forked from datitran/raccoon_dataset
-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathgenerate_tfrecord.py
142 lines (115 loc) · 5.04 KB
/
generate_tfrecord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import os
import io
import pandas as pd
import tensorflow as tf
import argparse
from PIL import Image
from tqdm import tqdm
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict
def __split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
def create_tf_example(group, path, class_dict):
with tf.io.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size
filename = group.filename.encode('utf8')
image_format = b'jpg'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []
for index, row in group.object.iterrows():
if set(['xmin_rel', 'xmax_rel', 'ymin_rel', 'ymax_rel']).issubset(set(row.index)):
xmin = row['xmin_rel']
xmax = row['xmax_rel']
ymin = row['ymin_rel']
ymax = row['ymax_rel']
elif set(['xmin', 'xmax', 'ymin', 'ymax']).issubset(set(row.index)):
xmin = row['xmin'] / width
xmax = row['xmax'] / width
ymin = row['ymin'] / height
ymax = row['ymax'] / height
xmins.append(xmin)
xmaxs.append(xmax)
ymins.append(ymin)
ymaxs.append(ymax)
classes_text.append(str(row['class']).encode('utf8'))
classes.append(class_dict[str(row['class'])])
tf_example = tf.train.Example(features=tf.train.Features(
feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes), }))
return tf_example
def class_dict_from_pbtxt(pbtxt_path):
# open file, strip \n, trim lines and keep only
# lines beginning with id or display_name
with open(pbtxt_path, 'r', encoding='utf-8-sig') as f:
data = f.readlines()
name_key = None
if any('display_name:' in s for s in data):
name_key = 'display_name:'
elif any('name:' in s for s in data):
name_key = 'name:'
if name_key is None:
raise ValueError(
"label map does not have class names, provided by values with the 'display_name' or 'name' keys in the contents of the file"
)
data = [l.rstrip('\n').strip() for l in data if 'id:' in l or name_key in l]
ids = [int(l.replace('id:', '')) for l in data if l.startswith('id')]
names = [
l.replace(name_key, '').replace('"', '').replace("'", '').strip() for l in data
if l.startswith(name_key)]
# join ids and display_names into a single dictionary
class_dict = {}
for i in range(len(ids)):
class_dict[names[i]] = ids[i]
return class_dict
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Create a TFRecord file for use with the TensorFlow Object Detection API.',
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('csv_input', metavar='csv_input', type=str, help='Path to the CSV input')
parser.add_argument('pbtxt_input',
metavar='pbtxt_input',
type=str,
help='Path to a pbtxt file containing class ids and display names')
parser.add_argument('image_dir',
metavar='image_dir',
type=str,
help='Path to the directory containing all images')
parser.add_argument('output_path',
metavar='output_path',
type=str,
help='Path to output TFRecord')
args = parser.parse_args()
class_dict = class_dict_from_pbtxt(args.pbtxt_input)
writer = tf.compat.v1.python_io.TFRecordWriter(args.output_path)
path = os.path.join(args.image_dir)
examples = pd.read_csv(args.csv_input)
grouped = __split(examples, 'filename')
for group in tqdm(grouped, desc='groups'):
tf_example = create_tf_example(group, path, class_dict)
writer.write(tf_example.SerializeToString())
writer.close()
output_path = os.path.join(os.getcwd(), args.output_path)
print('Successfully created the TFRecords: {}'.format(output_path))