-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_bert.py
232 lines (205 loc) · 8.45 KB
/
run_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import sys
from typing import List
import fire
import torch
import transformers
from datasets import load_dataset
"""
Unused imports:
import torch.nn as nn
import bitsandbytes as bnb
"""
import wandb
from transformers import AutoConfig, AutoTokenizer, AutoModelForSequenceClassification, set_seed
from src.data.reward_dataset import RewardDataCollatorForSeq2Seq
from src.models.reward_model import SmallRewardModel
from src.template.instruction_template import CONTEXT, QUESTION, ANSWER
def train(
# model/data params
base_model: str = "", # the only required argument
data_path: str = "yahma/alpaca-cleaned",
output_dir: str = "./lora-alpaca",
# training hyperparams
batch_size: int = 128,
micro_batch_size: int = 4,
num_epochs: int = 3,
learning_rate: float = 3e-4,
cutoff_len: int = 256,
val_set_size: int = 2000,
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
add_eos_token: bool = False,
group_by_length: bool = False, # faster, but produces an odd training loss curve
# wandb params
wandb_project: str = "",
wandb_run_name: str = "",
wandb_watch: str = "", # options: false | gradients | all
wandb_log_model: str = "", # options: false | true
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca.
# add by ll
deepspeed: str = None,
gradient_checkpointing: bool = False,
reward_type: str = 'lm', # lm / linear / lm_linear
reward_compute: str = 'last', # last / mean
lr_scheduler_type: str = 'linear', # linear / cosine
weight_decay: float = 0.0,
):
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
print(
f"Training Alpaca-LoRA model with params:\n"
f"base_model: {base_model}\n"
f"data_path: {data_path}\n"
f"output_dir: {output_dir}\n"
f"batch_size: {batch_size}\n"
f"micro_batch_size: {micro_batch_size}\n"
f"num_epochs: {num_epochs}\n"
f"learning_rate: {learning_rate}\n"
f"cutoff_len: {cutoff_len}\n"
f"val_set_size: {val_set_size}\n"
f"train_on_inputs: {train_on_inputs}\n"
f"add_eos_token: {add_eos_token}\n"
f"group_by_length: {group_by_length}\n"
f"wandb_project: {wandb_project}\n"
f"wandb_run_name: {wandb_run_name}\n"
f"wandb_watch: {wandb_watch}\n"
f"wandb_log_model: {wandb_log_model}\n"
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
f"prompt template: {prompt_template_name}\n"
f"deepspeed: {deepspeed}\n"
f"gradient_checkpointing: {gradient_checkpointing}\n"
f"reward_type: {reward_type}\n"
f"reward_compute: {reward_compute}\n",
f"lr_scheduler_type: {lr_scheduler_type}\n",
f"weight_decay: {weight_decay}\n",
)
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
gradient_accumulation_steps = batch_size // micro_batch_size
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
# Check if parameter passed or if set within environ
use_wandb = len(wandb_project) > 0 or (
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
)
# Only overwrite environ if wandb param passed
if len(wandb_project) > 0:
os.environ["WANDB_PROJECT"] = wandb_project
if len(wandb_watch) > 0:
os.environ["WANDB_WATCH"] = wandb_watch
if len(wandb_log_model) > 0:
os.environ["WANDB_LOG_MODEL"] = wandb_log_model
# set seed before initializing model
set_seed(42)
# initialize config, model and tokenizer
config = AutoConfig.from_pretrained(base_model)
config.reward_type = reward_type
config.num_labels = 1
model = AutoModelForSequenceClassification.from_pretrained(
base_model,
config=config,
)
model = SmallRewardModel(model)
tokenizer = AutoTokenizer.from_pretrained(base_model)
def tokenize(prompt, add_eos_token=True):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
def get_answer_prompt(example):
context = CONTEXT.format(context=data_point['context']) if 'context' in data_point else None
question = QUESTION.format(question=data_point['question'])
answer = ANSWER.format(answer=example['answer'])
input_prompt = "\n".join([question, answer]) if context is None else "\n".join([context, question, answer])
tokenized_full_prompt = tokenize(input_prompt)
return tokenized_full_prompt
# postive + negative
pos_answer = data_point['pos_answer']
neg_answer = data_point['neg_answer']
pos_tokenized_full_prompt = get_answer_prompt(pos_answer)
neg_tokenized_full_prompt = get_answer_prompt(neg_answer)
return {key: [pos_tokenized_full_prompt[key], neg_tokenized_full_prompt[key]] for key in pos_tokenized_full_prompt}
if data_path.endswith(".json") or data_path.endswith(".jsonl"):
data = load_dataset("json", data_files=data_path)
else:
data = load_dataset(data_path)
if resume_from_checkpoint:
# Check the available weights and load them
checkpoint_name = os.path.join(
resume_from_checkpoint, "pytorch_model.bin"
) # Full checkpoint
if not os.path.exists(checkpoint_name):
resume_from_checkpoint = (
False # So the trainer won't try loading its state
)
if val_set_size > 0:
train_data = (
data["train"].shuffle().map(generate_and_tokenize_prompt)
)
val_data = (
data["test"].map(generate_and_tokenize_prompt)
)
else:
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = None
if not ddp and torch.cuda.device_count() > 1:
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
deepspeed=deepspeed,
gradient_checkpointing=gradient_checkpointing,
per_device_train_batch_size=micro_batch_size,
per_device_eval_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_ratio=0.01,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
lr_scheduler_type=lr_scheduler_type,
weight_decay=weight_decay,
fp16=True,
logging_steps=1,
optim="adamw_torch",
evaluation_strategy="epoch" if val_set_size > 0 else "no",
save_strategy="epoch",
output_dir=output_dir,
logging_dir=output_dir,
save_total_limit=2,
load_best_model_at_end=True if val_set_size > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
report_to="wandb" if use_wandb else None,
run_name=wandb_run_name if use_wandb else None,
),
data_collator=RewardDataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
# model.save_pretrained(output_dir)
wandb.finish()
print(
"\n If there's a warning about missing keys above, please disregard :)"
)
if __name__ == "__main__":
fire.Fire(train)