This repository has been archived by the owner on Aug 31, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 186
/
Copy pathgen_posetrack_json.py
227 lines (198 loc) · 7.98 KB
/
gen_posetrack_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
##############################################################
# Copyright (c) 2018-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
##############################################################
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import json
import os
import os.path as osp
import glob
from tqdm import tqdm
from PIL import Image
import shutil
import numpy as np
from convert.loader import load_mat
from convert.box import compute_boxes_from_pose
from utils.general import mkdir_p
from convert.data import get_posetrack_kpt_ordering
# Directory with annotation mat files downloaded from PoseTrack website
mat_dir = '/path/to/posetrack_data/annotations/{}'
out_path = '/path/to/output/jsons/posetrack_{}.json'
splits = ['test', 'train', 'val']
# Set this to true if need to re-create the video frames. Note that the
# original frames are in non-standard file format so will need to be fixed.
if 1: # `convert` the frames to standard format
recreate_videos = True
vid_indir = '/path/to/posetrack_data/images'
vid_outdir = '/path/to/output/images_renamed'
else: # `convert`-ed frames already exist, do not redo
recreate_videos = False
vid_indir = ''
vid_outdir = '/path/to/output/images_renamed'
def _get_video_info(vpath):
frame_ids = sorted([int(osp.basename(
el).split('.')[0]) for el in os.listdir(vpath)])
nframes = len(frame_ids)
assert(frame_ids[0] == 1)
assert(frame_ids[-1] == nframes)
frame1 = osp.join(vpath, '00000001.jpg')
wd, ht = Image.open(frame1).size
return {'nframes': nframes, 'width': wd, 'height': ht}
def _convert_video_frame_ids(inpath, outpath):
"""
PoseTrack videos follow no consistent naming for frames. Make it consistent
"""
mkdir_p(outpath)
frame_names = [osp.basename(el) for el in glob.glob(osp.join(
inpath, '*.jpg'))]
# Some videos have 00XX_crop.jpg style filenames
frame_ids = [int(el.split('.')[0].split('_')[0]) for el in frame_names]
id_to_name = dict(zip(frame_ids, frame_names))
for i, fid in enumerate(sorted(frame_ids)):
shutil.copy('{}/{}'.format(inpath, id_to_name[fid]),
'{}/{:08d}.jpg'.format(outpath, i + 1))
def _load_mat_files(annot_dir):
mat_data = {}
print('Loading data from MAT files...')
for fpath in tqdm(glob.glob(osp.join(annot_dir, '*.mat'))):
stuff = load_mat(fpath)
if len(stuff) > 0:
key = osp.dirname(stuff[0].im_name)
key = key[len('images/'):]
mat_data[key] = stuff
return mat_data
def _get_person_category_data():
category = {
"supercategory": "person",
"id": 1, # to be same as COCO, not using 0
"name": "person",
"skeleton": [[16, 14],
[14, 12],
[17, 15],
[15, 13],
[12, 13],
[6, 12],
[7, 13],
[6, 7],
[6, 8],
[7, 9],
[8, 10],
[9, 11],
[2, 3],
[1, 2],
[1, 3],
[2, 4],
[3, 5],
[4, 6],
[5, 7]],
"keypoints": ["nose",
"head_bottom", # "left_eye",
"head_top", # "right_eye",
"left_ear",
"right_ear", "left_shoulder", "right_shoulder",
"left_elbow", "right_elbow", "left_wrist",
"right_wrist", "left_hip", "right_hip", "left_knee",
"right_knee", "left_ankle", "right_ankle"]}
return category
def _get_categories_data():
return [_get_person_category_data()]
def _gen_image_structure(vname, frame_id, frame_data, vid_info, imid):
image = {}
# ordering in data based on tools/video/extract_metadata.py
image['nframes'] = int(vid_info['nframes'])
image['frame_id'] = int(frame_id)
image['width'] = int(vid_info['width'])
image['height'] = int(vid_info['height'])
# frames-in-dir kinda videos. The {:08d}.jpg is how I rename it
image['file_name'] = osp.join(vname, '{:08d}.jpg'.format(frame_id))
image['original_file_name'] = frame_data.im_name
image['is_labeled'] = frame_data.is_labeled
image['id'] = imid
return image
def _get_posetrack_to_coco_permut():
print('Computing permutation from posetrack to COCO.')
target_ordering = _get_person_category_data()['keypoints']
given_ordering, _ = get_posetrack_kpt_ordering()
permut_ordering = []
for given_kpt_id, given_kpt in enumerate(given_ordering):
new_id = target_ordering.index(given_kpt)
# Make sure all points get assigned somewhere.
# COCO has 17 kpts, so the other kpts in posetrack can replace the ones
# we don't have labels for in posetrack (eye/ear)
assert(new_id > -1)
print('{} -> {}'.format(given_kpt_id, new_id))
permut_ordering.append(new_id)
return permut_ordering
def _convert_posetrack_kps_to_coco(posetrack_pose, permut_ordering):
res = np.zeros(
(len(_get_person_category_data()['keypoints']), 3),
dtype=posetrack_pose.dtype)
res[np.array(permut_ordering), :] = posetrack_pose
return res
def _gen_annot_structure(box_data, kpt_permut_ordering, imid, annid):
ann = {}
ann['id'] = annid
ann['image_id'] = imid
ann['iscrowd'] = 0
ann['segmentation'] = []
ann['num_keypoints'] = 17 # COCO
ann['category_id'] = 1 # person
ann['track_id'] = box_data.track_id
ann['head_box'] = [float(el) for el in box_data.head]
ann['keypoints'] = _convert_posetrack_kps_to_coco(
box_data.pose, kpt_permut_ordering).reshape((-1)).tolist()
ann['bbox'] = compute_boxes_from_pose([[ann['keypoints']]])[0][0]
ann['area'] = ann['bbox'][-1] * ann['bbox'][-2]
return ann
def _convert_mat_to_COCO_json(
annot_dir, out_path, vid_indir, vid_outdir, recreate_videos,
permut_ordering):
# Generate the output structure
res = {}
res['images'] = []
res['annotations'] = []
res['categories'] = _get_categories_data()
# load all the mat files
all_annots = _load_mat_files(annot_dir)
print('Processing MAT files into JSON structures...')
for vid_name in tqdm(all_annots.keys()):
# Convert the posetrack video into a sane format
if recreate_videos:
assert(len(vid_indir) > 0)
_convert_video_frame_ids(
osp.join(vid_indir, vid_name),
osp.join(vid_outdir, vid_name))
vid_info = _get_video_info(osp.join(vid_outdir, vid_name))
vid_data = all_annots[vid_name]
nframes = len(vid_data)
for frame_id in range(1, nframes + 1):
frame_data = vid_data[frame_id - 1]
image_struct = _gen_image_structure(
vid_name, frame_id, frame_data, vid_info,
len(res['images']) + 1)
res['images'].append(image_struct)
if frame_data.is_labeled:
for box_data in frame_data.boxes:
annot_struct = _gen_annot_structure(
box_data,
permut_ordering,
imid=len(res['images']),
annid=len(res['annotations']) + 1)
res['annotations'].append(annot_struct)
with open(out_path, 'w') as fout:
json.dump(res, fout)
def main():
permut_ordering = _get_posetrack_to_coco_permut()
for split in splits:
print('Processing {} split'.format(split))
_convert_mat_to_COCO_json(
mat_dir.format(split), out_path.format(split),
vid_indir, vid_outdir, recreate_videos, permut_ordering)
if __name__ == '__main__':
main()