-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutil.py
37 lines (27 loc) · 1.06 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import pyhocon
import torch
import numpy as np
import random
from transformers import T5Tokenizer, BartTokenizer
def initialize_config(config_name):
"""Intitalise the config parameters
Args:
config_name ([string]): [path to config file]
Returns:
[dict]: [config in dict format]
"""
config = pyhocon.ConfigFactory.parse_file("experiments.conf")[config_name]
return config
def deterministic_behaviour():
# Ensure deterministic behavior
torch.backends.cudnn.deterministic = True
random.seed(hash("setting random seeds") % 2 ** 32 - 1)
np.random.seed(hash("improves reproducibility") % 2 ** 32 - 1)
torch.manual_seed(hash("by removing stochasticity") % 2 ** 32 - 1)
torch.cuda.manual_seed_all(hash("so runs are repeatable") % 2 ** 32 - 1)
def initialise_tokenizer(model_path: str):
print(f"Loading pre-trained tokenizer from: {model_path}")
if "t5" in model_path:
return T5Tokenizer.from_pretrained(model_path)
elif "bart" in model_path:
return BartTokenizer.from_pretrained(model_path)