-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathrun_evals.py
321 lines (275 loc) · 14.3 KB
/
run_evals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import json
import os
import shutil
import tqdm
from pathlib import Path
from PIL import Image
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torchvision import transforms
from pytorch_fid.fid_score import InceptionV3, calculate_frechet_distance, compute_statistics_of_path
from skimage.metrics import peak_signal_noise_ratio, structural_similarity
import utils
import utils_img
import utils_model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def save_imgs(img_dir, img_dir_nw, save_dir, num_imgs=None, mult=10):
filenames = os.listdir(img_dir)
filenames.sort()
if num_imgs is not None:
filenames = filenames[:num_imgs]
for ii, filename in enumerate(tqdm.tqdm(filenames)):
img_1 = Image.open(os.path.join(img_dir_nw, filename))
img_2 = Image.open(os.path.join(img_dir, filename))
diff = np.abs(np.asarray(img_1).astype(int) - np.asarray(img_2).astype(int)) *10
diff = Image.fromarray(diff.astype(np.uint8))
shutil.copy(os.path.join(img_dir_nw, filename), os.path.join(save_dir, f"{ii:02d}_nw.png"))
shutil.copy(os.path.join(img_dir, filename), os.path.join(save_dir, f"{ii:02d}_w.png"))
diff.save(os.path.join(save_dir, f"{ii:02d}_diff.png"))
def get_img_metric(img_dir, img_dir_nw, num_imgs=None):
filenames = os.listdir(img_dir)
filenames.sort()
if num_imgs is not None:
filenames = filenames[:num_imgs]
log_stats = []
for ii, filename in enumerate(tqdm.tqdm(filenames)):
pil_img_ori = Image.open(os.path.join(img_dir_nw, filename))
pil_img = Image.open(os.path.join(img_dir, filename))
img_ori = np.asarray(pil_img_ori)
img = np.asarray(pil_img)
log_stat = {
'filename': filename,
'ssim': structural_similarity(img_ori, img, channel_axis=2),
'psnr': peak_signal_noise_ratio(img_ori, img),
'linf': np.amax(np.abs(img_ori.astype(int)-img.astype(int)))
}
log_stats.append(log_stat)
return log_stats
def cached_fid(path1, path2, batch_size=32, device='cuda:0', dims=2048, num_workers=10):
for p in [path1, path2]:
if not os.path.exists(p):
raise RuntimeError('Invalid path: %s' % p)
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx]).to(device)
# cache path2
storage_path = Path.home() / f'.cache/torch/fid/{path2.replace("/", "_")}'
if (storage_path / 'm.pt').exists():
m2 = torch.load(storage_path / 'm.pt')
s2 = torch.load(storage_path / 's.pt')
else:
storage_path.mkdir(parents=True)
m2, s2 = compute_statistics_of_path(str(path2), model, batch_size, dims, device, num_workers)
torch.save(m2, storage_path / 'm.pt')
torch.save(s2, storage_path / 's.pt')
m1, s1 = compute_statistics_of_path(str(path1), model, batch_size, dims, device, num_workers)
fid_value = calculate_frechet_distance(m1, s1, m2, s2)
return fid_value
@torch.no_grad()
def get_bit_accs(img_dir: str, msg_decoder: nn.Module, key: torch.Tensor, batch_size: int = 16, attacks: dict = {}):
# resize crop
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
data_loader = utils.get_dataloader(img_dir, transform, batch_size=batch_size, collate_fn=None)
log_stats = {ii:{} for ii in range(len(data_loader.dataset))}
for ii, imgs in enumerate(tqdm.tqdm(data_loader)):
imgs = imgs.to(device)
keys = key.repeat(imgs.shape[0], 1)
for name, attack in attacks.items():
imgs_aug = attack(imgs)
decoded = msg_decoder(imgs_aug) # b c h w -> b k
diff = (~torch.logical_xor(decoded>0, keys>0)) # b k -> b k
bit_accs = torch.sum(diff, dim=-1) / diff.shape[-1] # b k -> b
word_accs = (bit_accs == 1) # b
for jj in range(bit_accs.shape[0]):
img_num = ii*batch_size+jj
log_stat = log_stats[img_num]
log_stat[f'bit_acc_{name}'] = bit_accs[jj].item()
log_stat[f'word_acc_{name}'] = 1.0 if word_accs[jj].item() else 0.0
log_stats = [{'img': img_num, **log_stats[img_num]} for img_num in range(len(data_loader.dataset))]
return log_stats
@torch.no_grad()
def get_msgs(img_dir: str, msg_decoder: nn.Module, batch_size: int = 16, attacks: dict = {}):
# resize crop
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
data_loader = utils.get_dataloader(img_dir, transform, batch_size=batch_size, collate_fn=None)
log_stats = {ii:{} for ii in range(len(data_loader.dataset))}
for ii, imgs in enumerate(tqdm.tqdm(data_loader)):
imgs = imgs.to(device)
for name, attack in attacks.items():
imgs_aug = attack(imgs)
decoded = msg_decoder(imgs_aug)>0 # b c h w -> b k
for jj in range(decoded.shape[0]):
img_num = ii*batch_size+jj
log_stat = log_stats[img_num]
log_stat[f'decoded_{name}'] = "".join([('1' if el else '0') for el in decoded[jj].detach()])
log_stats = [{'img': img_num, **log_stats[img_num]} for img_num in range(len(data_loader.dataset))]
return log_stats
def main(params):
# Set seeds for reproductibility
np.random.seed(params.seed)
# Print the arguments
print("__git__:{}".format(utils.get_sha()))
print("__log__:{}".format(json.dumps(vars(params))))
# Create the directories
if not os.path.exists(params.output_dir):
os.makedirs(params.output_dir)
save_img_dir = os.path.join(params.output_dir, 'imgs')
params.save_img_dir = save_img_dir
if not os.path.exists(save_img_dir):
os.makedirs(save_img_dir, exist_ok=True)
if params.eval_imgs:
print(f">>> Saving {params.save_n_imgs} diff images...")
if params.save_n_imgs > 0:
save_imgs(params.img_dir, params.img_dir_nw, save_img_dir, num_imgs=params.save_n_imgs)
print(f'>>> Computing img-2-img stats...')
img_metrics = get_img_metric(params.img_dir, params.img_dir_nw, num_imgs=params.num_imgs)
img_df = pd.DataFrame(img_metrics)
img_df.to_csv(os.path.join(params.output_dir, 'img_metrics.csv'), index=False)
ssims = img_df['ssim'].tolist()
psnrs = img_df['psnr'].tolist()
linfs = img_df['linf'].tolist()
ssim_mean, ssim_std, ssim_max, ssim_min = np.mean(ssims), np.std(ssims), np.max(ssims), np.min(ssims)
psnr_mean, psnr_std, psnr_max, psnr_min = np.mean(psnrs), np.std(psnrs), np.max(psnrs), np.min(psnrs)
linf_mean, linf_std, linf_max, linf_min = np.mean(linfs), np.std(linfs), np.max(linfs), np.min(linfs)
print(f"SSIM: {ssim_mean:.4f}±{ssim_std:.4f} [{ssim_min:.4f}, {ssim_max:.4f}]")
print(f"PSNR: {psnr_mean:.4f}±{psnr_std:.4f} [{psnr_min:.4f}, {psnr_max:.4f}]")
print(f"Linf: {linf_mean:.4f}±{linf_std:.4f} [{linf_min:.4f}, {linf_max:.4f}]")
if params.img_dir_fid is not None:
print(f'>>> Computing image distribution stats...')
fid = cached_fid(params.img_dir, params.img_dir_fid)
print(f"FID watermark : {fid:.4f}")
fid_nw = cached_fid(params.img_dir_nw, params.img_dir_fid)
print(f"FID vanilla : {fid_nw:.4f}")
if params.eval_bits:
# Loads hidden decoder
print(f'>>> Building hidden decoder with weights from {params.msg_decoder_path}...')
if 'torchscript' in params.msg_decoder_path:
msg_decoder = torch.jit.load(params.msg_decoder_path).to(device)
else:
msg_decoder = utils_model.get_hidden_decoder(num_bits=params.num_bits, redundancy=params.redundancy, num_blocks=params.decoder_depth, channels=params.decoder_channels).to(device)
ckpt = utils_model.get_hidden_decoder_ckpt(params.msg_decoder_path)
print(msg_decoder.load_state_dict(ckpt, strict=False))
msg_decoder.eval()
# whitening
print(f'>>> Whitening...')
with torch.no_grad():
data_dir = "/checkpoint/pfz/watermarking/data/coco_10k_orig/0"
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(256),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
loader = utils.get_dataloader(data_dir, transform, batch_size=16, collate_fn=None)
ys = []
for i, x in enumerate(loader):
x = x.to(device)
y = msg_decoder(x)
ys.append(y.to('cpu'))
ys = torch.cat(ys, dim=0)
nbit = ys.shape[1]
mean = ys.mean(dim=0, keepdim=True) # NxD -> 1xD
ys_centered = ys - mean # NxD
cov = ys_centered.T @ ys_centered
e, v = torch.linalg.eigh(cov)
L = torch.diag(1.0 / torch.pow(e, exponent=0.5))
weight = torch.mm(L, v.T)
bias = -torch.mm(mean, weight.T).squeeze(0)
linear = nn.Linear(nbit, nbit, bias=True)
linear.weight.data = np.sqrt(nbit) * weight
linear.bias.data = np.sqrt(nbit) * bias
msg_decoder = nn.Sequential(msg_decoder, linear.to(device))
torchscript_m = torch.jit.script(msg_decoder)
torch.jit.save(torchscript_m, params.msg_decoder_path.replace(".pth", "_whit.torchscript.pt"))
msg_decoder.eval()
nbit = msg_decoder(torch.zeros(1, 3, 128, 128).to(device)).shape[-1]
if params.attack_mode == 'all':
attacks = {
'none': lambda x: x,
'crop_05': lambda x: utils_img.center_crop(x, 0.5),
'crop_01': lambda x: utils_img.center_crop(x, 0.1),
'rot_25': lambda x: utils_img.rotate(x, 25),
'rot_90': lambda x: utils_img.rotate(x, 90),
'jpeg_80': lambda x: utils_img.jpeg_compress(x, 80),
'jpeg_50': lambda x: utils_img.jpeg_compress(x, 50),
'brightness_1p5': lambda x: utils_img.adjust_brightness(x, 1.5),
'brightness_2': lambda x: utils_img.adjust_brightness(x, 2),
'contrast_1p5': lambda x: utils_img.adjust_contrast(x, 1.5),
'contrast_2': lambda x: utils_img.adjust_contrast(x, 2),
'saturation_1p5': lambda x: utils_img.adjust_saturation(x, 1.5),
'saturation_2': lambda x: utils_img.adjust_saturation(x, 2),
'sharpness_1p5': lambda x: utils_img.adjust_sharpness(x, 1.5),
'sharpness_2': lambda x: utils_img.adjust_sharpness(x, 2),
'resize_05': lambda x: utils_img.resize(x, 0.5),
'resize_01': lambda x: utils_img.resize(x, 0.1),
'overlay_text': lambda x: utils_img.overlay_text(x, [76,111,114,101,109,32,73,112,115,117,109]),
'comb': lambda x: utils_img.jpeg_compress(utils_img.adjust_brightness(utils_img.center_crop(x, 0.5), 1.5), 80),
}
elif params.attack_mode == 'few':
attacks = {
'none': lambda x: x,
'crop_01': lambda x: utils_img.center_crop(x, 0.1),
'brightness_2': lambda x: utils_img.adjust_brightness(x, 2),
'contrast_2': lambda x: utils_img.adjust_contrast(x, 2),
'jpeg_50': lambda x: utils_img.jpeg_compress(x, 50),
'comb': lambda x: utils_img.jpeg_compress(utils_img.adjust_brightness(utils_img.center_crop(x, 0.5), 1.5), 80),
}
else:
attacks = {'none': lambda x: x}
if params.decode_only:
log_stats = get_msgs(params.img_dir, msg_decoder, batch_size=params.batch_size, attacks=attacks)
else:
# Creating key
key = torch.tensor([k=='1' for k in params.key_str]).to(device)
log_stats = get_bit_accs(params.img_dir, msg_decoder, key, batch_size=params.batch_size, attacks=attacks)
print(f'>>> Saving log stats to {params.output_dir}...')
df = pd.DataFrame(log_stats)
df.to_csv(os.path.join(params.output_dir, 'log_stats.csv'), index=False)
print(df)
def get_parser():
parser = argparse.ArgumentParser()
def aa(*args, **kwargs):
group.add_argument(*args, **kwargs)
group = parser.add_argument_group('Data parameters')
aa("--img_dir", type=str, default="", help="")
aa("--num_imgs", type=int, default=None)
group = parser.add_argument_group('Eval imgs')
aa("--eval_imgs", type=utils.bool_inst, default=True, help="")
aa("--img_dir_nw", type=str, default="/checkpoint/pfz/2023_logs/0104_aisign_sd_txt2img/_ldm_decoder_ckpt=0_config=0_ckpt=0/samples", help="")
aa("--img_dir_fid", type=str, default=None, help="")
aa("--save_n_imgs", type=int, default=10)
group = parser.add_argument_group('Eval bits')
aa("--eval_bits", type=utils.bool_inst, default=True, help="")
aa("--decode_only", type=utils.bool_inst, default=False, help="")
aa("--key_str", type=str, default="111010110101000001010111010011010100010000100111")
aa("--msg_decoder_path", type=str, default= "models/dec_48b_whit.torchscript.pt")
aa("--attack_mode", type=str, default= "all")
aa("--num_bits", type=int, default=48)
aa("--redundancy", type=int, default=1)
aa("--decoder_depth", type=int, default=8)
aa("--decoder_channels", type=int, default=64)
aa("--img_size", type=int, default=512)
aa("--batch_size", type=int, default=32)
group = parser.add_argument_group('Experiments parameters')
aa("--output_dir", type=str, default="output/", help="Output directory for logs and images (Default: /output)")
aa("--seed", type=int, default=0)
aa("--debug", type=utils.bool_inst, default=False, help="Debug mode")
return parser
if __name__ == '__main__':
# generate parser / parse parameters
parser = get_parser()
params = parser.parse_args()
# run experiment
main(params)