Skip to content

Latest commit

 

History

History
90 lines (63 loc) · 2.66 KB

README.md

File metadata and controls

90 lines (63 loc) · 2.66 KB

serving real-esrgan

Intro

This repo containerizes Real-ESRGAN into a serving container using fastapi.

The model license can be found here.

Setup

  1. Clone repo if you haven't. Navigate to the real-esrgan folder.

  2. Build container. Don't forget to change the project_id to yours.

    docker build . -t gcr.io/{project_id}/real-esrgan:latest
  3. Run container. You need NVIDIA docker and a GPU.

    docker run -p 80:8080 --gpus all -e AIP_HEALTH_ROUTE=/health -e AIP_HTTP_PORT=8080 -e AIP_PREDICT_ROUTE=/predict gcr.io/{project_id}/real-esrgan:latest -d
  4. Make a prediction

    python generate_request.py
    curl -X POST -d @request.json -H "Content-Type: application/json; charset=utf-8" localhost/predict > response.json

Deploy in Vertex AI.

You'll need to enable Vertex AI and have authenticated with a service account that has the Vertex AI admin or editor role.

  1. Push the image

    gcloud auth configure-docker
    docker build . -t gcr.io/{project_id}/real-esrgan:latest
    docker push gcr.io/{project_id}/real-esrgan:latest
  2. Deploy in Vertex AI Endpoints.

    python ../gcp_deploy.py --image-uri gcr.io/<project_id>/real-esrgan:latest --model-name real-esrgan --endpoint-name real-esrgan-endpoint --endpoint-deployed-name real-esrgan-deployed-name
  3. Test the endpoint.

    from google.cloud import aiplatform
    
    from google.protobuf import json_format
    from google.protobuf.struct_pb2 import Value
    
    from PIL import Image
    
    # Format is projects/<project_id>/locations/us-central1/endpoints/<endpoint_id>
    ENDPOINT_NAME = ''
    
    def im_2_b64(image, format='PNG'):
        buff = BytesIO()
        image.save(buff, format=format)
        img_str = base64.b64encode(buff.getvalue())
        return img_str
    
    image = Image.open("image.png")
    
    base64_image = im_2_b64(image).decode('utf-8')
    
    instances_list = [{'image' : base64_image}]
    instances = [json_format.ParseDict(s, Value()) for s in instances_list]
    
    parameters = {
        'face_enhance' : True,
        'tile' : 0, 
        'tile_pad' : 10, 
        'prepad' : 0,
        'fp32' : true,
        'outscale' : 4
    }
    parameters = json_format.ParseDict(parameters,Value())
    endpoint = aiplatform.Endpoint(ENDPOINT_NAME)
    results = endpoint.predict(instances=instances,parameters=parameters)
        ```