forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimpleCUFFT.cu
286 lines (238 loc) · 10.5 KB
/
simpleCUFFT.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Example showing the use of CUFFT for fast 1D-convolution using FFT. */
// includes, system
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// includes, project
#include <cuda_runtime.h>
#include <cufft.h>
#include <cufftXt.h>
#include <helper_cuda.h>
#include <helper_functions.h>
// Complex data type
typedef float2 Complex;
static __device__ __host__ inline Complex ComplexAdd(Complex, Complex);
static __device__ __host__ inline Complex ComplexScale(Complex, float);
static __device__ __host__ inline Complex ComplexMul(Complex, Complex);
static __global__ void ComplexPointwiseMulAndScale(Complex *, const Complex *,
int, float);
// Filtering functions
void Convolve(const Complex *, int, const Complex *, int, Complex *);
// Padding functions
int PadData(const Complex *, Complex **, int, const Complex *, Complex **, int);
////////////////////////////////////////////////////////////////////////////////
// declaration, forward
void runTest(int argc, char **argv);
// The filter size is assumed to be a number smaller than the signal size
#define SIGNAL_SIZE 50
#define FILTER_KERNEL_SIZE 11
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) { runTest(argc, argv); }
////////////////////////////////////////////////////////////////////////////////
//! Run a simple test for CUDA
////////////////////////////////////////////////////////////////////////////////
void runTest(int argc, char **argv) {
printf("[simpleCUFFT] is starting...\n");
findCudaDevice(argc, (const char **)argv);
// Allocate host memory for the signal
Complex *h_signal =
reinterpret_cast<Complex *>(malloc(sizeof(Complex) * SIGNAL_SIZE));
// Initialize the memory for the signal
for (unsigned int i = 0; i < SIGNAL_SIZE; ++i) {
h_signal[i].x = rand() / static_cast<float>(RAND_MAX);
h_signal[i].y = 0;
}
// Allocate host memory for the filter
Complex *h_filter_kernel =
reinterpret_cast<Complex *>(malloc(sizeof(Complex) * FILTER_KERNEL_SIZE));
// Initialize the memory for the filter
for (unsigned int i = 0; i < FILTER_KERNEL_SIZE; ++i) {
h_filter_kernel[i].x = rand() / static_cast<float>(RAND_MAX);
h_filter_kernel[i].y = 0;
}
// Pad signal and filter kernel
Complex *h_padded_signal;
Complex *h_padded_filter_kernel;
int new_size =
PadData(h_signal, &h_padded_signal, SIGNAL_SIZE, h_filter_kernel,
&h_padded_filter_kernel, FILTER_KERNEL_SIZE);
int mem_size = sizeof(Complex) * new_size;
// Allocate device memory for signal
Complex *d_signal;
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&d_signal), mem_size));
// Copy host memory to device
checkCudaErrors(
cudaMemcpy(d_signal, h_padded_signal, mem_size, cudaMemcpyHostToDevice));
// Allocate device memory for filter kernel
Complex *d_filter_kernel;
checkCudaErrors(
cudaMalloc(reinterpret_cast<void **>(&d_filter_kernel), mem_size));
// Copy host memory to device
checkCudaErrors(cudaMemcpy(d_filter_kernel, h_padded_filter_kernel, mem_size,
cudaMemcpyHostToDevice));
// CUFFT plan simple API
cufftHandle plan;
checkCudaErrors(cufftPlan1d(&plan, new_size, CUFFT_C2C, 1));
// CUFFT plan advanced API
cufftHandle plan_adv;
size_t workSize;
long long int new_size_long = new_size;
checkCudaErrors(cufftCreate(&plan_adv));
checkCudaErrors(cufftXtMakePlanMany(plan_adv, 1, &new_size_long, NULL, 1, 1,
CUDA_C_32F, NULL, 1, 1, CUDA_C_32F, 1,
&workSize, CUDA_C_32F));
printf("Temporary buffer size %li bytes\n", workSize);
// Transform signal and kernel
printf("Transforming signal cufftExecC2C\n");
checkCudaErrors(cufftExecC2C(plan, reinterpret_cast<cufftComplex *>(d_signal),
reinterpret_cast<cufftComplex *>(d_signal),
CUFFT_FORWARD));
checkCudaErrors(cufftExecC2C(
plan_adv, reinterpret_cast<cufftComplex *>(d_filter_kernel),
reinterpret_cast<cufftComplex *>(d_filter_kernel), CUFFT_FORWARD));
// Multiply the coefficients together and normalize the result
printf("Launching ComplexPointwiseMulAndScale<<< >>>\n");
ComplexPointwiseMulAndScale<<<32, 256>>>(d_signal, d_filter_kernel, new_size,
1.0f / new_size);
// Check if kernel execution generated and error
getLastCudaError("Kernel execution failed [ ComplexPointwiseMulAndScale ]");
// Transform signal back
printf("Transforming signal back cufftExecC2C\n");
checkCudaErrors(cufftExecC2C(plan, reinterpret_cast<cufftComplex *>(d_signal),
reinterpret_cast<cufftComplex *>(d_signal),
CUFFT_INVERSE));
// Copy device memory to host
Complex *h_convolved_signal = h_padded_signal;
checkCudaErrors(cudaMemcpy(h_convolved_signal, d_signal, mem_size,
cudaMemcpyDeviceToHost));
// Allocate host memory for the convolution result
Complex *h_convolved_signal_ref =
reinterpret_cast<Complex *>(malloc(sizeof(Complex) * SIGNAL_SIZE));
// Convolve on the host
Convolve(h_signal, SIGNAL_SIZE, h_filter_kernel, FILTER_KERNEL_SIZE,
h_convolved_signal_ref);
// check result
bool bTestResult = sdkCompareL2fe(
reinterpret_cast<float *>(h_convolved_signal_ref),
reinterpret_cast<float *>(h_convolved_signal), 2 * SIGNAL_SIZE, 1e-5f);
// Destroy CUFFT context
checkCudaErrors(cufftDestroy(plan));
checkCudaErrors(cufftDestroy(plan_adv));
// cleanup memory
free(h_signal);
free(h_filter_kernel);
free(h_padded_signal);
free(h_padded_filter_kernel);
free(h_convolved_signal_ref);
checkCudaErrors(cudaFree(d_signal));
checkCudaErrors(cudaFree(d_filter_kernel));
exit(bTestResult ? EXIT_SUCCESS : EXIT_FAILURE);
}
// Pad data
int PadData(const Complex *signal, Complex **padded_signal, int signal_size,
const Complex *filter_kernel, Complex **padded_filter_kernel,
int filter_kernel_size) {
int minRadius = filter_kernel_size / 2;
int maxRadius = filter_kernel_size - minRadius;
int new_size = signal_size + maxRadius;
// Pad signal
Complex *new_data =
reinterpret_cast<Complex *>(malloc(sizeof(Complex) * new_size));
memcpy(new_data + 0, signal, signal_size * sizeof(Complex));
memset(new_data + signal_size, 0, (new_size - signal_size) * sizeof(Complex));
*padded_signal = new_data;
// Pad filter
new_data = reinterpret_cast<Complex *>(malloc(sizeof(Complex) * new_size));
memcpy(new_data + 0, filter_kernel + minRadius, maxRadius * sizeof(Complex));
memset(new_data + maxRadius, 0,
(new_size - filter_kernel_size) * sizeof(Complex));
memcpy(new_data + new_size - minRadius, filter_kernel,
minRadius * sizeof(Complex));
*padded_filter_kernel = new_data;
return new_size;
}
////////////////////////////////////////////////////////////////////////////////
// Filtering operations
////////////////////////////////////////////////////////////////////////////////
// Computes convolution on the host
void Convolve(const Complex *signal, int signal_size,
const Complex *filter_kernel, int filter_kernel_size,
Complex *filtered_signal) {
int minRadius = filter_kernel_size / 2;
int maxRadius = filter_kernel_size - minRadius;
// Loop over output element indices
for (int i = 0; i < signal_size; ++i) {
filtered_signal[i].x = filtered_signal[i].y = 0;
// Loop over convolution indices
for (int j = -maxRadius + 1; j <= minRadius; ++j) {
int k = i + j;
if (k >= 0 && k < signal_size) {
filtered_signal[i] =
ComplexAdd(filtered_signal[i],
ComplexMul(signal[k], filter_kernel[minRadius - j]));
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
// Complex operations
////////////////////////////////////////////////////////////////////////////////
// Complex addition
static __device__ __host__ inline Complex ComplexAdd(Complex a, Complex b) {
Complex c;
c.x = a.x + b.x;
c.y = a.y + b.y;
return c;
}
// Complex scale
static __device__ __host__ inline Complex ComplexScale(Complex a, float s) {
Complex c;
c.x = s * a.x;
c.y = s * a.y;
return c;
}
// Complex multiplication
static __device__ __host__ inline Complex ComplexMul(Complex a, Complex b) {
Complex c;
c.x = a.x * b.x - a.y * b.y;
c.y = a.x * b.y + a.y * b.x;
return c;
}
// Complex pointwise multiplication
static __global__ void ComplexPointwiseMulAndScale(Complex *a, const Complex *b,
int size, float scale) {
const int numThreads = blockDim.x * gridDim.x;
const int threadID = blockIdx.x * blockDim.x + threadIdx.x;
for (int i = threadID; i < size; i += numThreads) {
a[i] = ComplexScale(ComplexMul(a[i], b[i]), scale);
}
}