forked from datitran/raccoon_dataset
-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathgenerate_train_eval.py
56 lines (47 loc) · 1.95 KB
/
generate_train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import argparse
import pandas as pd
from sklearn.model_selection import train_test_split
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Separates a CSV file into training and validation sets',
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('input_csv',
metavar='input_csv',
type=str,
help='Path to the input CSV file')
parser.add_argument(
'-f',
metavar='train_frac',
type=float,
default=.75,
help='fraction of the dataset that will be separated for training (default .75)')
parser.add_argument('-s',
metavar='stratify',
type=bool,
default=True,
help='Stratify by class instead of whole dataset (default True)')
parser.add_argument(
'-o',
metavar='output_dir',
type=str,
default=None,
help='Directory to output train and evaluation datasets (default input_csv directory)')
args = parser.parse_args()
if args.f < 0 or args.f > 1:
raise ValueError('train_frac must be between 0 and 1')
# output_dir = input_csv directory is None
if args.o is None:
output_dir, _ = os.path.split(args.input_csv)
else:
output_dir = args.o
df = pd.read_csv(args.input_csv)
# get 'class' column for stratification
strat = df['class'] if args.s else None
train_df, validation_df = train_test_split(df, test_size=None, train_size=args.f, stratify=strat)
# output files have the same name of the input file, with some extra stuff appended
new_csv_name = os.path.splitext(args.input_csv)[0]
train_csv_path = os.path.join(output_dir, new_csv_name + '_train.csv')
eval_csv_path = os.path.join(output_dir, new_csv_name + '_eval.csv')
train_df.to_csv(train_csv_path, index=False)
validation_df.to_csv(eval_csv_path, index=False)