-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGFCS_main.py
279 lines (244 loc) · 13.7 KB
/
GFCS_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# This implements the GFCS method of the paper "Attacking deep networks with surrogate-based adversarial black-box
# methods is easy" (https://arxiv.org/abs/2203.08725).
# The code is a heavily adapted version of the implementation of SimBA-ODS (https://github.com/ermongroup/ODS) from the
# paper "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"
# (https://arxiv.org/abs/2003.06878).
# As explained in the GFCS paper, the SimBA-ODS block is used here as a secondary "backup" method, and represents a
# particularly simple choice. The GFCS context allows for it to be replaced with any comparable method; as the paper
# suggests, any sensible coimage sampler can be a valid choice. (One might want to consider different weighting
# schemes in the sampling, including biasing towards the loss gradient.)
# The --GFCS option runs GFCS as described in the paper. The --ODS option runs SimBA-ODS. Using neither option defaults
# back to SimBA (https://arxiv.org/abs/2003.06878) using the pixel basis.
import argparse
import torch
import torchvision.models as models
import torchvision.datasets as datasets
import numpy as np
import eval_sets
import gfcs_util
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='cuda:0', help='Device for evaluating networks.')
parser.add_argument('--model_name', type=str, required=True, help='Target model to use.')
parser.add_argument('--smodel_name', type=str, nargs='+',
help='One or more surrogate models to use (enter all names, separated by spaces).')
parser.add_argument('--targeted', action='store_true', help='If true, perform targeted attack; else, untargeted.')
parser.add_argument('--ODS', action='store_true', help='Perform ODS (original SimBA-ODS).')
parser.add_argument('--GFCS', action='store_true', help='Activate GFCS method.')
parser.add_argument('--num_step', type=int, default=10000, help="Number of 'outer' SimBA iterations. Note that each "
"iteration may consume 1 or 2 queries.")
parser.add_argument('--num_sample', default=10, type=int, help='Number of sample images to attack.')
parser.add_argument('--data_index_set', type=str,
choices=['vgg16_bn_mstr', 'vgg16_bn_batch0', 'vgg16_bn_batch1', 'vgg16_bn_batch2',
'vgg16_bn_batch3', 'vgg16_bn_batch4', 'vgg16_bn_batch0_2', 'vgg16_bn_batch3_4',
'resnet50_mstr', 'resnet50_batch0', 'resnet50_batch1', 'resnet50_batch2',
'resnet50_batch3', 'resnet50_batch4', 'resnet50_batch0_2', 'resnet50_batch3_4',
'inceptionv3_mstr', 'inceptionv3_batch0', 'inceptionv3_batch1','inceptionv3_batch2',
'inceptionv3_batch3', 'inceptionv3_batch4', 'inceptionv3_batch0_2', 'inceptionv3_batch3_4',
'imagenet_val_random'],
default='imagenet_val_random',
help='The indices from the ImageNet val set to use as inputs. Most options represent predefined '
'randomly sampled batches. imagenet_val_random samples from the val set randomly, and may not '
'necessarily give images that are correctly classified by the target net.')
parser.add_argument('--step_size', default=0.2, type=float, help='Optimiser step size (as in SimBA).')
parser.add_argument('--output', required=True, help='Name of the output file.')
parser.add_argument('--norm_bound', type=float, default=float('inf'),
help='Radius of l2 norm ball onto which solution will be maintained through PGD-type optimisation. '
'If not supplied, is effectively infinite (norm is unconstrained).')
parser.add_argument('--net_specific_resampling', action='store_true',
help='If specified, resizes input images to match expectations of target net (as always), but adds '
'a linear interpolation step to each surrogate network to match its expected resolution. '
'Gradients are thus effectively computed in the native surrogate resolutions and returned to '
'the target net''s own resolution via the reverse interpolation.')
args = parser.parse_args()
if args.GFCS:
args.ODS = True # The code always expects ODS to be activated if GFCS is chosen, so ensure it.
device = torch.device(args.device if torch.cuda.is_available() else "cpu")
mean = gfcs_util.imagenet_mean
std = gfcs_util.imagenet_std
pretrained_model = getattr(models, args.model_name)(pretrained=True)
model = torch.nn.Sequential(
gfcs_util.Normalise(mean, std),
pretrained_model
)
model.to(device).eval()
surrogate_model_list = []
for s in range(len(args.smodel_name)):
pretrained_model = getattr(models, args.smodel_name[s])(pretrained=True)
if args.net_specific_resampling:
# Note that this is, by necessity, case-by-case. If using any nets other than inception_v3 that use input
# resolutions other than 224x224, they must be added here.
image_width = 299 if args.smodel_name[s] == 'inception_v3' else 224
pretrained_model = torch.nn.Sequential(
gfcs_util.Interpolate(torch.Size([image_width, image_width]), 'bilinear'),
gfcs_util.Normalise(mean, std),
pretrained_model
)
else:
pretrained_model = torch.nn.Sequential(
gfcs_util.Normalise(mean, std),
pretrained_model
)
surrogate_model_list.append(pretrained_model.to(device).eval())
loss_func = torch.nn.functional.cross_entropy if args.targeted else gfcs_util.margin_loss
data_transform, image_width = gfcs_util.generate_data_transform(
"imagenet_inception_299" if args.model_name == "inception_v3" else "imagenet_common_224"
)
# Set your ImageNet folder path here. Consult the documentation for torchvision.datasets.ImageNet to understand what
# files must be placed where initially. Only the val set is required here.
#imagenet_path = '/your/imagenet/dataset/path'
imagenet_path = '../datasets/imagenet_data'
dataset = datasets.ImageNet(imagenet_path, split='val', transform=data_transform)
if args.data_index_set == 'imagenet_val_random':
input_index_list = torch.randperm(len(dataset))[:args.num_sample]
else:
input_index_list = getattr(eval_sets, args.data_index_set)[:args.num_sample]
success_list = []
l2_list = []
linf_list = []
queries_list = []
if args.targeted:
target_class_list = []
if args.GFCS:
grad_fail_queries = []
grad_succ_queries = []
ods_fail_queries = []
ods_succ_queries = []
if args.ODS and not args.GFCS:
using_ods = True
for i, s in enumerate(input_index_list):
(image, label) = dataset[s]
image.unsqueeze_(0)
label = torch.LongTensor([label])
image = image.to(device)
label = label.to(device)
label_attacked = label.clone()
if args.targeted:
label_attacked[0] = gfcs_util.any_imagenet_id_but(label.item())
logits = model(image).data
to_attack = (torch.argmax(logits, dim=1) != label_attacked) if args.targeted else (
torch.argmax(logits, dim=1) == label_attacked)
if to_attack:
X_best = image.clone()
if args.targeted:
loss_best = -loss_func(logits, label_attacked)
class_org = label[0].item()
class_tgt = label_attacked[0].item()
else:
loss_best, class_org, class_tgt = loss_func(logits.data, label_attacked)
nQuery = 1 # query for the original image
if args.GFCS:
n_grad_fail_queries = 0
n_grad_succ_queries = 0
n_ods_fail_queries = 0
n_ods_succ_queries = 0
using_ods = False
surrogate_ind_list = torch.randperm(len(surrogate_model_list))
for m in range(args.num_step):
if args.ODS:
X_grad = X_best.detach().clone().requires_grad_()
if args.GFCS:
random_direction = torch.zeros(1, 1000).to(device)
random_direction[0, class_org] = -1
random_direction[0, class_tgt] = 1
if surrogate_ind_list.numel() > 0:
ind = surrogate_ind_list[0]
surrogate_ind_list = surrogate_ind_list[1:]
else: # You're stuck, so time to revert.
random_direction = torch.rand((1, 1000)).to(device) * 2 - 1
ind = np.random.randint(len(surrogate_model_list))
using_ods = True
else:
random_direction = torch.rand((1, 1000)).to(device) * 2 - 1
ind = np.random.randint(len(surrogate_model_list))
with torch.enable_grad():
if args.targeted and not using_ods:
# Then you want the target-label x-ent loss from the surrogate:
loss = -loss_func(surrogate_model_list[ind](X_grad), label_attacked)
else: # Either margin loss gradient or ODS direction, depending on above context.
loss = (surrogate_model_list[ind](X_grad) * random_direction).sum()
loss.backward()
delta = X_grad.grad / X_grad.grad.norm()
else: # If you're using neither GFCS nor ODS, it falls back to pixel SimBA.
ind1 = np.random.randint(3)
ind2 = np.random.randint(image_width)
ind3 = np.random.randint(image_width)
delta = torch.zeros(X_best.shape).cuda()
delta[0, ind1, ind2, ind3] = 1
for sign in [1, -1]:
X_pert = X_best - image + (args.step_size * sign * delta)
if X_pert.norm() > args.norm_bound:
X_pert = X_pert / X_pert.norm() * args.norm_bound
X_new = image + X_pert
X_new = torch.clamp(X_new, 0, 1)
logits = model(X_new).data
nQuery += 1
if args.targeted:
loss_new = -loss_func(logits.data, label_attacked)
class_tgt_new = class_tgt # The target is actually fixed: this is a dummy variable.
class_org_new = torch.argmax(logits, dim=1) # The top finisher can actually change, in a targeted
# attack, but using the x-ent loss on the target class alone, this won't actually matter.
else:
loss_new, class_org_new, class_tgt_new = loss_func(logits.data, label_attacked)
if loss_best < loss_new:
X_best = X_new
loss_best = loss_new
class_org = class_org_new
class_tgt = class_tgt_new
if args.GFCS:
if using_ods:
n_ods_succ_queries += 1
else:
n_grad_succ_queries += 1
# On optimisation success, reset the surrogate list and ensure that you go back to gradients.
surrogate_ind_list = torch.randperm(len(surrogate_model_list))
using_ods = False
break
# If you reach here, this attempt didn't work, so we count fail queries:
if args.GFCS:
if using_ods:
n_ods_fail_queries += 1
else:
n_grad_fail_queries += 1
success = (torch.argmax(logits, dim=1) == label_attacked) if args.targeted else (
torch.argmax(logits, dim=1) != label_attacked)
if success:
print('image %d: attack is successful. query = %d, dist = %.4f' % (
i + 1, nQuery, (X_best - image).norm()))
if args.GFCS:
print(f"grad success queries: {n_grad_succ_queries}, grad fail queries: {n_grad_fail_queries}, "
f"ODS success queries: {n_ods_succ_queries}, ODS fail queries: {n_ods_fail_queries}")
break
if m == args.num_step - 1:
print('image %d: attack is not successful (query = %d)' % (i + 1, nQuery))
if args.GFCS:
print(f"grad success queries: {n_grad_succ_queries}, grad fail queries: {n_grad_fail_queries}, "
f"ODS success queries: {n_ods_succ_queries}, ODS fail queries: {n_ods_fail_queries}")
success_list.append(success.item())
queries_list.append(nQuery)
l2_list.append((X_best - image).norm(p=2).item())
linf_list.append((X_best - image).norm(p=np.inf).item())
if args.GFCS:
grad_fail_queries.append(n_grad_fail_queries)
grad_succ_queries.append(n_grad_succ_queries)
ods_fail_queries.append(n_ods_fail_queries)
ods_succ_queries.append(n_ods_succ_queries)
if args.targeted:
target_class_list.append(label_attacked[0].item())
else:
print('image %d: already adversary' % (i + 1))
print("Saving to file", args.output)
output_dict = {
"succs": torch.BoolTensor(success_list),
"queries": torch.IntTensor(queries_list),
"l2_norms": torch.as_tensor(l2_list),
"linf_norms": torch.as_tensor(linf_list),
"input_args": args
}
if args.GFCS:
output_dict["grad_succ_queries"] = torch.IntTensor(grad_succ_queries)
output_dict["grad_fail_queries"] = torch.IntTensor(grad_fail_queries)
output_dict["ods_succ_queries"] = torch.IntTensor(ods_succ_queries)
output_dict["ods_fail_queries"] = torch.IntTensor(ods_fail_queries)
if args.targeted:
output_dict["target_class_list"] = torch.IntTensor(target_class_list)
torch.save(output_dict, args.output)