-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
491 lines (424 loc) · 18.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
from tqdm import tqdm
import pickle as pkl
import os
import timm
import copy
import numpy as np
import torch.nn as nn
import torch
from sklearn.metrics import balanced_accuracy_score
from dataset import blood_noniid, bloodmnisit, distribute_data
from utils import weight_vec
class CentralizedFashion():
def __init__(self, device, network, criterion, base_dir):
"""
Class for Centralized Paradigm.
args:
device: cuda vs cpu
network: ViT model
criterion: loss function to be used
base_dir: where to save metrics as pickles
return:
None
"""
self.device = device
self.network = network
self.criterion = criterion
self.base_dir = base_dir
def set_optimizer(self, name, lr):
"""
name: Optimizer name, e.g. Adam
lr: learning rate
"""
if name == 'Adam':
self.optimizer = torch.optim.Adam(self.network.parameters(), lr = lr)
def init_logs(self):
"""
A method to initialize dictionaries for the metrics
return : None
args: None
"""
self.losses = {'train':[], 'test':[]}
self.balanced_accs = {'train':[], 'test':[]}
def train_round(self, train_loader):
"""
Training loop.
"""
running_loss = 0
whole_labels = []
whole_preds = []
whole_probs = []
for imgs, labels in tqdm(train_loader):
self.optimizer.zero_grad()
imgs, labels = imgs.to(self.device),labels.to(self.device)
output = self.network(imgs)
labels = labels.reshape(labels.shape[0])
loss = self.criterion(output, labels)
loss.backward()
self.optimizer.step()
running_loss += loss.item()
_, predicted = torch.max(output, 1)
whole_probs.append(torch.nn.Softmax(dim = -1)(output).detach().cpu())
whole_labels.append(labels.detach().cpu())
whole_preds.append(predicted.detach().cpu())
self.metrics(whole_labels, whole_preds, running_loss, len(train_loader), whole_probs, train = True)
def eval_round(self, test_loader):
"""
Evaluation loop.
client_i: Client index.
"""
running_loss = 0
whole_labels = []
whole_preds = []
whole_probs = []
with torch.no_grad():
for imgs, labels in tqdm(test_loader):
imgs, labels = imgs.to(self.device), labels.to(self.device)
output = self.network(imgs)
labels = labels.reshape(labels.shape[0])
loss = self.criterion(output, labels)
running_loss += loss.item()
_, predicted = torch.max(output, 1)
whole_probs.append(torch.nn.Softmax(dim = -1)(output).detach().cpu())
whole_labels.append(labels.detach().cpu())
whole_preds.append(predicted.detach().cpu())
self.metrics(whole_labels, whole_preds, running_loss, len(test_loader), whole_probs, train= False)
def metrics(self, whole_labels, whole_preds, running_loss, len_loader, whole_probs, train):
"""
Save metrics as pickle files and the model as .pt file.
"""
whole_labels = torch.cat(whole_labels)
whole_preds = torch.cat(whole_preds)
loss_epoch = running_loss/len_loader
balanced_acc = balanced_accuracy_score(whole_labels.detach().cpu(),whole_preds.detach().cpu())
if train == True:
eval_name = 'train'
else:
eval_name = 'test'
self.losses[eval_name].append(loss_epoch)
self.balanced_accs[eval_name].append(balanced_acc)
print(f"{eval_name}:")
print(f"{eval_name}_loss :{loss_epoch:.3f}")
print(f"{eval_name}_balanced_acc :{balanced_acc:.3f}")
def save_pickles(self, base_dir, local= None, client_id=None):
if local and client_id:
with open(os.path.join(base_dir,f'loss_epoch_Client{client_id}'), 'wb') as handle:
pkl.dump(self.losses, handle)
with open(os.path.join(base_dir,f'balanced_accs{client_id}'), 'wb') as handle:
pkl.dump(self.balanced_accs, handle)
else:
with open(os.path.join(base_dir,'loss_epoch'), 'wb') as handle:
pkl.dump(self.losses, handle)
with open(os.path.join(base_dir,f'balanced_accs'), 'wb') as handle:
pkl.dump(self.balanced_accs, handle)
class SLViT(nn.Module):
def __init__(
self, ViT_name, num_classes , num_clients=6,
in_channels=3, ViT_pretrained = False,
diff_privacy = False, mean = 0, std = 1
) -> None:
super().__init__()
self.vit = timm.create_model(
model_name = ViT_name,
pretrained = ViT_pretrained,
num_classes = num_classes,
in_chans = in_channels
)
client_tail = MLP_cls_classes(num_classes= num_classes)
self.mlp_clients_tail = nn.ModuleList([copy.deepcopy(client_tail)for i in range(num_clients)])
self.resnet50_clients = nn.ModuleList([copy.deepcopy(self.vit.patch_embed) for i in range(num_clients)])
self.diff_privacy = diff_privacy
self.mean = mean
self.std = std
def forward(self, x, client_idx):
x = self.resnet50_clients[client_idx](x)
if self.diff_privacy == True:
noise = torch.randn(size= x.shape).cuda() * self.std + self.mean
x = x + noise
x = torch.cat((self.vit.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
x = self.vit.pos_drop(x + self.vit.pos_embed)
for block_num in range(12):
x = self.vit.blocks[block_num](x)
x = self.vit.norm(x)
cls = self.vit.pre_logits(x)[:,0,:]
x = self.mlp_clients_tail[client_idx](cls)
return x, cls
class MLP_cls_classes(nn.Module):
def __init__(self,num_classes):
super().__init__()
self.norm = nn.LayerNorm((768,), eps=1e-06, elementwise_affine=True)
self.identity = nn.Identity()
self.fc = nn.Linear(in_features=768, out_features=num_classes, bias=True)
def forward(self, x):
x = self.norm(x)
x = self.identity(x)
x = self.fc(x)
return x
class SplitNetwork():
def __init__(
self, num_clients, device, network,
criterion, base_dir,
):
"""
args:
num_clients
device: cuda vs cpu
network: ViT model
criterion: loss function to be used
base_dir: where to save pickles/model files
"""
self.device = device
self.num_clients = num_clients
self.criterion = criterion
self.network = network
self.base_dir = base_dir
def init_logs(self):
"""
This method initializes dictionaries for the metrics
"""
self.losses = {'train':[[] for i in range(self.num_clients)], 'test':[[] for i in range(self.num_clients)]}
self.balanced_accs = {'train':[[] for i in range(self.num_clients)], 'test':[[] for i in range(self.num_clients)]}
def set_optimizer(self, name, lr):
"""
name: Optimizer name, e.g. Adam
lr: learning rate
"""
if name == 'Adam':
self.optimizer = torch.optim.Adam(self.network.parameters(), lr = lr)
def distribute_images(self, dataset_name ,train_data, test_data, batch_size):
"""
This method splits the dataset among clients.
train_data: train dataset
test_data: test dataset
batch_size: batch size
"""
if dataset_name == 'HAM':
self.CLIENTS_DATALOADERS = distribute_data(self.num_clients, train_data, batch_size)
self.testloader = torch.utils.data.DataLoader(test_data,batch_size=batch_size, num_workers= 8)
elif dataset_name == 'bloodmnist':
_, self.testloader, train_dataset, _ = bloodmnisit(batch_size= batch_size)
_, self.CLIENTS_DATALOADERS, _ = blood_noniid(self.num_clients, train_dataset, batch_size =batch_size)
def train_round(self, client_i):
"""
Training loop.
client_i: Client index.
"""
running_loss_client_i = 0
mel_running_loss = 0
whole_labels = []
whole_preds = []
whole_probs = []
copy_network = copy.deepcopy(self.network)
weight_dic = {'blocks':None, 'cls':None, 'pos_embed':None}
self.network.train()
for data in tqdm(self.CLIENTS_DATALOADERS[client_i]):
self.optimizer.zero_grad()
imgs, labels = data[0].to(self.device), data[1].to(self.device)
labels = labels.reshape(labels.shape[0])
tail_output = self.network(imgs, client_i)
loss = self.criterion(tail_output[0], labels)
loss.backward()
self.optimizer.step()
running_loss_client_i+= loss.item()
_, predicted = torch.max(tail_output[0], 1)
whole_probs.append(torch.nn.Softmax(dim = -1)(tail_output[0]).detach().cpu())
whole_labels.append(labels.detach().cpu())
whole_preds.append(predicted.detach().cpu())
self.metrics(client_i, whole_labels, whole_preds, running_loss_client_i, len(self.CLIENTS_DATALOADERS[client_i]), whole_probs, train = True)
# if self.avg_body:
weight_dic['blocks'] = weight_vec(self.network.vit.blocks).detach().cpu()
weight_dic['cls'] = self.network.vit.cls_token.detach().cpu()
weight_dic['pos_embed'] = self.network.vit.pos_embed.detach().cpu()
self.network.vit.blocks = copy.deepcopy(copy_network.vit.blocks)
self.network.vit.cls_token = copy.deepcopy(copy_network.vit.cls_token)
self.network.vit.pos_embed = copy.deepcopy(copy_network.vit.pos_embed)
return weight_dic
def eval_round(self, client_i):
"""
Evaluation loop.
client_i: Client index.
"""
running_loss_client_i = 0
whole_labels = []
whole_preds = []
whole_probs = []
self.network.eval()
with torch.no_grad():
for data in tqdm(self.testloader):
imgs, labels = data[0].to(self.device), data[1].to(self.device)
tail_output = self.network(imgs, client_i)[0]
labels = labels.reshape(labels.shape[0])
loss = self.criterion(tail_output, labels)
running_loss_client_i+= loss.item()
_, predicted = torch.max(tail_output, 1)
whole_probs.append(torch.nn.Softmax(dim = -1)(tail_output).detach().cpu())
whole_labels.append(labels.detach().cpu())
whole_preds.append(predicted.detach().cpu())
self.metrics(client_i, whole_labels, whole_preds, running_loss_client_i, len(self.testloader), whole_probs, train= False)
def metrics(self, client_i, whole_labels, whole_preds, running_loss_client_i, len_loader, whole_probs, train):
"""
Save metrics as pickle files and the model as .pt file.
"""
whole_labels = torch.cat(whole_labels)
whole_preds = torch.cat(whole_preds)
loss_epoch = running_loss_client_i/len_loader
balanced_acc = balanced_accuracy_score(whole_labels.detach().cpu(), whole_preds.detach().cpu())
if train == True:
eval_name = 'train'
else:
eval_name = 'test'
self.losses[eval_name][client_i].append(loss_epoch)
self.balanced_accs[eval_name][client_i].append(balanced_acc)
print(f"client{client_i}_{eval_name}:")
print(f" Loss {eval_name}:{loss_epoch:.3f}")
print(f"balanced accuracy {eval_name}:{balanced_acc:.3f}")
def save_pickles(self, base_dir):
with open(os.path.join(base_dir,'loss_epoch'), 'wb') as handle:
pkl.dump(self.losses, handle)
with open(os.path.join(base_dir,'balanced_accs'), 'wb') as handle:
pkl.dump(self.balanced_accs, handle)
class FeSVBiS(nn.Module):
def __init__(
self, ViT_name, num_classes,
num_clients=6, in_channels=3, ViT_pretrained=False,
initial_block=1, final_block=6, resnet_dropout = None, DP = False, mean = None, std = None
) -> None:
super().__init__()
self.initial_block = initial_block
self.final_block = final_block
self.vit = timm.create_model(
model_name = ViT_name,
pretrained = ViT_pretrained,
num_classes = num_classes,
in_chans = in_channels
)
self.resnet50 = self.vit.patch_embed
self.resnet50_clients = nn.ModuleList([copy.deepcopy(self.resnet50) for i in range(num_clients)])
self.common_network = ResidualBlock(drop_out=resnet_dropout)
client_tail = MLP_cls_classes(num_classes= num_classes)
self.mlp_clients_tail = nn.ModuleList([copy.deepcopy(client_tail) for i in range(num_clients)])
self.DP = DP
self.mean = mean
self.std = std
def forward(self, x, chosen_block, client_idx):
x = self.resnet50_clients[client_idx](x)
if self.DP:
noise = torch.randn(size= x.shape).cuda() * self.std + self.mean
x = x + noise
for block_num in range(chosen_block):
x = self.vit.blocks[block_num](x)
x = self.common_network(x)
x = self.mlp_clients_tail[client_idx](x)
return x
class ResidualBlock(nn.Module):
def __init__(self, in_channels=768, out_channels=768, stride = 1, downsample = None, drop_out= None):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size = 3, stride = stride, padding = 1),
nn.BatchNorm2d(out_channels),
nn.ReLU())
self.conv2 = nn.Sequential(
nn.Conv2d(out_channels, out_channels, kernel_size = 3, stride = 1, padding = 1),
nn.BatchNorm2d(out_channels))
self.downsample = downsample
self.relu = nn.ReLU()
self.out_channels = out_channels
self.pool = nn.AvgPool2d(14, stride=1)
self.dropout = nn.Dropout2d(p=drop_out)
self.drop_out = drop_out
def forward(self, x):
if len(x.shape) == 3:
x = torch.permute(x,(0,-1,1))
x = x.reshape(x.shape[0], x.shape[1] , 14, 14)
residual = x
out = self.conv1(x)
if self.drop_out is not None:
out = self.dropout(out)
out = self.conv2(out)
if self.downsample:
residual = self.downsample(x)
out += residual
out = self.relu(out)
out = self.pool(out)
return out.reshape(-1,768)
class SplitFeSViBS(SplitNetwork):
def __init__(
self, num_clients, device,
network, criterion, base_dir,
initial_block, final_block,
):
self.initial_block = initial_block
self.final_block = final_block
self.num_clients = num_clients
self.device = device
self.network = network
self.criterion = criterion
self.base_dir = base_dir
self.train_chosen_blocks = [0] * num_clients
def set_optimizer_mel(self, name, lr):
if name == 'Adam':
self.optimizer_mel = [torch.optim.Adam(self.mel_body[i].parameters(), lr = lr) for i in range(self.num_clients)]
def train_round(self, client_i):
"""
Training loop.
client_i: Client index.
"""
running_loss_client_i = 0
whole_labels = []
whole_preds = []
whole_probs = []
self.chosen_block = np.random.randint(low = self.initial_block, high= self.final_block+1)
self.train_chosen_blocks[client_i] = self.chosen_block
copy_network = copy.deepcopy(self.network)
weight_dic = {}
weight_dic['blocks'] = None
weight_dic['cls'] = None
weight_dic['pos_embed'] = None
weight_dic['resnet'] = None
print(f"Chosen Block:{self.chosen_block} for client {client_i}")
self.network.train()
for data in tqdm(self.CLIENTS_DATALOADERS[client_i]):
self.optimizer.zero_grad()
imgs, labels = data[0].to(self.device), data[1].to(self.device)
labels = labels.reshape(labels.shape[0])
tail_output = self.network(x=imgs, chosen_block=self.chosen_block, client_idx = client_i)
loss = self.criterion(tail_output, labels)
loss.backward()
self.optimizer.step()
running_loss_client_i+= loss.item()
_, predicted = torch.max(tail_output, 1)
whole_probs.append(torch.nn.Softmax(dim = -1)(tail_output).detach().cpu())
whole_labels.append(labels.detach().cpu())
whole_preds.append(predicted.detach().cpu())
self.metrics(client_i, whole_labels, whole_preds, running_loss_client_i, len(self.CLIENTS_DATALOADERS[client_i]), whole_probs, train = True)
weight_dic['blocks'] = weight_vec(self.network.vit.blocks).detach().cpu()
weight_dic['cls'] = self.network.vit.cls_token.detach().cpu()
weight_dic['pos_embed'] = self.network.vit.pos_embed.detach().cpu()
self.network.vit.blocks = copy.deepcopy(copy_network.vit.blocks)
self.network.vit.cls_token = copy.deepcopy(copy_network.vit.cls_token)
self.network.vit.pos_embed = copy.deepcopy(copy_network.vit.pos_embed)
return weight_dic
def eval_round(self, client_i):
"""
Evaluation loop.
client_i: Client index.
"""
running_loss_client_i = 0
whole_labels = []
whole_preds = []
whole_probs = []
num_b = self.train_chosen_blocks[client_i]
print(f"Chosen block for testing: {num_b}")
self.network.eval()
with torch.no_grad():
for data in tqdm(self.testloader):
imgs, labels = data[0].to(self.device), data[1].to(self.device)
labels = labels.reshape(labels.shape[0])
tail_output = self.network(x=imgs, chosen_block=num_b, client_idx = client_i)
loss = self.criterion(tail_output, labels)
running_loss_client_i+= loss.item()
_, predicted = torch.max(tail_output, 1)
whole_probs.append(torch.nn.Softmax(dim = -1)(tail_output).detach().cpu())
whole_labels.append(labels.detach().cpu())
whole_preds.append(predicted.detach().cpu())
self.metrics(client_i, whole_labels, whole_preds, running_loss_client_i, len(self.testloader), whole_probs, train= False)