino.move(-dx, -dy)
def check_progress(self, board: DriversBoard) -> int:
""" See how close a board is to a solution. """
positions = {(x, y)
for x in range(board.width)
for y in range(board.height)
if (cell := board[x][y]) is not None and cell.pips == 0}
return count_gaps(positions, board.width, board.height)
def parse_args():
parser = ArgumentParser(description='Search for Donimo Drivers problems.',
formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--max_pips',
'-p',
type=int,
default=4,
help='Maximum number of pips to include on dominoes.')
parser.add_argument('--target_length',
'-l',
type=int,
default=25,
help='Highest scoring solution length.')
parser.add_argument('--pool_size',
'-s',
type=int,
default=100,
help='Number of items in each evolutionary pool.')
parser.add_argument('--offspring',
'-o',
type=int,
default=30,
help='Number of offspring to generate in each pool per epoch.')
parser.add_argument('--num_pools',
'-n',
type=int,
default=2,
help='Number of evolutionary pools.')
parser.add_argument('--epochs',
'-e',
type=int,
default=1000,
help='Number of evolutionary epochs.')
return parser.parse_args()
def main():
start_time = datetime.now()
args = parse_args()
max_pips = args.max_pips
print(f'Searching for solutions of length {args.target_length} '
f'with up to {max_pips} pips.')
target_total = args.target_length
fitness_calculator = DriversFitnessCalculator(target_length=args.target_length,
size_limit=100_000)
init_params = dict(max_pips=max_pips,
width=max_pips+2,
height=max_pips+1)
evo = Evolution(
pool_size=args.pool_size,
fitness=fitness_calculator.calculate,
individual_class=DriversProblem,
n_offsprings=args.offspring,
pair_params=None,
mutate_params=None,
init_params=init_params,
pool_count=args.num_pools)
n_epochs = args.epochs
hist = []
for i in range(n_epochs):
top_individual = evo.pool.individuals[-1]
top_fitness = evo.pool.fitness(top_individual)
mid_fitness = evo.pool.fitness(evo.pool.individuals[-len(evo.pool.individuals)//5])
summaries = []
for pool in evo.pools:
pool_fitness = pool.fitness(pool.individuals[-1])
total = pool_fitness % 1000
summaries.append(f'{total}/{target_total}')
print(i,
top_fitness,
mid_fitness,
repr(top_individual.value['start']),
', '.join(summaries))
hist.append(top_fitness)
evo.step()
best = evo.pool.individuals[-1]
for problem in evo.pool.individuals:
print(evo.pool.fitness(problem))
# plt.plot(hist)
# plt.show()
solution = best.value['start']
print(solution)
duration = datetime.now() - start_time
print(f'Finished {n_epochs} epochs in {duration}.')
if __name__ == '__main__':
main()