-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_test.go
228 lines (186 loc) · 5.01 KB
/
benchmark_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
package prioqueue_test
import (
"container/heap"
"math/rand"
"testing"
"github.com/fgrosse/prioqueue"
)
var randValues []float32
func init() {
rng := rand.New(rand.NewSource(42))
randValues = make([]float32, 200)
for i := range randValues {
randValues[i] = rng.Float32()
}
}
// BenchmarkMaxHeap_Push1_Empty tests how fast a single push operation is if the
// queue is not preallocated and with each iteration of this benchmark the queue
// is growing.
func BenchmarkMaxHeap_Push1_Empty(b *testing.B) {
rand.Seed(42)
values := make([]float32, b.N)
for i := range values {
values[i] = rand.Float32()
}
n := uint32(b.N)
var h prioqueue.MaxHeap
b.ResetTimer()
b.ReportAllocs()
for i := uint32(0); i < n; i++ {
h.Push(i, values[i])
}
}
// BenchmarkMaxHeap_Push1_Preallocate tests how fast a single push operation is
// if the queue is preallocated and with each iteration of this benchmark the
// queue is growing.
func BenchmarkMaxHeap_Push1_Preallocate(b *testing.B) {
rand.Seed(42)
values := make([]float32, b.N)
for i := range values {
values[i] = rand.Float32()
}
n := uint32(b.N)
h := prioqueue.NewMaxHeap(len(values))
b.ResetTimer()
b.ReportAllocs()
for i := uint32(0); i < n; i++ {
h.Push(i, values[i])
}
}
// BenchmarkMaxHeap_Push200_Empty tests how fast we can push 200 elements on the
// MaxHeap implementation if we did not preallocate the queue.
func BenchmarkMaxHeap_Push200_Empty(b *testing.B) {
h := new(prioqueue.MaxHeap)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for id := uint32(0); id < 200; id++ {
h.Push(id, randValues[id])
}
b.StopTimer()
h = new(prioqueue.MaxHeap)
b.StartTimer()
}
}
// BenchmarkMaxHeap_Push200_Preallocate tests how fast we can push 200 elements
// on the MaxHeap implementation if we preallocate the queue.
func BenchmarkMaxHeap_Push200_Preallocate(b *testing.B) {
h := prioqueue.NewMaxHeap(200)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for id := uint32(0); id < 200; id++ {
h.Push(id, randValues[id])
}
b.StopTimer()
h = prioqueue.NewMaxHeap(200)
b.StartTimer()
}
}
// BenchmarkMaxHeap_Pop200 tests how long it takes to pop all elements from a
// MaxHeap implementation which contains 200 random elements.
func BenchmarkMaxHeap_Pop200(b *testing.B) {
pq := prioqueue.NewMaxHeap(len(randValues))
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
b.StopTimer()
for i := 0; i < len(randValues); i++ {
pq.Push(uint32(i), randValues[i])
}
b.StartTimer()
for pq.Len() > 0 {
pq.Pop()
}
}
}
// BenchmarkStdlib_Push1_Empty tests how fast a single push operation is if the
// queue is not preallocated and with each iteration of this benchmark the queue
// is growing.
func BenchmarkStdlib_Push1_Empty(b *testing.B) {
rng := rand.New(rand.NewSource(42))
values := make([]float32, b.N)
for i := range values {
values[i] = rng.Float32()
}
n := uint32(b.N)
h := new(StdHeap)
b.ResetTimer()
b.ReportAllocs()
for i := uint32(0); i < n; i++ {
item := &prioqueue.Item{ID: i, Prio: values[i]}
heap.Push(h, item)
}
}
// BenchmarkStdlib_Push1_Preallocate tests how fast a single push operation is
// if the queue is preallocated and with each iteration of this benchmark the
// queue is growing.
func BenchmarkStdlib_Push1_Preallocate(b *testing.B) {
rng := rand.New(rand.NewSource(42))
values := make([]float32, b.N)
for i := range values {
values[i] = rng.Float32()
}
n := uint32(b.N)
h := make(StdHeap, 0, len(values))
b.ResetTimer()
b.ReportAllocs()
for i := uint32(0); i < n; i++ {
item := &prioqueue.Item{ID: i, Prio: values[i]}
heap.Push(&h, item)
}
}
// BenchmarkStdlib_Push200_Empty tests how fast we can push 200 elements on the
// StdHeap implementation if we did not preallocate the queue.
func BenchmarkStdlib_Push200_Empty(b *testing.B) {
h := new(StdHeap)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for id := uint32(0); id < 200; id++ {
heap.Push(h, &prioqueue.Item{
ID: id,
Prio: randValues[id],
})
}
b.StopTimer()
h = new(StdHeap)
b.StartTimer()
}
}
// BenchmarkStdlib_Push200_Preallocate tests how fast we can push 200 elements
// on the StdHeap implementation if we preallocate the queue.
func BenchmarkStdlib_Push200_Preallocate(b *testing.B) {
h := make(StdHeap, 0, 200)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
for id := uint32(0); id < 200; id++ {
heap.Push(&h, &prioqueue.Item{
ID: id,
Prio: randValues[id],
})
}
b.StopTimer()
h = make(StdHeap, 0, 200)
b.StartTimer()
}
}
// BenchmarkStdlibHeap_Pop200 tests how long it takes to pop all elements from a
// StdHeap implementation which contains 200 random elements.
func BenchmarkStdlibHeap_Pop200(b *testing.B) {
h := make(StdHeap, 0, len(randValues))
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
b.StopTimer()
for i := 0; i < len(randValues); i++ {
item := &prioqueue.Item{ID: uint32(i), Prio: randValues[i]}
heap.Push(&h, item)
}
b.StartTimer()
for h.Len() > 0 {
heap.Pop(&h)
}
}
}