-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTerrainCloudsWaterShaderToy.glsl
432 lines (366 loc) · 11 KB
/
TerrainCloudsWaterShaderToy.glsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
#define PI 3.141592654
#define TAU (2.0*PI)
#define TOLERANCE 0.001
#define MAX_ITER 100
#define MIN_DISTANCE 0.1
#define MAX_DISTANCE 30.0
const vec3 skyCol1 = vec3(0.35, 0.45, 0.6);
const vec3 skyCol2 = vec3(0.4, 0.7, 1.0);
const vec3 skyCol3 = pow(skyCol1, vec3(0.25));
const vec3 sunCol1 = vec3(1.0,0.5,0.4);
const vec3 sunCol2 = vec3(1.0,0.8,0.7);
const float gravity = 1.0;
float noise(vec2 p)
{
return 2.0 * (texture(iChannel1, 0.01 *p + 0.5).x - 0.5);
}
vec4 cloudCol(vec2 p, float off)
{
float n = 0.0;
p += 3.0;
float amp = 1.0;
float freq = 1.0;
for (int i = 0; i < 5; i++)
{
n += amp * noise(freq * p);
const float df = 0.1;
p += 0.0051 * iTime; // + 1.0 * vec2(cos(df * i*p.x), sin(df * i*p.y));
amp *= 0.4;
freq *= 3.0;
}
vec4 col = vec4(1.0, 1.0, 1.0, max(n-off, 0.0));
return col;
}
void rot(inout vec2 p, in float a)
{
float c = cos(a);
float s = sin(a);
p = vec2(p.x*c + p.y*s, -p.x*s + p.y*c);
}
float rand(in vec2 co)
{
return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453);
}
vec2 hash(in vec2 p)
{
p = vec2(dot(p,vec2(127.1,311.7)), dot(p,vec2(269.5,183.3)));
return fract(sin(p)*18.5453);
}
vec4 voronoi(in vec2 x)
{
vec2 n = floor(x);
vec2 f = fract(x);
vec4 m = vec4(8.0);
for(int j=-1; j<=1; j++)
for(int i=-1; i<=1; i++)
{
vec2 g = vec2(float(i), float(j));
vec2 o = hash(n + g);
vec2 r = g - f + o;
float d = dot(r, r);
if(d<m.x)
{
m = vec4(d, o.x + o.y, r);
}
}
return vec4(sqrt(m.x), m.yzw);
}
float globalHeight(float f, vec2 op)
{
return (f *0.9 + (0.5 + 0.5 * cos(op.y *0.1)) * 0.4 - 0.3) * (0.7 + 0.3 *sin((0.5 + 0.25 * (1.0 + sin(op.y))) * op.x - 1.5));
}
float heightFunction(vec2 p)
{
vec2 op = p;
p += 0.02;
p *= 0.0025;
float f = 0.0;
float amplitude = 1.0;
float period = 1.0;
for (int i = 0; i < 7; i++)
{
f += amplitude * texture(iChannel0, period * p).x;
rot(p, 1.0);
amplitude *= 0.5;
period *= 2.0;
}
return globalHeight(f, op);
}
float heightFunctionLo(vec2 p)
{
vec2 op = p;
p += 0.02;
p *= 0.0025;
float f = 0.0;
float amplitude = 1.0;
float period = 1.0;
for (int i = 0; i < 6; i++)
{
f += amplitude * texture(iChannel0, period * p).x;
rot(p, 1.0);
amplitude *= 0.5;
period *= 2.0;
}
return globalHeight(f, op);
}
float heightFunctionHi(vec2 p)
{
vec2 op = p;
p += 0.02;
p *= 0.0025;
float f = 0.0;
float amplitude = 1.0;
float period = 1.0;
for (int i = 0; i < 11; i++)
{
f += amplitude * texture(iChannel0, period * p).x;
rot(p, 1.0);
amplitude *= 0.5;
period *= 2.0;
}
return globalHeight(f, op);
}
vec3 getNormal(in vec2 p, in float d)
{
vec2 eps = vec2(0.004*d, 0);
float dx = heightFunction(p - eps) - heightFunction(p + eps);
float dy = 2.0f*eps.x;
float dz = heightFunction(p - eps.yx) - heightFunction(p + eps.yx);
return normalize(vec3(dx, dy, dz));
}
vec3 getNormalLo(in vec2 p, in float d)
{
vec2 eps = vec2(0.004*d, 0);
float dx = heightFunctionLo(p - eps) - heightFunctionLo(p + eps);
float dy = 2.0f*eps.x;
float dz = heightFunctionLo(p - eps.yx) - heightFunctionLo(p + eps.yx);
return normalize(vec3(dx, dy, dz));
}
vec3 getNormalHi(in vec2 p, in float d)
{
vec2 eps = vec2(0.004*d, 0);
float dx = heightFunctionHi(p - eps) - heightFunctionHi(p + eps);
float dy = 2.0f*eps.x;
float dz = heightFunctionHi(p - eps.yx) - heightFunctionHi(p + eps.yx);
return normalize(vec3(dx, dy, dz));
}
float march(in vec3 ro, in vec3 rd, out int max_iter)
{
float dt = 0.1;
float d = MIN_DISTANCE;
float lh = 0.0;
float ly = 0.0;
for (int i = 0; i < MAX_ITER; ++i)
{
vec3 p = ro + d*rd;
float h = heightFunction(p.xz);
if (d > MAX_DISTANCE)
{
max_iter = i;
return MAX_DISTANCE;
}
float hd = p.y - h;
if (hd < 0.0)
{
return d - dt + dt*(lh-ly)/(p.y-ly-h+lh);
}
lh = h;
ly = p.y;
dt = max(hd, TOLERANCE) + 0.001*d;
d += dt;
}
max_iter = MAX_ITER;
return MAX_DISTANCE;
}
vec3 sunDirection()
{
const vec3 sunDirection = normalize(vec3(-1.0, 0.2, -1.0));
vec3 sunDir = sunDirection;
rot(sunDir.xz, 2.0);
return sunDir;
}
vec3 skyColor(vec3 rd) {
vec3 sunDir = sunDirection();
float sunDot = max(dot(rd, sunDir), 0.0);
vec3 final = vec3(0.0);
float angle = atan(rd.y, length(rd.xz))*2.0/PI;
final += mix(mix(skyCol1, skyCol2, max(0.0, angle)), skyCol3, clamp(-angle*2.0, 0.0, 1.0));
final += 0.5*sunCol1*pow(sunDot, 30.0);
final += 1.0*sunCol2*pow(sunDot, 600.0);
return final;
}
float shadow(in vec3 ro, in vec3 rd, in float ll, in float mint)
{
float t = mint;
for (int i=0; i<24; ++i)
{
vec3 p = ro + t*rd;
float h = heightFunction(p.xz);
float d = (p.y - h);
if (d < TOLERANCE) return 0.1;
if (t > ll) return 1.0;
t += max(0.1, 0.25*h);
}
return 1.0;
}
float gravityWave(in vec2 p, float k, float h)
{
float w = sqrt(gravity*k*tanh(k*h));
return sin(p.y*k + w* iTime);
}
float seaHeight(vec2 p)
{
float height = 0.0;
float amplitude = 0.17;
float freq = 0.3;
for (int i = 0; i < 7; i++)
{
height += amplitude * gravityWave(p, freq, 10.0);
amplitude *= 0.80;
freq *= 1.1;
// p += 10.0;
rot(p, 1.2);
}
return height;
}
vec3 seaNormal(in vec2 p, in float h)
{
vec2 eps = vec2(0.001, 0.0);
vec3 n = vec3(
h*seaHeight(p + eps) - h*seaHeight(p - eps), 2.0*eps.x,
h*seaHeight(p + eps.yx) - h*seaHeight(p - eps.yx)
);
return normalize(n);
}
vec3 getColor(vec3 ro, vec3 rd)
{
int max_iter;
float d = march(ro, rd, max_iter);
vec3 sandColor = 1.3 * vec3(0.68, 0.4, 0.3);
vec3 surfaceColor = vec3(0.0);
vec3 skyCol = skyColor(rd);
if (d < MAX_DISTANCE)
{
vec3 p = ro + d * rd;
// diffuse lighting
vec3 sunDir = sunDirection();
float seaHeight = 0.225;
float dsea = (seaHeight - ro.y)/rd.y;
if (d > dsea && dsea > 0.0)
{
vec3 psea = ro + dsea * rd;
float seaDepth = seaHeight - heightFunctionLo(psea.xz);
vec3 normal = seaNormal(psea.xz * 500.0, tanh(20.0*seaDepth)*(0.5 + 0.5*sin(5.0*(psea.x + psea.y))));
float dotProduct = max(dot(-normal, rd), 0.0);
// specular lighting
vec3 refRay = reflect(rd,normal);
vec3 refSkyColor = skyColor(refRay);
float seaDist = d - dsea;
float seaFactor = exp(-seaDist * 50.0);
float shoreFactor = exp(-seaDist * 200.0);
// Fog
float fogHeight = 0.3 - seaDepth;
float dfog = (fogHeight - ro.y)/rd.y;
float fogDepth = d > dfog && dfog > 0.0 ? d - dfog : 0.0;
float fogFactor = exp(-fogDepth);
float shad = shadow(psea, sunDir, 4.0, 0.04);
vec3 seaAmb = 0.4*mix(vec3(0.4, 1.0, 0.9), vec3(0.0), tanh(30.0*seaDepth));
vec3 seaFloor = mix(seaAmb, shad * 0.5*vec3(0.8, 1.0, 0.6), seaFactor);
vec3 breakingWaves = mix(seaFloor, vec3(0.9), shoreFactor);
vec3 col = mix(refSkyColor, breakingWaves, pow(dotProduct, 0.75));
col = mix(skyCol, col, fogFactor);
return col;
}
else
{
// Mountain strata
float bandings = mix(50.0, 100.0, 0.5 + 0.5*sin(length(p.y)*10.0));
float bandingo = sin(length(p.xz) * 3.0);
float bandingf = pow(0.5 + 0.5 * sin(p.y*bandings + bandingo), 0.25);
float banding = mix(0.6, 1.0, bandingf);
float heightLo = heightFunctionLo(p.xz + vec2(0.2));
float heightHi = heightFunctionHi(p.xz);
float heightRatio = heightHi / heightLo;
vec3 normalLo = getNormalLo(p.xz, d);
vec3 normal = getNormal(p.xz, d);
vec3 normalHi = getNormalHi(p.xz, d);
surfaceColor = sandColor * banding;
float refFactor = 0.0;
float flatness = max(dot(normal, vec3(0.0, 1.0, 0.0)), 0.0);
float flatnessFactor = pow(flatness, 7.0);
// Fog
float fogHeight = 0.2 + 0.2 * flatnessFactor;
float dfog = (fogHeight - ro.y)/rd.y;
float fogDepth = d > dfog && dfog > 0.0 ? d - dfog : 0.0;
float fogFactor = exp(-fogDepth);
vec4 treePattern = voronoi(p.xz * 50.0);
vec4 patchPattern = voronoi(p.xz * 10.0);
// Snow
if (p.y > 0.7 + 0.1 * sin(p.x + p.z) - 0.3 * flatnessFactor)
{
surfaceColor = vec3(1.0);
refFactor = 0.5;
normal = normalLo;
}
else if (p.y > seaHeight + 0.01 && p.y < 0.3 + 0.1 * flatnessFactor)
{
// Trees
surfaceColor = mix(vec3(0.2, 0.5, 0.0), vec3(0.5, 0.5, 0.0), patchPattern.y) * 1.3;
surfaceColor *= 1.0 - treePattern.x * 0.75;
vec3 normalOffset = vec3(treePattern.z, 0.0, treePattern.w);
normal = normalize(normalLo - normalOffset);
}
else
{
normal = normalHi;
}
// specular lighting
vec3 refRay = reflect(rd,normal);
vec3 refSkyColor = skyColor(refRay);
// shadows
float shad = shadow(p, sunDir, 4.0, 0.01); // Look into this
float dl = max(0.0, dot(normal, sunDir));
float grad = mix(0.2, 1.0, shad * dl);
vec3 col = vec3(grad * surfaceColor + refFactor * refSkyColor) * pow(heightRatio, 3.0);
col = mix(skyCol, col, fogFactor);
col = mix(col, skyCol, d/MAX_DISTANCE);
return col;
}
}
else
{
vec3 col = skyCol;
float dsky = (10.0 - ro.y)/rd.y;
if (dsky > 0.0)
{
vec3 p = ro + dsky * rd;
vec4 clouds = cloudCol(p.xz * 0.003, 1.0 - 0.75 * tanh(p.z));
col = mix(skyCol, clouds.xyz, clouds.w * (1.0 - 1.0 * tanh(0.001 * p.z)));
}
return col;
}
}
vec3 eyePos(float t)
{
return vec3(sin(t * 0.1), 1.4-0.0, -2.0 + t * 1.0);
}
vec3 getSample(in vec2 p, in float time)
{
float off = 1.0*time;
vec3 ro = eyePos(time);
vec3 la = eyePos(time + 0.1) + vec3(0.0, -0.02, 0.0);
vec3 ww = normalize(la - ro);
vec3 uu = normalize(cross(vec3(0.0,1.0,0.0), ww));
vec3 vv = normalize(cross(ww, uu));
vec3 rd = normalize(p.x*uu + p.y*vv + 2.0*ww);
vec3 col = getColor(ro, rd);
return col;
}
void mainImage( out vec4 fragColor, in vec2 fragCoord )
{
// Normalized pixel coordinates (from 0 to 1)
vec2 p = fragCoord/iResolution.xy - vec2(0.5);
p.x *= iResolution.x/iResolution.y;
vec3 col = getSample(p, iTime);
fragColor = vec4(col, 1.0);
}