-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloader.py
98 lines (76 loc) · 3.44 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import cv2
import random
import os
import numpy as np
import glob
import torch
import scipy.io
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import Compose, ToTensor
from utils import create_character_mask, create_affinity_mask
class SynthText(Dataset):
def __init__(self, data_folder, save_img, save_char, save_aff):
self.label_file = glob.glob(os.path.join(data_folder, '*.mat'))
mat = scipy.io.loadmat(self.label_file[0])
self.images = []
self.char_masks = []
self.aff_masks = []
charBB = mat['charBB']
string = mat['txt']
imnames = mat['imnames']
for i in range(100):
# Load image
self.images.append(os.path.join(save_img, str(i) + '.png'))
img = cv2.imread(os.path.join(data_folder, imnames[0, i][0]))
cv2.imwrite(os.path.join(save_img, str(i) + '.png'), img)
# Gauss image
gauss = cv2.imread('gauss.jpg')
# Character mask
self.char_masks.append(os.path.join(save_char, str(i) + '.png'))
char_mask = create_character_mask(img, gauss, charBB[0, i])
cv2.imwrite(os.path.join(save_char, str(i) + '.png'), char_mask)
# Aff mask
self.aff_masks.append(os.path.join(save_aff, str(i) + '.png'))
aff_mask = create_affinity_mask(img, gauss, charBB[0, i], string[0, i])
cv2.imwrite(os.path.join(save_aff, str(i) + '.png'), aff_mask)
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image = cv2.imread(self.images[idx])
h, w, _ = np.shape(image)
if h % 2 == 1:
h = h - 1
if w % 2 == 1:
w = w - 1
image = cv2.resize(image, (w, h))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
char_mask = cv2.imread(self.char_masks[idx])
char_mask = cv2.resize(char_mask, (int(w / 2), int(h /2)))
char_mask = cv2.cvtColor(char_mask, cv2.COLOR_BGR2GRAY)
char_mask = np.expand_dims(char_mask, axis=2)
aff_mask = cv2.imread(self.aff_masks[idx])
aff_mask = cv2.resize(aff_mask, (int(w / 2), int(h / 2)))
aff_mask = cv2.cvtColor(aff_mask, cv2.COLOR_BGR2GRAY)
aff_mask = np.expand_dims(aff_mask, axis=2)
# Convert to tensor
tranforms = ToTensor()
image = tranforms(image)
char_mask = tranforms(char_mask)
aff_mask = tranforms(aff_mask)
# image = image.permute(2, 0, 1)
# char_mask = char_mask.permute(2, 0, 1)
# aff_mask = aff_mask.permute(2, 0, 1)
return image, char_mask, aff_mask
class SynthTextLoader(object):
def __init__(self, batch_size, shuffle, data_folder, save_img, save_char, save_aff):
self.batch_size = batch_size
self.shuffle = shuffle
self.dataset = SynthText(data_folder, save_img, save_char, save_aff)
def loader(self):
return DataLoader(self.dataset, batch_size=self.batch_size, shuffle=self.shuffle)
if __name__ == '__main__':
save_img = '/mnt/data/hades/source/sekiwa_rnd/dataset/synthtext/images'
save_char = '/mnt/data/hades/source/sekiwa_rnd/dataset/synthtext/char_mask'
save_aff = '/mnt/data/hades/source/sekiwa_rnd/dataset/synthtext/aff_mask'
data_loader = SynthTextLoader(1, True, '/mnt/data/hades/source/ocr_rnd/datasets/SynthText', save_img, save_char, save_aff)
data_loader = data_loader.loader()