-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_servo.py
executable file
·270 lines (230 loc) · 10.9 KB
/
train_servo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
import sys
import yaml
import numpy as np
from PIL import Image
from tqdm import trange, tqdm
from collections import namedtuple
import torch
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data.dataloader as loader
import torch.nn.functional as F
from train_dataset import DataServoStereo
import train_model as model
# settings
arg = yaml.load(open(sys.argv[1], 'r'), yaml.Loader)
arg = namedtuple('Arg', arg.keys())(**arg)
# system init
cudnn.enabled = True
cudnn.benchmark = True
cudnn.deterministic = True
torch.manual_seed(0)
np.random.seed(0)
# model
kper = model.KeyPointGaussian(arg.sigma_kp[0], (arg.num_keypoint, *arg.im_size[1]))
enc = model.Encoder(arg.num_input, arg.num_keypoint, arg.growth_rate[0], arg.blk_cfg_enc, arg.drop_rate, kper).cuda()
dec = model.Decoder(arg.num_keypoint, arg.growth_rate[1], arg.blk_cfg_dec, arg.num_output).cuda()
cvt = model.ConverterServo(arg.num_keypoint * 2 * 3, arg.growth_rate[2], arg.blk_cfg_cvt, [sum(arg.motion_vec), 1]).cuda()
# optimizer
optim = torch.optim.Adam([{'params': enc.parameters(),
'weight_decay': arg.wd[0]},
{'params': dec.parameters(),
'weight_decay': arg.wd[1]},
{'params': cvt.parameters(),
'weight_decay': arg.wd[2]}],
lr=arg.lr, amsgrad=True)
print('enc parameters: {}'.format(sum([p.data.nelement() for p in enc.parameters()])))
print('dec parameters: {}'.format(sum([p.data.nelement() for p in dec.parameters()])))
print('cvt parameters: {}'.format(sum([p.data.nelement() for p in cvt.parameters()])))
def train(ep, loader_train):
for i, (inL0, inR0,
outDL, outDR, outSL, outSR,
vecM, intV) in enumerate(loader_train):
# data
inL0 = inL0.cuda()
inR0 = inR0.cuda()
outDL = outDL.cuda()
outDR = outDR.cuda()
outSL = outSL.cuda()
outSR = outSR.cuda()
vecM = vecM.cuda()
intV = intV.cuda()
# lr scheduler update
ith = ep * len(loader_train.dataset) // arg.batch_size + i, \
arg.ep_train * len(loader_train.dataset) // arg.batch_size
# lr scheduler update
adjust_lr(*ith)
# update kp sigma
kper.sigma = min(2.0 * ith[0] / ith[1], 1) * (arg.sigma_kp[1] - arg.sigma_kp[0]) + arg.sigma_kp[0]
# boots
boot_size = max((arg.ep_train - ep) * 1.0 / arg.ep_train, arg.bootstrap)
boot_recon = int(boot_size * arg.im_size[0][0] * arg.im_size[0][1])
boot_equal = int(boot_size * arg.im_size[1][0] * arg.im_size[1][1] * arg.num_keypoint)
boot_batch = int(boot_size * arg.batch_size)
# reconstruction
keypL0 = enc(inL0)
keypR0 = enc(inR0)
depthL, segL = dec(keypL0[1])
depthR, segR = dec(keypR0[1])
lossD = (F.smooth_l1_loss(depthL, outDL, reduction='none').view(arg.batch_size, -1).
topk(boot_recon, sorted=False)[0].mean() +
F.smooth_l1_loss(depthR, outDR, reduction='none').view(arg.batch_size, -1).
topk(boot_recon, sorted=False)[0].mean()) / 2
lossS = (F.cross_entropy(segL, outSL, reduction='none').view(arg.batch_size, -1).
topk(boot_recon, sorted=False)[0].mean() +
F.cross_entropy(segR, outSR, reduction='none').view(arg.batch_size, -1).
topk(boot_recon, sorted=False)[0].mean()) / 2
# motion
vec, speed = cvt(torch.cat((keypL0[0], keypR0[0]), dim=1))
lossM = F.cosine_similarity(vec, vecM).mul(-1).add(1).mul(intV).\
topk(boot_batch, sorted=False)[0].mean()
lossV = F.binary_cross_entropy_with_logits(speed, intV, reduction='none').\
topk(boot_batch, sorted=False)[0].mean()
# concentration
lossC = None
if arg.concentrate != 0:
lossC = []
for idx_i in range(0, arg.num_keypoint - 1):
for idx_j in range(idx_i + 1, arg.num_keypoint):
distL = torch.norm(torch.cat(
((keypL0[0][:, idx_i] - keypL0[0][:, idx_j]).unsqueeze(1),
(keypL0[0][:, idx_i + arg.num_keypoint] - keypL0[0][:, idx_j + arg.num_keypoint]).unsqueeze(1)),
dim=1), dim=1)
distR = torch.norm(torch.cat(
((keypR0[0][:, idx_i] - keypR0[0][:, idx_j]).unsqueeze(1),
(keypR0[0][:, idx_i + arg.num_keypoint] - keypR0[0][:, idx_j + arg.num_keypoint]).unsqueeze(1)),
dim=1), dim=1)
lossC.append(distL.mul(arg.concentrate).exp().mul(keypL0[0][:, idx_i + 2 * arg.num_keypoint] *
keypL0[0][:, idx_j + 2 * arg.num_keypoint]).mean())
lossC.append(distR.mul(arg.concentrate).exp().mul(keypR0[0][:, idx_i + 2 * arg.num_keypoint] *
keypR0[0][:, idx_j + 2 * arg.num_keypoint]).mean())
lossC = sum(lossC) / len(lossC)
# inside
lossI = None
if arg.inside != 0:
inoutL = outSL.eq(0).float()
inoutL = F.interpolate(inoutL.unsqueeze(1), size=keypL0[1].size()[2:], align_corners=False, mode='bilinear')
inoutR = outSR.eq(0).float()
inoutR = F.interpolate(inoutR.unsqueeze(1), size=keypL0[1].size()[2:], align_corners=False, mode='bilinear')
lossI = arg.inside * (inoutL.mul(keypL0[1]).mean() + inoutR.mul(keypR0[1]).mean()) / 2
# updates
optim.zero_grad()
sum([l for l in [lossD, lossS, lossM, lossV, lossC, lossI] if l is not None]).backward()
optim.step()
# printing
if i == 0:
tqdm.write('ep: {}, DSMVCI: {:.3f} {:.3f} {:.3f} {:.3f} {:.3f} {:.3f}'.
format(ep,
lossD.item(), lossS.item(),
lossM.item(), lossV.item(),
lossC.item(), lossI.item()))
def adjust_lr(ep, ep_train, bn=True):
if arg.lr_anne == 'step':
a_lr = 0.4 ** ((ep > (0.3 * ep_train)) +
(ep > (0.6 * ep_train)) +
(ep > (0.9 * ep_train)))
elif arg.lr_anne == 'cosine':
a_lr = (np.cos(np.pi * ep / ep_train) + 1) / 2
elif arg.lr_anne == 'repeat':
partition = [0, 0.15, 0.30, 0.45, 0.6, 0.8, 1.0]
par = int(np.digitize(ep * 1. / ep_train, partition))
T = (partition[par] - partition[par - 1]) * ep_train
t = ep - partition[par - 1] * ep_train
a_lr = 0.5 * (1 + np.cos(np.pi * t / T))
a_lr *= 1 - partition[par - 1]
else:
a_lr = 1
for param_group in optim.param_groups:
param_group['lr'] = max(a_lr, 0.01) * arg.lr
if bn:
def fn(m):
if isinstance(m, (torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d)):
m.momentum = min(max(a_lr, 0.01), 0.9)
enc.apply(fn)
dec.apply(fn)
cvt.apply(fn)
def save_checkpoint(base_dir):
state = {'enc_state_dict': enc.state_dict(),
'dec_state_dict': dec.state_dict(),
'cvt_state_dict': cvt.state_dict()}
torch.save(state, os.path.join(base_dir, 'ckpt.pth'))
print('checkpoint saved.')
def load_checkpoint(base_dir):
cp_net = torch.load(os.path.join(base_dir, 'ckpt.pth'))
enc.load_state_dict(cp_net['enc_state_dict'])
dec.load_state_dict(cp_net['dec_state_dict'])
cvt.load_state_dict(cp_net['cvt_state_dict'])
print('checkpoint loaded.')
def test(loader_test):
from skimage import transform
color = yaml.load(open('cfg/color.yaml', 'r'), Loader=yaml.Loader)
num_obj = len(set(arg.obj_class))
sims, speeds = [], []
for i, (inL, inR, _, _, _, _, vecM, intV) in enumerate(loader_test):
inL = inL.cuda()
inR = inR.cuda()
vecM = vecM.cuda()
intV = intV.cuda()
# forward-pass
keypL = enc(inL)
keypR = enc(inR)
depth, seg = dec(keypL[1])
vec, speed = cvt(torch.cat((keypL[0], keypR[0]), dim=1))
vec = F.cosine_similarity(vec, vecM.squeeze(), dim=0).mul(-1).add(1).mul(intV.squeeze()).detach().cpu().item()
speed = F.binary_cross_entropy_with_logits(speed.unsqueeze(0), intV).squeeze().detach().cpu().item()
# visual
keyp = keypL[1].detach().squeeze().cpu().numpy()
keyps = np.zeros((inL.size(2), inL.size(3), 3), np.float)
for j in range(keyp.shape[0]):
keyps = keyps + np.tile(transform.resize(keyp[j], keyps.shape[:2])[:, :, np.newaxis], [1, 1, 3]) * \
np.array(color[j]).reshape(1, 1, 3)
keyps = (keyps * 255).round().astype(np.uint8)
img = ((inL.detach().squeeze().cpu().numpy() * 0.25) * 255 + 128).round().clip(0, 255).astype(np.uint8)
depth = ((depth.detach().squeeze().cpu().numpy() * 0.25) * 255 + 128).round().clip(0, 255).astype(np.uint8)
seg = (seg.squeeze().argmax(dim=0).detach().cpu().numpy() * 255. / (num_obj - 1)).astype(np.uint8)
Image.fromarray(np.hstack((np.tile(img[:, :, None], [1, 1, 3]), keyps,
np.tile(depth[:, :, None], [1, 1, 3]), np.tile(seg[:, :, None], [1, 1, 3])))). \
save(os.path.join(arg.dir_base, 'test/{:04d}_{:.2f}_{:.2f}.png'.format(i, vec, speed)))
sims.append(vec)
speeds.append(speed)
print('Average vector loss: ', sum(sims) / len(sims))
print('Average speed loss : ', sum(speeds) / len(speeds))
def main():
if arg.task in ['full']:
# data directory
if not os.path.exists(arg.dir_base):
os.makedirs(arg.dir_base)
os.system('cp {} {}'.format(sys.argv[1], os.path.join(arg.dir_base, 'servo.yaml')))
# load database
ds_train = DataServoStereo(arg)
data_param = {'pin_memory': False, 'shuffle': True, 'batch_size': arg.batch_size, 'drop_last': True,
'num_workers': 8, 'worker_init_fn': lambda _: np.random.seed(ord(os.urandom(1)))}
loader_train = loader.DataLoader(ds_train, **data_param)
# training
enc.train()
dec.train()
cvt.train()
print('training...')
for ep in trange(arg.ep_train):
train(ep, loader_train)
# save
save_checkpoint(arg.dir_base)
if arg.task in ['full', 'test']:
# directory
if not os.path.isdir(os.path.join(arg.dir_base, 'test')):
os.makedirs(os.path.join(arg.dir_base, 'test'))
# dataset
ds_test = DataServoStereo(arg, False)
loader_test = loader.DataLoader(ds_test)
# load model
load_checkpoint(arg.dir_base)
enc.eval()
dec.eval()
cvt.eval()
kper.sigma = arg.sigma_kp[1]
# test
print('testing...')
test(loader_test)
if __name__ == '__main__':
main()