-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathanalyzervehicle.cpp
375 lines (335 loc) · 9.45 KB
/
analyzervehicle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
#include "analyzervehicle.h"
using namespace AnalyzerVehicle;
#define __STDC_FORMAT_MACROS 1 // for e.g. %PRIu64
#include "inttypes.h"
#include "analyzer_util.h"
#include "analyzervehicle_copter.h"
#include "analyzervehicle_plane.h"
#include "analyzervehicle_rover.h"
char *
xcalloc(size_t size)
{
char *ret = (char*)calloc(1, size);
if (ret == NULL) {
fprintf(stderr, "Failed to calloc: %s", strerror(errno));
abort();
}
return ret;
}
void Base::switch_vehicletype(Base *&_vehicle, vehicletype_t newtype) {
AnalyzerVehicle::Base *vehicle_new;
switch (newtype) {
case copter:
vehicle_new = new AnalyzerVehicle::Copter();
break;
case plane:
vehicle_new = new AnalyzerVehicle::Plane();
break;
case rover:
vehicle_new = new AnalyzerVehicle::Rover();
break;
default:
::fprintf(stderr, "unknown type");
abort();
}
AnalyzerVehicle::Base *vehicle_old = _vehicle;
vehicle_new->take_state(vehicle_old);
_vehicle = vehicle_new;
delete vehicle_old;
}
void Base::set_T(const uint64_t time_us)
{
if (time_us < _T) {
::fprintf(stderr, "time going backwards (%" PRIu64 " < %" PRIu64 ") (delta=%" PRIi64 ")\n", time_us, _T, time_us - _T);
return;
}
_T = time_us;
// ::fprintf(stderr, "Set T to (%lu)\n", T);
}
bool Base::param_default(const char *name, float &ret) const
{
auto it = _param_defaults.find(name);
if (it != _param_defaults.end()) {
ret = it->second;
return true;
}
return false;
}
// will return value of param if seen, otherwise a default value
bool Base::param_with_defaults(const char *name, float &ret) const
{
if (param_seen(name)) {
ret = param(name);
return true;
}
return param_default(name, ret);
}
uint64_t Base::param_T(const std::string name) const {
auto it = _param_T.find(name);
if (it != _param_T.end()) {
return it->second;
}
::fprintf(stderr, "param_T called for non-existant parameter (%s)\n", name.c_str());
return 0;
}
// will return value of param if seen, otherwise a default value
float Base::require_param_with_defaults(const char *name) const
{
if (param_seen(name)) {
return param(name);
}
float ret;
if (!param_default(name, ret)) {
::fprintf(stderr, "No %s parameter", name);
abort();
}
return ret;
}
bool Base::param(const char *name, float &ret) const
{
if (!param_seen(name)) {
return false;
}
ret = param(name);
return true;
}
bool Base::param(const std::string name, float &ret) const
{
const char *xname = name.c_str();
if (!param_seen(xname)) {
return false;
}
ret = param(xname);
return true;
}
float Base::param(const std::string name) const
{
const std::string x = std::string(name);
// ::fprintf(stderr, "Looking for (%s)\n", name);
auto it = _param.find(name);
if (it == _param.end()) {
::fprintf(stderr, "asked for unseen parameter");
abort();
}
return it->second;
}
void Base::param_set(const char *name, const float value)
{
// ::fprintf(stderr, "T=%lu %s=%f\n", T(), name, value);
_param[name] = value;
_param_T[name] = T();
}
void Base::take_state(Base *old)
{
_param.insert(old->_param.begin(), old->_param.end());
_param_T.insert(old->_param_T.begin(), old->_param_T.end());
set_armed(old->is_armed());
}
bool Base::param_seen(const std::string name) const
{
const std::string x = std::string(name);
// ::fprintf(stderr, "Looking for (%s)\n", name);
auto it = _param.find(name);
if (it != _param.end()) {
return true;
}
return false;
}
void Base::set_servo_output(uint16_t ch1, uint16_t ch2, uint16_t ch3, uint16_t ch4, uint16_t ch5, uint16_t ch6, uint16_t ch7, uint16_t ch8)
{
_servo_output[1] = (float)ch1;
_servo_output[2] = (float)ch2;
_servo_output[3] = (float)ch3;
_servo_output[4] = (float)ch4;
_servo_output[5] = (float)ch5;
_servo_output[6] = (float)ch6;
_servo_output[7] = (float)ch7;
_servo_output[8] = (float)ch8;
}
bool Base::relative_alt(double &relative) const
{
if (origin_altitude_T() == 0) {
return false;
}
if (alt().alt_modtime() == 0) {
return false;
}
relative = alt().alt() - origin_altitude();
return true;
}
void Base::set_servo_output(const uint8_t channel_number, const uint16_t value)
{
_servo_output[channel_number] = (float)value;
}
// haversine formula:
// http://www.movable-type.co.uk/scripts/latlong.html
double haversine(double from_lat, double from_lon, double to_lat, double to_lon) {
double lat_delta_radians = deg_to_rad(from_lat - to_lat);
double lon_delta_radians = deg_to_rad(from_lon - to_lon);
double sin_lat_delta_radians = sin(lat_delta_radians * 0.5);
sin_lat_delta_radians *= sin_lat_delta_radians;
double sin_lon_delta_radians = sin(lon_delta_radians * 0.5);
sin_lon_delta_radians *= sin_lon_delta_radians;
return 2.0 * asin(sqrt(sin_lat_delta_radians +
cos(deg_to_rad(from_lat)) * cos(deg_to_rad(to_lat))*sin_lon_delta_radians));
}
double AnalyzerVehicle::Position::horizontal_distance_to(AnalyzerVehicle::Position otherpos) const
{
return (double)earthradius() * (haversine(lat(), lon(), otherpos.lat(), otherpos.lon()));
}
// if the gyro has ever clipped, returns that time
// otherwise returns 0
uint64_t AnalyzerVehicle::IMU::last_acc_clip_time() const
{
if (_acc_clip_count == 0) {
return 0;
}
return _acc_clip_count_T;
}
// set the number of times this acc has clipped
void AnalyzerVehicle::IMU::set_acc_clip_count(const uint16_t count)
{
if (count > _acc_clip_count) {
_acc_clip_count = count;
_acc_clip_count_T = _T;
} else if (count < _acc_clip_count) {
// fprintf(stderr, "Weird: clip count going bacwards");
}
}
// returns true if any clipping event happened in the last 0.1 seconds
bool AnalyzerVehicle::IMU::acc_is_clipping() const
{
uint64_t last_clip_time = last_acc_clip_time();
if (last_clip_time == 0) {
return false;
}
if (T() - last_clip_time < 100000) { // FIXME: magic number
return true;
}
return false;
}
void AnalyzerVehicle::IMU::set_gyr(const uint64_t T, const Vector3f gyr)
{
// ::fprintf(stderr, "Using timestamp (%lu) for timestamp\n", T);
_gyr_hist[_gyr_next].gyr = gyr;
_gyr_hist[_gyr_next].T = T;
_gyr_next++;
if (_gyr_next >= _gyr_hist_max) {
_gyr_next = 0;
}
_gyr_T = T; // FIXME: just take the most recent entry
if (_gyr_seen < _gyr_hist_max) {
_gyr_seen++;
}
}
bool AnalyzerVehicle::IMU::gyr_avg(const uint16_t count, Vector3f &ret) const {
uint16_t offset = _gyr_next;
uint32_t used = 0;
ret = { };
if (count > _gyr_hist_max) {
::fprintf(stderr, "insufficient history (%d > %d)", count, _gyr_hist_max);
abort();
}
if (_gyr_seen < count) {
return false;
}
while (used < count) {
if (offset == 0) {
offset = _gyr_hist_max-1;
} else {
offset--;
}
ret += _gyr_hist[offset].gyr;
used++;
}
ret /= used;
return true;
}
bool AnalyzerVehicle::IMU::gyr_avg(const uint64_t T, const uint64_t delta_T, Vector3f &ret) const {
uint16_t offset = _gyr_next;
uint32_t used = 0;
ret = { };
if (delta_T > T) {
return false;
}
uint64_t not_before = T - delta_T;
while (true) {
if (used >= _gyr_seen) {
return false;
}
if (offset == 0) {
offset = _gyr_hist_max-1;
} else {
offset--;
}
if (_gyr_hist[offset].T < not_before) {
if (_gyr_hist[offset].T == 1000) {
abort();
}
break;
}
ret += _gyr_hist[offset].gyr;
used++;
}
ret /= used;
return true;
}
bool Base::any_acc_clipping() const
{
for (auto x = _imus.begin(); x != _imus.end(); x++) {
if ((*x).second->acc_is_clipping()) {
return true;
}
}
return false;
}
double AnalyzerVehicle::Base::distance_from_origin()
{
if (pos().is_zero_zero() || origin().is_zero_zero()) {
return -1;
}
// ::fprintf(stderr, "distance: %f\n", pos().horizontal_distance_to(origin()));
return pos().horizontal_distance_to(origin());
}
uint64_t AnalyzerVehicle::EKF::variance_T(std::string name) const {
auto it = _variances_T.find(name);
if (it != _variances_T.end()) {
return it->second;
}
return 0;
}
void AnalyzerVehicle::AutoPilot::set_overruns(uint64_t T, uint16_t overruns)
{
_overruns = overruns;
_overruns_T = T;
}
void AnalyzerVehicle::AutoPilot::set_loopcount(uint64_t T, uint16_t loopcount)
{
_loopcount = loopcount;
_loopcount_T = T;
}
void AnalyzerVehicle::AutoPilot::set_slices_max(uint64_t T, uint16_t slices_max)
{
_slices_max = slices_max;
_slices_max_T = T;
}
void AnalyzerVehicle::AutoPilot::set_slices_min(uint64_t T, uint16_t slices_min)
{
_slices_min = slices_min;
_slices_min_T = T;
}
void AnalyzerVehicle::AutoPilot::set_slices_avg(uint64_t T, uint16_t slices_avg)
{
_slices_avg = slices_avg;
_slices_avg_T = T;
}
void AnalyzerVehicle::AutoPilot::set_slices_stddev(uint64_t T, uint16_t slices_stddev)
{
_slices_stddev = slices_stddev;
_slices_stddev_T = T;
}
void AnalyzerVehicle::AutoPilot::set_vcc(uint64_t T, double vcc)
{
_vcc = vcc;
_vcc_T = T;
}