-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_xe.py
267 lines (239 loc) · 12.2 KB
/
train_xe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# coding:utf8
import tqdm
import os
import time
import json
from collections import defaultdict
import sys
import pdb
import traceback
from bdb import BdbQuit
import torch
from opts import parse_opt
from models.captioner import Captioner
from models.sent_senti_cls import SentenceSentimentClassifier
from dataloader import get_caption_dataloader, get_senti_corpus_with_sentis_dataloader
def clip_gradient(optimizer, grad_clip):
for group in optimizer.param_groups:
for param in group['params']:
if param.grad is not None:
param.grad.data.clamp_(-grad_clip, grad_clip)
def train():
dataset_name = opt.dataset_name
corpus_type = opt.corpus_type
idx2word = json.load(open(os.path.join(opt.captions_dir, dataset_name, corpus_type, 'idx2word.json'), 'r'))
img_captions = json.load(open(os.path.join(opt.captions_dir, dataset_name, 'img_captions.json'), 'r'))
img_det_concepts = json.load(open(os.path.join(opt.captions_dir, dataset_name, 'img_det_concepts.json'), 'r'))
senti_captions = json.load(open(os.path.join(opt.captions_dir, dataset_name, corpus_type, 'senti_captions.json'), 'r'))
captioner = Captioner(idx2word, opt.sentiment_categories, opt.settings)
captioner.to(opt.device)
lr = opt.xe_lr
optimizer, xe_crit, da_crit = captioner.get_optim_criterion(lr)
if opt.xe_resume:
print("====> loading checkpoint '{}'".format(opt.xe_resume))
chkpoint = torch.load(opt.xe_resume, map_location=lambda s, l: s)
assert opt.settings == chkpoint['settings'], \
'opt.settings and resume model settings are different'
assert idx2word == chkpoint['idx2word'], \
'idx2word and resume model idx2word are different'
assert opt.sentiment_categories == chkpoint['sentiment_categories'], \
'sentiment_categories and resume model sentiment_categories are different'
assert dataset_name == chkpoint['dataset_name'], \
'dataset_name and resume model dataset_name are different'
assert corpus_type == chkpoint['corpus_type'], \
'corpus_type and resume model corpus_type are different'
captioner.load_state_dict(chkpoint['model'])
optimizer.load_state_dict(chkpoint['optimizer'])
lr = optimizer.param_groups[0]['lr']
print("====> loaded checkpoint '{}', epoch: {}"
.format(opt.xe_resume, chkpoint['epoch']))
sent_senti_cls = SentenceSentimentClassifier(idx2word, opt.sentiment_categories, opt.settings)
sent_senti_cls.to(opt.device)
ss_cls_file = os.path.join(opt.checkpoint, 'sent_senti_cls', dataset_name, corpus_type, 'model-best.pth')
print("====> loading checkpoint '{}'".format(ss_cls_file))
chkpoint = torch.load(ss_cls_file, map_location=lambda s, l: s)
assert opt.settings == chkpoint['settings'], \
'opt.settings and resume model settings are different'
assert idx2word == chkpoint['idx2word'], \
'idx2word and resume model idx2word are different'
assert opt.sentiment_categories == chkpoint['sentiment_categories'], \
'opt.sentiment_categories and resume model sentiment_categories are different'
assert dataset_name == chkpoint['dataset_name'], \
'dataset_name and resume model dataset_name are different'
assert corpus_type == chkpoint['corpus_type'], \
'corpus_type and resume model corpus_type are different'
sent_senti_cls.load_state_dict(chkpoint['model'])
sent_senti_cls.eval()
word2idx = {}
for i, w in enumerate(idx2word):
word2idx[w] = i
print('====> process image captions begin')
captions_id = {}
for split, caps in img_captions.items():
print('convert %s captions to index' % split)
captions_id[split] = {}
for fn, seqs in tqdm.tqdm(caps.items()):
tmp = []
for seq in seqs:
tmp.append([captioner.sos_id] +
[word2idx.get(w, None) or word2idx['<UNK>'] for w in seq] +
[captioner.eos_id])
captions_id[split][fn] = tmp
img_captions = captions_id
print('====> process image captions end')
print('====> process image det_concepts begin')
det_concepts_id = {}
for fn, cpts in tqdm.tqdm(img_det_concepts.items()):
det_concepts_id[fn] = [word2idx[w] for w in cpts]
img_det_concepts = det_concepts_id
print('====> process image det_concepts end')
senti_label2idx = {}
for i, w in enumerate(opt.sentiment_categories):
senti_label2idx[w] = i
print('====> process senti corpus begin')
senti_captions['positive'] = senti_captions['positive'] * int(len(senti_captions['neutral']) / len(senti_captions['positive']))
senti_captions['negative'] = senti_captions['negative'] * int(len(senti_captions['neutral']) / len(senti_captions['negative']))
senti_captions_id = []
for senti, caps in senti_captions.items():
print('convert %s corpus to index' % senti)
senti_id = senti_label2idx[senti]
for cap, cpts, sentis in tqdm.tqdm(caps):
cap = [captioner.sos_id] +\
[word2idx.get(w, None) or word2idx['<UNK>'] for w in cap] +\
[captioner.eos_id]
cpts = [word2idx[w] for w in cpts if w in word2idx]
sentis = [word2idx[w] for w in sentis]
senti_captions_id.append([cap, cpts, sentis, senti_id])
senti_captions = senti_captions_id
print('====> process senti corpus end')
fc_feats = os.path.join(opt.feats_dir, dataset_name, '%s_fc.h5' % dataset_name)
att_feats = os.path.join(opt.feats_dir, dataset_name, '%s_att.h5' % dataset_name)
train_data = get_caption_dataloader(fc_feats, att_feats, img_captions['train'],
img_det_concepts, idx2word.index('<PAD>'),
opt.max_seq_len, opt.num_concepts,
opt.xe_bs, opt.xe_num_works)
val_data = get_caption_dataloader(fc_feats, att_feats, img_captions['val'],
img_det_concepts, idx2word.index('<PAD>'),
opt.max_seq_len, opt.num_concepts, opt.xe_bs,
opt.xe_num_works, shuffle=False)
scs_data = get_senti_corpus_with_sentis_dataloader(
senti_captions, idx2word.index('<PAD>'), opt.max_seq_len,
opt.num_concepts, opt.num_sentiments, 80, opt.xe_num_works)
test_captions = {}
for fn in img_captions['test']:
test_captions[fn] = [[]]
test_data = get_caption_dataloader(fc_feats, att_feats, test_captions,
img_det_concepts, idx2word.index('<PAD>'),
opt.max_seq_len, opt.num_concepts, opt.xe_bs,
opt.xe_num_works, shuffle=False)
def forward(data, training=True, ss_prob=0.0):
captioner.train(training)
if training:
seq2seq_data = iter(scs_data)
loss_val = defaultdict(float)
for _, fc_feats, att_feats, (caps_tensor, lengths), cpts_tensor in tqdm.tqdm(data):
fc_feats = fc_feats.to(opt.device)
att_feats = att_feats.to(opt.device)
caps_tensor = caps_tensor.to(opt.device)
cpts_tensor = cpts_tensor.to(opt.device)
with torch.no_grad():
xe_senti_labels, _ = sent_senti_cls(caps_tensor[:, 1:], lengths)
xe_senti_labels = xe_senti_labels.softmax(dim=-1)
xe_senti_labels = xe_senti_labels.argmax(dim=-1).detach()
pred = captioner(fc_feats, att_feats, cpts_tensor, caps_tensor,
xe_senti_labels, ss_prob, mode='xe')
xe_loss = xe_crit(pred, caps_tensor[:, 1:], lengths)
da_loss = da_crit(captioner.cpt_feats, captioner.fc_feats.detach())
cap_loss = xe_loss + da_loss
loss_val['xe_loss'] += float(xe_loss)
loss_val['da_loss'] += float(da_loss)
loss_val['cap_loss'] += float(cap_loss)
seq2seq_loss = 0.0
if training:
try:
(caps_tensor, lengths), cpts_tensor, sentis_tensor, senti_labels = next(seq2seq_data)
except:
seq2seq_data = iter(scs_data)
(caps_tensor, lengths), cpts_tensor, sentis_tensor, senti_labels = next(seq2seq_data)
caps_tensor = caps_tensor.to(opt.device)
cpts_tensor = cpts_tensor.to(opt.device)
sentis_tensor = sentis_tensor.to(opt.device)
senti_labels = senti_labels.to(opt.device)
pred = captioner(caps_tensor, cpts_tensor, sentis_tensor, senti_labels,
ss_prob, mode='seq2seq')
seq2seq_loss = xe_crit(pred, caps_tensor[:, 1:], lengths)
loss_val['seq2seq_loss'] += float(seq2seq_loss)
all_loss = cap_loss + seq2seq_loss
loss_val['all_loss'] += float(all_loss)
if training:
optimizer.zero_grad()
all_loss.backward()
clip_gradient(optimizer, opt.grad_clip)
optimizer.step()
for k, v in loss_val.items():
loss_val[k] = v / len(data)
return loss_val
tmp_dir = ''
checkpoint = os.path.join(opt.checkpoint, 'xe', dataset_name, corpus_type, tmp_dir)
if not os.path.exists(checkpoint):
os.makedirs(checkpoint)
result_dir = os.path.join(opt.result_dir, 'xe', dataset_name, corpus_type, tmp_dir)
if not os.path.exists(result_dir):
os.makedirs(result_dir)
previous_loss = None
for epoch in range(opt.xe_epochs):
print('--------------------epoch: %d' % epoch)
# torch.cuda.empty_cache()
ss_prob = 0.0
if epoch > opt.scheduled_sampling_start >= 0:
frac = (epoch - opt.scheduled_sampling_start) // opt.scheduled_sampling_increase_every
ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob)
print('tmp_dir:', tmp_dir, 'ss_prob:', ss_prob)
train_loss = forward(train_data, ss_prob=ss_prob)
with torch.no_grad():
val_loss = forward(val_data, training=False)
results = []
fact_txt = ''
for fns, fc_feats, att_feats, _, _ in tqdm.tqdm(test_data):
fc_feats = fc_feats.to(opt.device)
att_feats = att_feats.to(opt.device)
for i, fn in enumerate(fns):
captions, _ = captioner.sample(
fc_feats[i], att_feats[i],
beam_size=opt.beam_size, max_seq_len=opt.max_seq_len)
results.append({'image_id': fn, 'caption': captions[0]})
fact_txt += captions[0] + '\n'
json.dump(results, open(os.path.join(result_dir, 'result_%d.json' % epoch), 'w'))
with open(os.path.join(result_dir, 'result_%d.txt' % epoch), 'w') as f:
f.write(fact_txt)
if previous_loss is not None and val_loss['all_loss'] > previous_loss:
lr = lr * 0.5
for param_group in optimizer.param_groups:
param_group['lr'] = lr
previous_loss = val_loss['all_loss']
print('train_loss: %s, val_loss: %s' % (dict(train_loss), dict(val_loss)))
if epoch in [0, 10, 15, 20, 25, 29, 30, 35, 39]:
chkpoint = {
'epoch': epoch,
'model': captioner.state_dict(),
'optimizer': optimizer.state_dict(),
'settings': opt.settings,
'idx2word': idx2word,
'sentiment_categories': opt.sentiment_categories,
'dataset_name': dataset_name,
'corpus_type': corpus_type,
}
checkpoint_path = os.path.join(checkpoint, 'model_%d_%.4f_%.4f_%s.pth' % (
epoch, train_loss['all_loss'], val_loss['all_loss'], time.strftime('%m%d-%H%M')))
torch.save(chkpoint, checkpoint_path)
if __name__ == '__main__':
try:
opt = parse_opt()
train()
except BdbQuit:
sys.exit(1)
except Exception:
traceback.print_exc()
print('')
pdb.post_mortem()
sys.exit(1)