-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRedBallTrackerAnnotated.cpp
100 lines (80 loc) · 6.12 KB
/
RedBallTrackerAnnotated.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
// RedBallTracker.cpp
#include<opencv2/core/core.hpp> //Include opencv core
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<iostream>
///////////////////////////////////////////////////////////////////////////////////////////////////
int main() {
cv::VideoCapture capWebcam(1); // declare a VideoCapture object and associate to webcam, 0 => use 1st webcam, 1 => use 2nd webcam
if (capWebcam.isOpened() == false) { // check if VideoCapture object was associated to webcam successfully
std::cout << "error: capWebcam not accessed successfully\n\n"; // if not, print error message to std out
return(0); // and exit program
}
//Mat is an openCV datatype that can store complex arrays or images
cv::Mat imgOriginal; //Declare input image, leave empty
cv::Mat imgHSV; //Declare converted to HSV variable, leave empty
cv::Mat imgThreshLow;
cv::Mat imgThreshHigh;
cv::Mat imgThresh;
std::vector<cv::Vec3f> v3fCircles; // 3 element vector of floats, this will be the pass by reference output of HoughCircles()
//Above this comment is a vector 3 of floats i.e. Vec3f = (float,float,float)
char charCheckForEscKey = 0;
while (charCheckForEscKey != 27 && capWebcam.isOpened()) { // loop until the Esc key is pressed or webcam connection is lost
bool blnFrameReadSuccessfully = capWebcam.read(imgOriginal); // get next frame from webcam, name it imgOriginal
if (!blnFrameReadSuccessfully || imgOriginal.empty()) { // if frame not read successfully or imgOriginal is empty (same thing)
std::cout << "error: frame not read from webcam\n"; // print error message to std out
break; // and jump out of while loop
}
cv::cvtColor(imgOriginal, imgHSV, CV_BGR2HSV); //convert the image to HSV color format, input original image, output destination, type of conversion (HSV)
//cv::namedWindow("imgViewTest", CV_WINDOW_AUTOSIZE);
//cv::imshow("imgViewTest", imgHSV); //Replace imgHSV with any image file you want to see and place imshow() anywhere else in the program to see the progression of the image
//being processed
cv::inRange(imgHSV, cv::Scalar(0, 155, 155), cv::Scalar(18, 255, 255), imgThreshLow); //Take all pixels from range (0-18,155-255,155-255) from original HSV image and store in imgThreshLow
cv::inRange(imgHSV, cv::Scalar(165, 155, 155), cv::Scalar(179, 255, 255), imgThreshHigh); //Take all pixels from range (165-179,155-255,155-255) from original HSV image and store in imgThreshHigh
//inRange function creats binary threshHold, (black and white image) showing the pixels that met the color range "threshold" as white" and the
//background as black. We add the lower end threshhold to the higher end threshhold to create the full picture.
//See http://docs.opencv.org/master/da/d97/tutorial_threshold_inRange.html for more documentation on how in-Range creats the black and white image
cv::add(imgThreshLow, imgThreshHigh, imgThresh); //Add the pixels of imgThreshLow and imgThreshHigh together and store in imgThresh (treshold for color detection)
cv::GaussianBlur(imgThresh, imgThresh, cv::Size(3, 3), 0); //Perform a guassian blur on the imgThreshold (smooth it out)
cv::Mat structuringElement = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3)); //Create "structuring element" for binary mask (making the image straight up black and white)
cv::dilate(imgThresh, imgThresh, structuringElement);
cv::erode(imgThresh, imgThresh, structuringElement);
// fill circles vector with all circles in processed image
cv::HoughCircles(imgThresh, // input image
v3fCircles, // function output (must be a standard template library vector
CV_HOUGH_GRADIENT, // two-pass algorithm for detecting circles, this is the only choice available
2, // size of image / this value = "accumulator resolution", i.e. accum res = size of image / 2
imgThresh.rows / 4, // min distance in pixels between the centers of the detected circles
100, // high threshold of Canny edge detector (called by cvHoughCircles)
50, // low threshold of Canny edge detector (set at 1/2 previous value)
10, // min circle radius (any circles with smaller radius will not be returned)
400); // max circle radius (any circles with larger radius will not be returned)
for (int i = 0; i < v3fCircles.size(); i++) { // for each circle . . .
// show ball position x, y, and radius to command line
std::cout << "Number of circles = " << v3fCircles.size() << ", ";
std::cout << "ball position x = " << v3fCircles[i][0] // x position of center point of circle
<< ", y = " << v3fCircles[i][1] // y position of center point of circle
<< ", radius = " << v3fCircles[i][2] << "\n"; // radius of circle
// draw small green circle at center of detected object
cv::circle(imgOriginal, // draw on original image
cv::Point((int)v3fCircles[i][0], (int)v3fCircles[i][1]), // center point of circle
3, // radius of circle in pixels
cv::Scalar(0, 255, 0), // draw pure green (remember, its BGR, not RGB)
CV_FILLED); // thickness, fill in the circle
// draw red circle around the detected object
cv::circle(imgOriginal, // draw on original image
cv::Point((int)v3fCircles[i][0], (int)v3fCircles[i][1]), // center point of circle
(int)v3fCircles[i][2], // radius of circle in pixels
cv::Scalar(0, 0, 255), // draw pure red (remember, its BGR, not RGB)
3); // thickness of circle in pixels
} // end for
// declare windows
cv::namedWindow("imgOriginal", CV_WINDOW_AUTOSIZE); // note: you can use CV_WINDOW_NORMAL which allows resizing the window
cv::namedWindow("imgThresh", CV_WINDOW_AUTOSIZE); // or CV_WINDOW_AUTOSIZE for a fixed size window matching the resolution of the image
// CV_WINDOW_AUTOSIZE is the default
cv::imshow("imgOriginal", imgOriginal); // show windows
cv::imshow("imgThresh", imgThresh);
charCheckForEscKey = cv::waitKey(1); // delay (in ms) and get key press, if any
} // end while
return(0);
}