forked from Rockyzsu/stock
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathselect_stock.py
546 lines (477 loc) · 17.8 KB
/
select_stock.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
# -*-coding=utf-8-*-
# 适用 tushare 0.7.5
__author__ = 'Rocky'
'''
http://30daydo.com
Contact: [email protected]
'''
import tushare as ts
import pandas as pd
import os, sys, datetime, time, Queue, codecs
import numpy as np
from toolkit import Toolkit
from threading import Thread
from pandas import Series
q = Queue.Queue()
# 用来选股用的
pd.set_option('max_rows', None)
from setting import get_engine
engine = get_engine('db_stock')
# 缺陷: 暂时不能保存为excel
class filter_stock():
def __init__(self,retry=5,local=False):
if local:
for i in range(retry):
try:
self.bases_save = ts.get_stock_basics()
# print(self.bases_save)
self.bases_save=self.bases_save.reset_index()
self.bases_save.to_csv('bases.csv')
self.bases_save.to_sql('bases',engine,if_exists='replace')
if self.bases_save:
break
except Exception as e:
if i>=4:
self.bases_save=pd.DataFrame()
exit()
continue
else:
self.bases_save = pd.read_sql('bases',engine,index_col='index')
self.base=self.bases_save
# 因为网速问题,手动从本地抓取
self.today = time.strftime("%Y-%m-%d", time.localtime())
# self.base = pd.read_csv('bases.csv', dtype={'code': np.str})
self.all_code = self.base['code'].values
self.working_count = 0
self.mystocklist = Toolkit.read_stock('mystock.csv')
# 保存为excel 文件 这个时候csv 乱码,excel正常.
def save_data_excel(self):
df = ts.get_stock_basics()
df.to_csv(self.today + '.csv', encoding='gbk')
df_x = pd.read_csv(self.today + '.csv', encoding='gbk')
df_x.to_excel(self.today + '.xls', encoding='gbk')
os.remove(self.today + '.csv')
def insert_garbe(self):
print('*' * 30)
print('\n')
def showInfo(self, df):
print('*' * 30)
print('\n')
print(df.info())
print('*' * 30)
print('\n')
print(df.dtypes)
self.insert_garbe()
print(df.describe())
# 计算每个地区有多少上市公司
def count_area(self, writeable=False):
count = self.base['area'].value_counts()
print(count)
print(type(count))
if writeable:
count.to_csv('各省的上市公司数目.csv')
return count
# 显示你要的某个省的上市公司
def get_area(self, area, writeable=False):
user_area = self.base[self.base['area'] == area]
user_area.sort_values('timeToMarket', inplace=True, ascending=False)
if writeable:
filename = area + '.csv'
user_area.to_csv(filename)
return user_area
# 获取所有地区的分类个股
def get_all_location(self):
series = self.count_area()
index = series.index
for i in index:
name = unicode(i)
self.get_area(name, writeable=True)
# 找出指定日期后的次新股
def fetch_new_ipo(self, start_time, writeable=False):
# 需要继续转化为日期类型
df = self.base.loc[self.base['timeToMarket'] > start_time]
df.sort_values('timeToMarket', inplace=True, ascending=False)
if writeable == True:
df.to_csv("New_IPO.csv")
# sum_a=df['pe'].sum()
pe_av = df[df['pe'] != 0]['pe'].mean()
pe_all_av = self.base[self.base['pe'] != 0]['pe'].mean()
print(u"平均市盈率为 ", pe_av)
print('A股的平均市盈率为 ', pe_all_av)
return df
# 获取成分股
def get_chengfenggu(self, writeable=False):
s50 = ts.get_sz50s()
if writeable == True:
s50.to_excel('sz50.xls')
list_s50 = s50['code'].values.tolist()
# print(type(s50))
# print(type(list_s50))
# 返回list类型
return list_s50
# 计算一个票从最高位到目前 下跌多少 计算跌幅
def drop_down_from_high(self, start, code):
end_day = datetime.date(datetime.date.today().year, datetime.date.today().month, datetime.date.today().day)
end_day = end_day.strftime("%Y-%m-%d")
# print(e)nd_day
# print(start)
total = ts.get_k_data(code=code, start=start, end=end_day)
# print(total)
high = total['high'].max()
high_day = total.loc[total['high'] == high]['date'].values[0]
print(high)
print(high_day)
current = total['close'].values[-1]
print(current)
percent = round((current - high) / high * 100, 2)
print(percent)
return percent
def loop_each_cixin(self):
df = self.fetch_new_ipo(20170101, writeable=False)
all_code = df['code'].values
print(all_code)
# exit()
percents = []
for each in all_code:
print(e)ach
# print(type(each))
percent = self.drop_down_from_high('2017-01-01', each)
percents.append(percent)
df['Drop_Down'] = percents
# print(df)
df.sort_values('Drop_Down', ascending=True, inplace=True)
# print(df)
df.to_csv(self.today + '_drop_Down_cixin.csv')
# 获取所有的ma5>ma10
def macd(self):
# df=self.fetch_new_ipo(writeable=True)
# all_code=df['code'].values
# all_code=self.get_all_code()
# print(all_code)
result = []
for each_code in self.all_code:
print(e)ach_code
try:
df_x = ts.get_k_data(code=each_code, start='2017-03-01')
# 只找最近一个月的,所以no item的是停牌。
except:
print("Can't get k_data")
continue
if len(df_x) < 11:
# return
print("no item")
continue
ma5 = df_x['close'][-5:].mean()
ma10 = df_x['close'][-10:].mean()
if ma5 > ma10:
# print("m5>m10: ",each_code," ",self.base[self.base['code']==each_code]['name'].values[0], "ma5: ",ma5,' m10: ',ma10)
temp = [each_code, self.base[self.base['code'] == each_code]['name'].values[0]]
print(temp)
result.append(temp)
print(result)
print("Done")
return result
# 返回所有股票的代码
def get_all_code(self):
return self.all_code
# 获取成交量的ma5 或者10
def volume_calculate(self, codes):
delta_day = 180 * 7 / 5
end_day = datetime.date(datetime.date.today().year, datetime.date.today().month, datetime.date.today().day)
start_day = end_day - datetime.timedelta(delta_day)
start_day = start_day.strftime("%Y-%m-%d")
end_day = end_day.strftime("%Y-%m-%d")
print(start_day)
print(e)nd_day
result_m5_large = []
result_m5_small = []
for each_code in codes:
# print(e)ach_code
try:
df = ts.get_k_data(each_code, start=start_day, end=end_day)
print(df)
except Exception as e:
print("Failed to get")
print(e)
continue
if len(df) < 20:
# print("not long enough")
continue
print(e)ach_code
all_mean = df['volume'].mean()
m5_volume_m = df['volume'][-5:].mean()
m10_volume_m = df['volume'][-10:].mean()
last_vol = df['volume'][-1] # 这里会不会有问题???
# 在这里分几个分支,放量 180天均量的4倍
if m5_volume_m > (4.0 * all_mean):
print("m5 > m_all_avg ")
print(e)ach_code,
temp = self.base[self.base['code'] == each_code]['name'].values[0]
print(temp)
result_m5_large.append(each_code)
# 成交量萎缩
if last_vol < (m5_volume_m / 3.0):
result_m5_small.append(each_code)
return result_m5_large, result_m5_large
def turnover_check(self):
delta_day = 60 * 7 / 5
end_day = datetime.date(datetime.date.today().year, datetime.date.today().month, datetime.date.today().day)
start_day = end_day - datetime.timedelta(delta_day)
start_day = start_day.strftime("%Y-%m-%d")
end_day = end_day.strftime("%Y-%m-%d")
print(start_day)
print(e)nd_day
for each_code in self.all_code:
try:
df = ts.get_hist_data(code=each_code, start=start_day, end=end_day)
except:
print("Failed to get data")
continue
mv5 = df['v_ma5'][-1]
mv20 = df['v_ma20'][-1]
mv_all = df['volume'].mean()
print
# 写入csv文件
def write_to_text(self):
print("On write")
r = self.macd()
filename = self.today + "-macd.csv"
f = open(filename, 'w')
for i in r:
f.write(i[0])
f.write(',')
f.write(i[1])
f.write('\n')
f.close()
def saveList(self, l, name):
f = open(self.today + name + '.csv', 'w')
if len(l) == 0:
return False
for i in l:
f.write(i)
f.write(',')
name = self.base[self.base['code'] == i]['name'].values[0]
f.write(name)
f.write('\n')
f.close()
return True
# 读取自己的csv文件
def read_csv(self):
filename = self.today + "-macd.csv"
df = pd.read_csv(filename)
print(df)
# 持股从高点下跌幅度
def own_drop_down(self):
for i in self.mystocklist:
print(i)
self.drop_down_from_high(code=i, start='2017-01-01')
print('\n')
# 持股跌破均线
def _break_line(self, codes, k_type):
delta_day = 60 * 7 / 5
end_day = datetime.date(datetime.date.today().year, datetime.date.today().month, datetime.date.today().day)
start_day = end_day - datetime.timedelta(delta_day)
start_day = start_day.strftime("%Y-%m-%d")
end_day = end_day.strftime("%Y-%m-%d")
print(start_day)
print(end_day)
all_break = []
for i in codes:
try:
df = ts.get_hist_data(code=i, start=start_day, end=end_day)
if len(df) == 0:
continue
except Exception as e:
print(e)
continue
else:
self.working_count = self.working_count + 1
current = df['close'][0]
ma5 = df['ma5'][0]
ma10 = df['ma10'][0]
ma20 = df['ma20'][0]
ma_dict = {'5': ma5, '10': ma10, '20': ma20}
ma_x = ma_dict[k_type]
# print(ma_x)
if current < ma_x:
print('破位')
print(i, " current: ", current)
print(self.base[self.base['code'] == i]['name'].values[0], " ")
print("holding place: ", ma_x)
print("Break MA", k_type, "\n")
all_break.append(i)
return all_break
# 检查自己的持仓或者市场所有破位的
def break_line(self, code, k_type='20', writeable=False, mystock=False):
all_break = self._break_line(code, k_type)
l = len(all_break)
beaking_rate = l * 1.00 / self.working_count * 100
print("how many break: ", l)
print("break Line rate ", beaking_rate)
if mystock == False:
name = '_all_'
else:
name = '_my__'
if writeable:
f = open(self.today + name + 'break_line_' + k_type + '.csv', 'w')
f.write("Breaking rate: %f\n\n" % beaking_rate)
f.write('\n'.join(all_break))
f.close()
def _break_line_thread(self, codes, k_type='5'):
delta_day = 60 * 7 / 5
end_day = datetime.date(datetime.date.today().year, datetime.date.today().month, datetime.date.today().day)
start_day = end_day - datetime.timedelta(delta_day)
start_day = start_day.strftime("%Y-%m-%d")
end_day = end_day.strftime("%Y-%m-%d")
print(start_day)
print(e)nd_day
all_break = []
for i in codes:
try:
df = ts.get_hist_data(code=i, start=start_day, end=end_day)
if len(df) == 0:
continue
except Exception as e:
print(e)
continue
else:
self.working_count = self.working_count + 1
current = df['close'][0]
ma5 = df['ma5'][0]
ma10 = df['ma10'][0]
ma20 = df['ma20'][0]
ma_dict = {'5': ma5, '10': ma10, '20': ma20}
ma_x = ma_dict[k_type]
# print(ma_x)
if current > ma_x:
print(i, " current: ", current)
print(self.base[self.base['code'] == i]['name'].values[0], " ")
print("Break MA", k_type, "\n")
all_break.append(i)
q.put(all_break)
def multi_thread_break_line(self, ktype='20'):
total = len(self.all_code)
thread_num = 10
delta = total / thread_num
delta_left = total % thread_num
t = []
i = 0
for i in range(thread_num):
sub_code = self.all_code[i * delta:(i + 1) * delta]
t_temp = Thread(target=self._break_line_thread, args=(sub_code, ktype))
t.append(t_temp)
if delta_left != 0:
sub_code = self.all_code[i * delta:i * delta + delta_left]
t_temp = Thread(target=self._break_line_thread, args=(sub_code, ktype))
t.append(t_temp)
for i in range(len(t)):
t[i].start()
for j in range(len(t)):
t[j].join()
result = []
print("working done")
while not q.empty():
result.append(q.get())
ff = open(self.today + '_high_m%s.csv' % ktype, 'w')
for kk in result:
print(kk)
for k in kk:
ff.write(k)
ff.write(',')
ff.write(self.base[self.base['code'] == k]['name'].values[0])
ff.write('\n')
ff.close()
# 计算大盘的相关系,看关系如何
def relation(self):
sh_index = ts.get_k_data('000001', index=True, start='2012-01-01')
sh = sh_index['close'].values
print(sh)
vol_close = sh_index.corr()
print(vol_close)
'''
sz_index=ts.get_k_data('399001',index=True)
sz=sz_index['close'].values
print(sz)
cy_index=ts.get_k_data('399006',index=True)
s1=Series(sh)
s2=Series(sz)
print(s1.corr(s2))
'''
# 寻找业绩两年未负的,以防要st
def profit(self):
df_2016 = ts.get_report_data(2016, 4)
# 第四季度就是年报
# df= df.sort_values('profits_yoy',ascending=False)
# df.to_excel('profit.xls')
df_2015 = ts.get_report_data(2015, 4)
df_2016.to_excel('2016_report.xls')
df_2015.to_excel('2015_report.xls')
code_2015_lost = df_2015[df_2015['net_profits'] < 0]['code'].values
code_2016_lost = df_2016[df_2016['net_profits'] < 0]['code'].values
print(code_2015_lost)
print(code_2016_lost)
two_year_lost = []
# two_year_lost_name=[]
for i in code_2015_lost:
if i in code_2016_lost:
print(i,)
# name=self.base[self.base['code']==i].values[0]
two_year_lost.append(i)
self.saveList(two_year_lost, 'st_dangours.csv')
# df_2014=ts.get_report_data(2014,4)
def mydaily_check(self):
self.break_line(self.mystocklist, k_type='5', writeable=True, mystock=True)
def all_stock(self):
self.multi_thread_break_line('20')
#破净资产的股票
def get_break_bvps():
base_info = ts.get_stock_basics()
current_prices = ts.get_today_all()
current_prices[current_prices['code'] == '000625']['trade'].values[0]
base_info.loc['000625']['bvps']
def main():
folder = os.path.join(os.path.dirname(__file__), 'data')
if os.path.exists(folder) == False:
os.mkdir(folder)
os.chdir(folder)
obj = filter_stock(local=True)
# 留下来的函数都是有用的
# obj.count_area(writeable=True)
# df=obj.get_area('广东',writeable=True)
# obj.showInfo(df)
# df=obj.get_area('深圳',writeable=True)
# obj.showInfo(df)
# obj.get_all_location()
# obj.fetch_new_ipo(20170101,writeable=False)
# obj.drop_down_from_high('2017-01-01','300580')
# obj.loop_each_cixin()
# df=obj.get_all_code()
# result=obj.volume_calculate(df)
# obj.saveList(result)
# df=obj.get_chengfenggu()
# large,small=obj.volume_calculate(df)
# obj.saveList(large,'large')
# obj.saveList(small,'small')
# obj.write_to_text()
# obj.read_csv()
# obj.own_drop_down()
# obj.volume_calculate()
# obj.break_line()
# obj.save_data_excel()
# obj.break_line(mine=False,k_type='5')
# obj.multi_thread()
# code=obj.get_chengfenggu()
# obj.break_line(code)
# obj.big_deal('603918',400,'2017-04-22')
# obj.current_day_ticks()
# obj.relation()
# obj.profit()
# obj.mydaily_check()
# obj.all_stock()
if __name__ == "__main__":
start_time = datetime.datetime.now()
print(start_time)
main()
end_time = datetime.datetime.now()
print(e)nd_time
print("time use : ", (end_time - start_time).seconds)