-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetDesignMatrix.m
79 lines (73 loc) · 3.64 KB
/
getDesignMatrix.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
function out = getDesignMatrix(lfpstack, Fp, varargin)
% Given a set of animal, day, epoch, timestamps.. return design matrix
% of experiment variables:
% Demetris Roumis 2019
pconf = paramconfig;
saveout = 1;
outdir = 'expvarCont';
outpath = [pconf.andef{2},outdir,'/'];
if ~isempty(varargin)
assign(varargin{:})
end
expvars = {'timeSinceDay', 'timeSinceEpoch','xpos', 'ypos', 'headdirection', 'speed',...
'performance', 'learningrate'}; %, 'timeSinceLastReward', 'timeUntilNextReward', 'ripnum'};
numvars = length(expvars);
out = struct;
for ian = 1:length(lfpstack)
animal = lfpstack(ian).animal;
andef = animaldef(animal);
out(ian).animal = animal;
numrips = length(lfpstack(ian).ripStartTime);
out(ian).ripStartTime = lfpstack(ian).ripStartTime;
out(ian).ripEndTime = lfpstack(ian).ripEndTime;
out(ian).dayeps = [lfpstack(ian).day lfpstack(ian).epoch];
out(ian).expvars = expvars;
out(ian).dm = nan(numrips,numvars);
% timeSinceDay is just the ripstarttimes
out(ian).dm(:,1) = lfpstack(ian).ripStartTime;
% get position, speed vars
dayeps = unique(out(ian).dayeps,'rows', 'stable');
load(sprintf('%s/%sBehaveState.mat',andef{1,2}, animal));
allbound = BehaveState.statespace.allbound;
out(ian).dm(:,11) = 1:numrips;
for ide = 1:length(dayeps(:,1))
day = dayeps(ide,1);
epoch = dayeps(ide,2);
iderips = ismember(out(ian).dayeps, [day epoch], 'rows');
ideripstarts = out(ian).ripStartTime(iderips);
load(sprintf('%s%s%s%02d.mat',andef{1,2}, animal, 'pos', day));
ripidx = knnsearch(pos{day}{epoch}.data(:,1), ideripstarts);
% time since epoch
epochstartime = pos{day}{epoch}.data(1,1);
out(ian).dm(iderips,2) = ideripstarts - epochstartime;
% pos vars
out(ian).dm(iderips,[3 4 5 6]) = pos{day}{epoch}.data(ripidx,[6 7 8 9]);
% get performance and reward vars
allbound_inep_inds = ismember(allbound(:,[5 6]), [day epoch], 'rows');
bscorrect = logical(BehaveState.statespace.allepsMat(allbound_inep_inds,7));
bstimes = BehaveState.statespace.allepsMat(allbound_inep_inds,3);
if isempty(bstimes)
fprintf('no behavestate %s day %d epoch %d. skipping\n',animal,day,epoch);
continue
end
bsmode = allbound(allbound_inep_inds,1);
bsmodediff = abs(diff(allbound(allbound_inep_inds,1)));
out(ian).dm(iderips,[7]) = interp1(bstimes, bsmode, ideripstarts);
out(ian).dm(iderips,[8]) = interp1(bstimes(2:end),bsmodediff,ideripstarts);
% these have too many nans and trim the data too much
% % time since last reward
% iseidxrips = find(iderips);
% rewardtimes = bstimes(bscorrect);
% timesincelast = arrayfun(@(x) x-rewardtimes(max(find(rewardtimes<x))), ideripstarts, 'un', 0);
% usel = cellfun(@(x) ~isempty(x),timesincelast,'un',1);
% designmat(ian).dm(iseidxrips(usel),9) = cell2mat(timesincelast(usel));
% % time until next reward
% timeuntilnext = arrayfun(@(x) x-rewardtimes(find(rewardtimes>x,1)), ideripstarts, 'un', 0);
% usen = cellfun(@(x) ~isempty(x),timeuntilnext,'un',1);
% designmat(ian).dm(iseidxrips(usen),10) = cell2mat(timeuntilnext(usen));
end
end
if saveout
save_data(out, outpath, [outdir,'_',Fp.epochEnvironment]);
end
end