-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkitti.py
325 lines (259 loc) · 11.2 KB
/
kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import os
from math import sin, cos, pi
from pathlib import Path
import cv2
import matplotlib
import numpy as np
from PIL import Image
from matplotlib import pyplot as plt
from scipy.optimize import curve_fit
from utils import add_right_cax, parse_args
# ====================== initialization ===============================
# pic_num_list = [1, 2, 26, 69, 70, 71, 72, 76, 80, 99, 101, 102, 106, 128, 147, 148, 176, 188, 194, 195, 197]
# selected_pic = [72,99,148,197]
# pic_num = 72
u0 = 609.5593
v0 = 172.8540
fx = fy = f = 721.5377
EPS = 1e-9
def flow_func(x, theta, Xd, Zd, phi, h):
v = x[0]
u = x[1]
lambda_1 = (u - u0) / fx * sin(theta) + (v - v0) / fy * cos(theta)
lambda_2 = (u - u0) / fx * cos(theta) - (v - v0) / fy * sin(theta)
lambda_3 = lambda_2 * h - lambda_1 * Xd
lambda_4 = h - lambda_1 * Zd
lambda_5 = (lambda_3 * cos(phi) - lambda_4 * sin(phi)) / \
(lambda_3 * sin(phi) + lambda_4 * cos(phi)) - lambda_2
lambda_6 = (lambda_1 * h) / (lambda_3 * sin(phi) + lambda_4 * cos(phi)) - lambda_1
fv_e = fy * (-lambda_5 * sin(theta) + lambda_6 * cos(theta))
fu_e = fx * (lambda_5 * cos(theta) + lambda_6 * sin(theta))
output = np.hstack((fv_e, fu_e))
return output
def fv_func(x, theta, Xd, Zd, phi, h):
v = x[0]
u = x[1]
lambda_1 = (u - u0) / fx * sin(theta) + (v - v0) / fy * cos(theta)
lambda_2 = (u - u0) / fx * cos(theta) - (v - v0) / fy * sin(theta)
lambda_3 = lambda_2 * h - lambda_1 * Xd
lambda_4 = h - lambda_1 * Zd
lambda_5 = (lambda_3 * cos(phi) - lambda_4 * sin(phi)) / \
(lambda_3 * sin(phi) + lambda_4 * cos(phi)) - lambda_2
lambda_6 = (lambda_1 * h) / (lambda_3 * sin(phi) + lambda_4 * cos(phi)) - lambda_1
output = fy * (-lambda_5 * sin(theta) + lambda_6 * cos(theta))
return output
def fu_func(x, theta, Xd, Zd, phi, h):
v = x[0]
u = x[1]
lambda_1 = (u - u0) / fx * sin(theta) + (v - v0) / fy * cos(theta)
lambda_2 = (u - u0) / fx * cos(theta) - (v - v0) / fy * sin(theta)
lambda_3 = lambda_2 * h - lambda_1 * Xd
lambda_4 = h - lambda_1 * Zd
lambda_5 = (lambda_3 * cos(phi) - lambda_4 * sin(phi)) / \
(lambda_3 * sin(phi) + lambda_4 * cos(phi)) - lambda_2
lambda_6 = (lambda_1 * h) / (lambda_3 * sin(phi) + lambda_4 * cos(phi)) - lambda_1
output = fx * (lambda_5 * cos(theta) + lambda_6 * sin(theta))
return output
if __name__ == '__main__':
args = parse_args()
pic_num = args.pic_num
path = Path("data/KITTI/")
img_path = path / f"image_2/000{pic_num:0>3d}_10.png"
optical_flow_path = path / f"flow_noc/000{pic_num:0>3d}_10.png"
semantic_path = path / f"semantic/000{pic_num:0>3d}_10.png"
fig_save_path = Path('outputs') / f"figs/KITTI/000{pic_num:0>3d}"
if not os.path.exists(fig_save_path):
os.makedirs(fig_save_path)
# ==================== get the mask of freespace =========================================
semantic_img = cv2.imread(str(semantic_path))
mask = cv2.inRange(semantic_img, (0, 0, 255), (0, 0, 255))
mask = mask / 255
mask.astype(int)
# ==================== get optical flow ground truth =========================================
optical_flow_img = cv2.imread(str(optical_flow_path), -1)
valid = optical_flow_img[:, :, 0]
fu = optical_flow_img[:, :, 2].astype(np.float32)
fv = optical_flow_img[:, :, 1].astype(np.float32)
fu = (fu - 2 ** 15) / 64.0
fv = (fv - 2 ** 15) / 64.0
mask[valid == 0] = 0
v_max = fu.shape[0]
u_max = fu.shape[1]
for i in range(v_max):
for j in range(u_max):
if fv[i, j] + i > v_max or fu[i, j] + j > u_max or fu[i, j] + j < 0:
mask[i, j] = 0
fu = fu * mask
fv = fv * mask
# ==================== v-fv map =========================================
# This figure describes the relationship between vertical coordinates `v` and vertical components of optical flow
# `fv`. It can be seen from the figure that there is a functional relationship between these two variables.
v_fv_map = np.zeros((v_max, round(fv.max()) + 1))
for i in range(v_max):
for j in range(u_max):
if round(fv[i, j]) != 0:
v_fv_map[i, round(fv[i, j])] += 1
plt.figure("v-fv-map")
plt.title(r"$v-f_v$ map")
plt.imshow(v_fv_map)
plt.xlabel(r'$f_v$')
plt.ylabel(r'$v$')
plt.savefig(fig_save_path / "v-fv-map.png", bbox_inches='tight', pad_inches=0, dpi=500)
# ==================== v-fv curve =========================================
# In this part, we obtain the v-fv curve based on the deduced relationship (Eq. 23) in the paper. The relationship
# goes as follows:
# fv = (v-v_0)^2 / (h * f_y / z_d - (v-v_0))
# select non-zero points
v_head = v0
v_tail = v_max
for i in np.arange(round(v0) + 1, v_max):
if np.argmax(v_fv_map[i, :]) != 0:
v_head = i
break
for i in np.arange(v_max - 1, v_head, -1):
if np.argmax(v_fv_map[i, :]) != 0:
v_tail = i + 1
break
v1 = np.arange(v_head + 10, v_tail - 10, 0.1)
def fitting_curve_s(x, var1, var2):
output = (x - var2) ** 2 / (var1 - (x - var2))
return output
res = curve_fit(fitting_curve_s,
np.arange(250, v_tail),
np.argmax(v_fv_map, 1)[250:v_tail],
p0=[1000, 200],
bounds=(np.zeros(2), np.array([5000, 600]))
)
popt = res[0]
Y = (v1 - popt[1]) ** 2 / (popt[0] - (v1 - popt[1]))
plt.plot(Y, v1, 'r')
plt.savefig(fig_save_path / "v-fv-curve.png", bbox_inches='tight', pad_inches=0, dpi=500)
# ==================== verification of the complete formula =========================================
# use points of the valid mask
vu = np.nonzero(mask * valid)
fv_val = fv[vu[0], vu[1]]
fv_val = np.array(fv_val)
fu_val = fu[vu[0], vu[1]]
fu_val = np.array(fu_val)
flow_val = np.hstack((fv_val, fu_val))
res = curve_fit(flow_func, vu, flow_val,
p0=[0, 0, 0, 0, 1.5],
bounds=[[-0.5 * pi, 0, 0, -0.5 * pi, 1], [0.5 * pi, 10, 10, 0.5 * pi, 3]])
popt = res[0]
u = np.arange(u_max)
v = np.arange(v_max)
U, V = np.meshgrid(u, v)
VV = np.expand_dims(V, 0)
UU = np.expand_dims(U, 0)
vu_valid = np.append(VV, UU, axis=0)
# parameter estimation
theta_est = popt[0]
Xd_est = popt[1]
Zd_est = popt[2]
phi_est = popt[3]
h_est = popt[4]
fu_est = fu_func(vu_valid, theta_est, Xd_est, Zd_est, phi_est, h_est)
fv_est = fv_func(vu_valid, theta_est, Xd_est, Zd_est, phi_est, h_est)
fu_est = fu_est.reshape(v_max, u_max) * mask
fv_est = fv_est.reshape(v_max, u_max) * mask
# absolute error
fu_diff = fu_est - fu
fv_diff = fv_est - fv
fv_diff_mean = np.sum(abs(fv_diff)) / (np.sum(mask))
fu_diff_mean = np.sum(abs(fu_diff)) / (np.sum(mask))
# EPE
error_L2 = (fv_diff ** 2 + fu_diff ** 2) ** 0.5
EPE = np.sum(error_L2) / np.sum(mask)
print(f"Average fv Err: {fv_diff_mean:.4f} (pixels)")
print(f"Average fu Err: {fu_diff_mean:.4f} (pixels)")
print(f"Average Endpoint Err: {EPE:.4f}")
# ==========================================================
# fv figure
# ==========================================================
plt.rc('font', family='Times New Roman')
norm = matplotlib.colors.Normalize(vmin=min(fv.min(), fv_est.min()),
vmax=max(fv.max(), fv_est.max()))
# plot fv
plt.figure('fv_estimation')
ax = plt.axes()
h1 = plt.imshow(fv_est, norm=norm, cmap="magma")
plt.axis('off')
cax = add_right_cax(ax, pad=0.01, width=0.02)
cb = plt.colorbar(h1, cax=cax, ticks=None)
cb.ax.tick_params(labelsize=20, direction='in')
plt.savefig(fig_save_path / "fv_estimated.png", bbox_inches='tight', pad_inches=0, dpi=500)
plt.figure('fv_truth')
ax = plt.axes()
h1 = plt.imshow(fv, norm=norm, cmap="magma")
plt.axis('off')
cax = add_right_cax(ax, pad=0.01, width=0.02)
# cbar_ax = fig.add_axes(rect)
cb = plt.colorbar(h1, cax=cax, ticks=None)
cb.ax.tick_params(labelsize=20, direction='in')
# cb.ax.set_title('pixels', fontsize=10)
plt.savefig(fig_save_path / "fv_truth.png", bbox_inches='tight', pad_inches=0, dpi=500)
plt.figure('fv_absolute')
ax = plt.axes()
# h1 = plt.imshow(fv_diff, norm=norm,cmap="magma")
h1 = plt.imshow(abs(fv_diff), cmap="magma")
plt.axis('off')
cax = add_right_cax(ax, pad=0.01, width=0.02)
cb = plt.colorbar(h1, cax=cax, ticks=None)
cb.ax.tick_params(labelsize=10, direction='in')
# cb.ax.set_title('pixels', fontsize=7)
plt.savefig(fig_save_path / "fv_absolute.png", bbox_inches='tight', pad_inches=0, dpi=500)
# ==========================================================
# fu figure
# ==========================================================
norm = matplotlib.colors.Normalize(vmin=min(fu.min(), fu_est.min()),
vmax=max(fu.max(), fu_est.max()))
plt.figure('fu_estimation')
ax = plt.axes()
h1 = plt.imshow(fu_est, norm=norm, cmap="magma")
plt.axis('off')
cax = add_right_cax(ax, pad=0.01, width=0.02)
cb = plt.colorbar(h1, cax=cax, ticks=None)
cb.ax.tick_params(labelsize=20, direction='in')
plt.savefig(fig_save_path / "fu_estimated.png", bbox_inches='tight', pad_inches=0, dpi=500)
plt.figure('fu_truth')
ax = plt.axes()
h1 = plt.imshow(fu, norm=norm, cmap="magma")
plt.axis('off')
cax = add_right_cax(ax, pad=0.01, width=0.02)
cb = plt.colorbar(h1, cax=cax, ticks=None)
cb.ax.tick_params(labelsize=20, direction='in')
# cb.ax.set_title('pixels', fontsize=7)
plt.savefig(fig_save_path / "fu_truth.png", bbox_inches='tight', pad_inches=0, dpi=500)
plt.figure('fu_absolute')
ax = plt.axes()
h1 = plt.imshow(abs(fu_diff), cmap="magma")
# h1 = plt.imshow(fu_diff, norm=norm,cmap="magma")
plt.axis('off')
cax = add_right_cax(ax, pad=0.01, width=0.02)
cb = plt.colorbar(h1, cax=cax, ticks=None)
cb.ax.tick_params(labelsize=10, direction='in')
# cb.ax.set_title('pixels', fontsize=7)
plt.savefig(fig_save_path / "fu_absolute.png", bbox_inches='tight', pad_inches=0, dpi=500)
semantic_img = cv2.imread(str(semantic_path))
# road: (0, 0, 255)
mask = cv2.inRange(semantic_img, (0, 0, 255), (0, 0, 255))
mask = mask / 255
mask.astype(int)
# ==========================================================
# rgb
# ==========================================================
fig = plt.figure("rgb with mask")
plt.axis('off')
rgb_img = np.array(Image.open(img_path))
# mask = mask * 80
mask = mask * 50
mask = mask.astype(np.uint8)
for i in np.arange(rgb_img.shape[0]):
for j in np.arange(rgb_img.shape[1]):
if rgb_img[i, j, 1] <= 255 - mask[i, j]:
rgb_img[i, j, 1] += mask[i, j]
else:
rgb_img[i, j, 1] = 255
plt.imshow(rgb_img)
plt.savefig(fig_save_path / "semantic.png", bbox_inches='tight', dpi=500, pad_inches=0.0)
plt.show()