-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn.py
52 lines (41 loc) · 2.03 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from engine import Value
import random
class Module:
def zero_grad(self): # Reset the grads of all parameters associated with the Module to zero
for p in self.parameters():
p.grad = 0
def parameters(self): # returns list of parameters
return []
class Neuron(Module):
def __init__(self, nin):
self.w = [Value(random.uniform(-1, 1)) for _ in range(nin)] # initialize weights randomly in range of -1 to 1
self.b = Value(0) # bias to 0
def __call__(self, x):
act = sum((wi * xi for wi, xi in zip(self.w, x)), self.b) # iterate over the tuple and calculate the weighted sum
out = act.tanh() # applying tanh activation function
return out
def parameters(self):
return self.w + [self.b]
class Layer:
def __init__(self, nin, nout):
# Creating neurons in layer with 'nin' input connections each
self.neurons = [Neuron(nin) for _ in range(nout)]
def __call__(self, x):
outs = [n(x) for n in self.neurons] # iterates through each neurons
return outs[0] if len(outs) == 1 else outs # in output layer, there is only one neuron. so it directly returns the output
def parameters(self):
# gather all parameters from all neurns in layer and returns them as a single list
return [p for neuron in self.neurons for p in neuron.parameters()]
class MLP:
def __init__(self, nin, nouts):
sz = [nin] + nouts # list with no. of i/p layers followed by no. of o/p neurons
self.layers = [Layer(sz[i], sz[i+1]) for i in range(len(nouts))]
#MLP(3, [4, 4, 1]) --> 3 i/p neurons; 2 hidden layers with 4 neurons; 1 o/p layer with 1 neuron
def __call__(self, x):
# Iterate through each layer and pass x to each layer sequentially
for layer in self.layers:
x = layer(x)
return x
def parameters(self):
# Gather all parameters from all layers in MLP and returns them as single list
return [p for layer in self.layers for p in layer.parameters()]