-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathp412_inception_resnet_v2_flowers-b.py
58 lines (45 loc) · 2.19 KB
/
p412_inception_resnet_v2_flowers-b.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import tensorflow as tf
import tensorflow.contrib.slim as slim
import inception_resnet_v2 as model
checkpoints_dir = "./data/model"
flowers_data_dir = "./data/flower_photos"
def load_batch(dataset, batch_size=4, height=299, width=299, is_training=True):
import tensorflow.contrib.slim.python.slim.data.dataset_data_provider as provider
data_provider = provider.DatasetDataProvider(dataset, common_queue_capacity=8, common_queue_min=1)
image_raw, label = data_provider.get(['image', 'label'])
image_raw = tf.image.resize_images(image_raw, [height, width])
image_raw = tf.image.convert_image_dtype(image_raw, tf.float32)
images_raw, labels = tf.train.batch([image_raw, label],
batch_size=batch_size,
num_threads=1,
capacity=2 * batch_size)
return images_raw, labels
fintuning = tf.Graph()
with fintuning.as_default():
tf.logging.set_verbosity(tf.logging.INFO)
# 获取数据集
from datasets import flowers
dataset = flowers.get_split("train", flowers_data_dir)
images, labels = load_batch(dataset)
# 载入模型,此时模型未载入参数
with slim.arg_scope(model.inception_resnet_v2_arg_scope()):
pre, _ = model.inception_resnet_v2(images, num_classes=1001)
pre = slim.fully_connected(pre, 5)
probabilities = tf.nn.softmax(pre)
# 对标签进行格式化处理
one_hot_labels = slim.one_hot_encoding(labels, 5)
# 创建损失函数
slim.losses.softmax_cross_entropy(probabilities, one_hot_labels)
total_loss = slim.losses.get_total_loss()
# 创建训练节点
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
train_op = slim.learning.create_train_op(total_loss, optimizer)
# 创建载入模型权重的函数
model_path = "./data/model/inception_resnet_v2_2016_08_30.ckpt"
variables = slim.get_model_variables("InceptionResnetV2")
init_fn = slim.assign_from_checkpoint_fn(model_path, variables)
with tf.Session() as sess:
init_fn(sess)
print("done")
final_loss = slim.learning.train(train_op, logdir=None, number_of_steps=100)