-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_norm.py
130 lines (105 loc) · 3.9 KB
/
train_norm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
'''
ECE471, Selected Topics in Machine Learning - Midterm Assignment
Suubmit by Oct. 24, 10pm.
tldr: Reproduce a subset of the results of a contemporary research paper.
Paper:
Batch Renormalization: Towards Reducing Minibatch Dependence in
Batch-Normalized Models, Sergey Ioffe
http://ee.cooper.edu/~curro/cgml/week4/paper10.pdf
GitHub repository:
https://github.com/eigenfoo/batch-renorm
'''
import sys
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras.datasets.cifar100 import load_data
from tqdm import tqdm
from convnet import make_conv_net
# As specified in paper
MICROBATCH_SIZE = 2
NUM_MICROBATCHES = 800
BATCH_SIZE = MICROBATCH_SIZE * NUM_MICROBATCHES
NUM_EPOCHS = 300
NUM_CLASSES = 100
HEIGHT = 32
WIDTH = 32
NUM_CHANNELS = 3
# Load data and split into train and val sets
(x_train, y_train), (x_val, y_val) = load_data()
# FIXME this is an ugly hack to make sure training data has a multiple of 1600
# of examples, for microbatching to work out.
x_train = x_train[:49600]
y_train = np.squeeze(y_train[:49600])
y_val = np.squeeze(y_val)
# Normalize and reshape data and labels
x_train, x_val = \
map(lambda x: (x / 255.0).reshape([-1, HEIGHT, WIDTH, NUM_CHANNELS]),
[x_train, x_val])
x_train_batches = np.split(x_train, x_train.shape[0] // BATCH_SIZE)
y_train_batches = np.split(y_train, y_train.shape[0] // BATCH_SIZE)
images = tf.placeholder(tf.float32, shape=[None, HEIGHT, WIDTH, NUM_CHANNELS])
labels = tf.placeholder(tf.int32, shape=[None])
training = tf.placeholder(bool, shape=[])
rmax = tf.placeholder(tf.float32, [])
dmax = tf.placeholder(tf.float32, [])
# Make model
predictions, loss, train_step, accuracy = make_conv_net(
images,
labels,
training,
rmax,
dmax,
classes=NUM_CLASSES,
renorm=False,
microbatch_size=MICROBATCH_SIZE,
num_microbatches=NUM_MICROBATCHES
)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
accs = []
def get_rmax(num_epoch):
thresh_epoch = 20
if num_epoch < thresh_epoch:
return 1
else:
return 1 + 0.5*(num_epoch - thresh_epoch)/(NUM_EPOCHS - thresh_epoch)
def get_dmax(num_epoch):
thresh_epoch = 20
if num_epoch < thresh_epoch:
return 0
else:
return 0.5*(num_epoch - thresh_epoch)/(NUM_EPOCHS - thresh_epoch)
# Training
for i in range(NUM_EPOCHS):
print('Epoch #{}: '.format(i))
for x_batch, y_batch in tqdm(zip(x_train_batches, y_train_batches)):
sess.run(train_step, feed_dict={images: x_batch,
labels: y_batch,
rmax: get_rmax(i),
dmax: get_dmax(i),
training: True})
loss_, acc_ = sess.run([loss, accuracy],
feed_dict={images: x_batch,
labels: y_batch,
rmax: get_rmax(i),
dmax: get_dmax(i),
training: True})
print('Train loss: {} - Train accuracy: {}'.format(loss_, acc_))
# Validation
tacc = 0
for i in range(5):
loss_, acc_ = sess.run([loss, accuracy],
feed_dict={images: x_val[i*2000:i*2000+2000],
labels: y_val[i*2000:i*2000+2000],
rmax: get_rmax(i), # Ignored since
dmax: get_dmax(i), # training=False
training: False})
tacc = tacc + (acc_/5.0)
accs.append(tacc)
print('Validation loss: {} - Validation accuracy: {}'.format(loss_, tacc))
df = pd.DataFrame(data=accs,
columns=['Validation Accuracy'])
df.index = 31*df.index
df.to_csv('val_accs_norm_{}.csv'.format(sys.argv[1]))