-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathfused_norm_gate.py
852 lines (787 loc) · 24.9 KB
/
fused_norm_gate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
# -*- coding: utf-8 -*-
# Copyright (c) 2023, Tri Dao.
# https://github.com/state-spaces/mamba/blob/fb7b5310fa865dbd62aa059b1e26f2b431363e2a/mamba_ssm/ops/triton/layernorm.py
# Implement residual + layer_norm / rms_norm.
# Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
# For the backward pass, we keep weight_grad and bias_grad in registers and accumulate.
# This is faster for dimensions up to 8k, but after that it's much slower due to register spilling.
# The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
from __future__ import annotations
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import triton
import triton.language as tl
from fla.utils import contiguous
@triton.autotune(
configs=[
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
for num_warps in [1, 2, 4, 8, 16, 32]
for num_stages in [2, 3, 4]
],
key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS"],
)
@triton.jit
def layer_norm_fwd_kernel(
X, # pointer to the input
O, # pointer to the gate
Y, # pointer to the output
W, # pointer to the weights
B, # pointer to the biases
RESIDUAL, # pointer to the residual
RESIDUAL_OUT, # pointer to the residual
Mean, # pointer to the mean
Rstd, # pointer to the 1/std
stride_x_row, # how much to increase the pointer when moving by 1 row
stride_y_row,
stride_res_row,
stride_res_out_row,
N, # number of columns in X
eps, # epsilon to avoid division by zero
IS_RMS_NORM: tl.constexpr,
BLOCK_N: tl.constexpr,
HAS_RESIDUAL: tl.constexpr,
STORE_RESIDUAL_OUT: tl.constexpr,
HAS_WEIGHT: tl.constexpr,
HAS_BIAS: tl.constexpr
):
# Map the program id to the row of X and Y it should compute.
row = tl.program_id(0)
X += row * stride_x_row
Y += row * stride_y_row
O += row * stride_x_row
if HAS_RESIDUAL:
RESIDUAL += row * stride_res_row
if STORE_RESIDUAL_OUT:
RESIDUAL_OUT += row * stride_res_out_row
# Compute mean and variance
cols = tl.arange(0, BLOCK_N)
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
if HAS_RESIDUAL:
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
x += residual
if STORE_RESIDUAL_OUT:
tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
if not IS_RMS_NORM:
mean = tl.sum(x, axis=0) / N
tl.store(Mean + row, mean)
xbar = tl.where(cols < N, x - mean, 0.0)
var = tl.sum(xbar * xbar, axis=0) / N
else:
xbar = tl.where(cols < N, x, 0.0)
var = tl.sum(xbar * xbar, axis=0) / N
rstd = 1 / tl.sqrt(var + eps)
tl.store(Rstd + row, rstd)
# Normalize and apply linear transformation
mask = cols < N
if HAS_WEIGHT:
w = tl.load(W + cols, mask=mask).to(tl.float32)
if HAS_BIAS:
b = tl.load(B + cols, mask=mask).to(tl.float32)
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
y = x_hat * w if HAS_WEIGHT else x_hat
if HAS_BIAS:
y = y + b
# Swish output gate
o = tl.load(O + cols, mask=cols < N, other=0.0).to(tl.float32)
y = y * o * tl.sigmoid(o)
# Write output
tl.store(Y + cols, y, mask=mask)
def layer_norm_fwd(
x: torch.Tensor,
o: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
eps: float,
residual: torch.Tensor = None,
out_dtype: torch.dtype = None,
residual_dtype: torch.dtype = None,
is_rms_norm: bool = False
):
if residual is not None:
residual_dtype = residual.dtype
M, N = x.shape
assert x.stride(-1) == 1
if residual is not None:
assert residual.stride(-1) == 1
assert residual.shape == (M, N)
if weight is not None:
assert weight.shape == (N,)
assert weight.stride(-1) == 1
if bias is not None:
assert bias.stride(-1) == 1
assert bias.shape == (N,)
# allocate output
y = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
assert y.stride(-1) == 1
if residual is not None or (residual_dtype is not None and residual_dtype != x.dtype):
residual_out = torch.empty(M, N, device=x.device, dtype=residual_dtype)
assert residual_out.stride(-1) == 1
else:
residual_out = None
mean = torch.empty((M,), dtype=torch.float, device="cuda") if not is_rms_norm else None
rstd = torch.empty((M,), dtype=torch.float, device="cuda")
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
if N > BLOCK_N:
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
# heuristics for number of warps
with torch.cuda.device(x.device.index):
layer_norm_fwd_kernel[(M,)](
x,
o,
y,
weight,
bias,
residual,
residual_out,
mean,
rstd,
x.stride(0),
y.stride(0),
residual.stride(0) if residual is not None else 0,
residual_out.stride(0) if residual_out is not None else 0,
N,
eps,
is_rms_norm,
BLOCK_N,
residual is not None,
residual_out is not None,
weight is not None,
bias is not None,
)
# residual_out is None if residual is None and residual_dtype == input_dtype
return y, mean, rstd, residual_out if residual_out is not None else x
@triton.heuristics({
"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None
})
@triton.autotune(
configs=[
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
for num_warps in [1, 2, 4, 8, 16, 32]
for num_stages in [2, 3, 4]
],
key=["N", "HAS_DRESIDUAL", "STORE_DRESIDUAL", "IS_RMS_NORM", "HAS_BIAS"],
)
@triton.jit
def layer_norm_bwd_kernel(
X, # pointer to the input
O, # pointer to the gate
W, # pointer to the weights
B, # pointer to the biases
Y, # pointer to the output to be recomputed
DY, # pointer to the output gradient
DX, # pointer to the input gradient
DO, # pointer to the gate gradient
DW, # pointer to the partial sum of weights gradient
DB, # pointer to the partial sum of biases gradient
DRESIDUAL,
DRESIDUAL_IN,
Mean, # pointer to the mean
Rstd, # pointer to the 1/std
stride_x_row, # how much to increase the pointer when moving by 1 row
stride_y_row,
stride_dy_row,
stride_dx_row,
stride_dres_row,
stride_dres_in_row,
M, # number of rows in X
N, # number of columns in X
eps, # epsilon to avoid division by zero
rows_per_program,
IS_RMS_NORM: tl.constexpr,
BLOCK_N: tl.constexpr,
HAS_DRESIDUAL: tl.constexpr,
STORE_DRESIDUAL: tl.constexpr,
HAS_WEIGHT: tl.constexpr,
HAS_BIAS: tl.constexpr,
RECOMPUTE_OUTPUT: tl.constexpr,
):
# Map the program id to the elements of X, DX, and DY it should compute.
row_block_id = tl.program_id(0)
row_start = row_block_id * rows_per_program
cols = tl.arange(0, BLOCK_N)
mask = cols < N
X += row_start * stride_x_row
O += row_start * stride_x_row
if HAS_DRESIDUAL:
DRESIDUAL += row_start * stride_dres_row
if STORE_DRESIDUAL:
DRESIDUAL_IN += row_start * stride_dres_in_row
DY += row_start * stride_dy_row
DX += row_start * stride_dx_row
DO += row_start * stride_dx_row
if RECOMPUTE_OUTPUT:
Y += row_start * stride_y_row
if HAS_WEIGHT:
w = tl.load(W + cols, mask=mask).to(tl.float32)
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
if RECOMPUTE_OUTPUT and HAS_BIAS:
b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
if HAS_BIAS:
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
row_end = min((row_block_id + 1) * rows_per_program, M)
for row in range(row_start, row_end):
# Load data to SRAM
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
o = tl.load(O + cols, mask=mask, other=0).to(tl.float32)
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
if not IS_RMS_NORM:
mean = tl.load(Mean + row)
rstd = tl.load(Rstd + row)
# Compute dx
xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
xhat = tl.where(mask, xhat, 0.0)
y = xhat * w if HAS_WEIGHT else xhat
if HAS_BIAS:
y = y + b
if RECOMPUTE_OUTPUT:
tl.store(Y + cols, y, mask=mask)
sigmoid_o = tl.sigmoid(o)
do = dy * y * (sigmoid_o + o * sigmoid_o * (1 - sigmoid_o))
dy = dy * o * sigmoid_o
wdy = dy
if HAS_WEIGHT:
wdy = dy * w
dw += dy * xhat
if HAS_BIAS:
db += dy
if not IS_RMS_NORM:
c1 = tl.sum(xhat * wdy, axis=0) / N
c2 = tl.sum(wdy, axis=0) / N
dx = (wdy - (xhat * c1 + c2)) * rstd
else:
c1 = tl.sum(xhat * wdy, axis=0) / N
dx = (wdy - xhat * c1) * rstd
if HAS_DRESIDUAL:
dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32)
dx += dres
# Write dx
if STORE_DRESIDUAL:
tl.store(DRESIDUAL_IN + cols, dx, mask=mask)
tl.store(DX + cols, dx, mask=mask)
tl.store(DO + cols, do, mask=mask)
X += stride_x_row
O += stride_x_row
if HAS_DRESIDUAL:
DRESIDUAL += stride_dres_row
if STORE_DRESIDUAL:
DRESIDUAL_IN += stride_dres_in_row
if RECOMPUTE_OUTPUT:
Y += stride_y_row
DY += stride_dy_row
DX += stride_dx_row
DO += stride_dx_row
if HAS_WEIGHT:
tl.store(DW + row_block_id * N + cols, dw, mask=mask)
if HAS_BIAS:
tl.store(DB + row_block_id * N + cols, db, mask=mask)
def layer_norm_bwd(
dy: torch.Tensor,
x: torch.Tensor,
o: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
eps: float,
mean: torch.Tensor,
rstd: torch.Tensor,
dresidual: torch.Tensor = None,
has_residual: bool = False,
is_rms_norm: bool = False,
x_dtype: torch.dtype = None,
recompute_output: bool = False,
):
M, N = x.shape
assert x.stride(-1) == 1
assert dy.stride(-1) == 1
assert dy.shape == (M, N)
if dresidual is not None:
assert dresidual.stride(-1) == 1
assert dresidual.shape == (M, N)
if weight is not None:
assert weight.shape == (N,)
assert weight.stride(-1) == 1
if bias is not None:
assert bias.stride(-1) == 1
assert bias.shape == (N,)
# allocate output
dx = (
torch.empty_like(x)
if x_dtype is None
else torch.empty(M, N, dtype=x_dtype, device=x.device)
)
do = (
torch.empty_like(o)
if x_dtype is None
else torch.empty(M, N, dtype=x_dtype, device=x.device)
)
dresidual_in = torch.empty_like(x) if has_residual and dx.dtype != x.dtype else None
y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
if N > BLOCK_N:
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
_dw = (
torch.empty((sm_count, N), dtype=torch.float, device=weight.device)
if weight is not None
else None
)
_db = (
torch.empty((sm_count, N), dtype=torch.float, device=bias.device)
if bias is not None
else None
)
rows_per_program = math.ceil(M / sm_count)
grid = (sm_count,)
with torch.cuda.device(x.device.index):
layer_norm_bwd_kernel[grid](
x,
o,
weight,
bias,
y,
dy,
dx,
do,
_dw,
_db,
dresidual,
dresidual_in,
mean,
rstd,
x.stride(0),
0 if not recompute_output else y.stride(0),
dy.stride(0),
dx.stride(0),
dresidual.stride(0) if dresidual is not None else 0,
dresidual_in.stride(0) if dresidual_in is not None else 0,
M,
N,
eps,
rows_per_program,
is_rms_norm,
BLOCK_N,
dresidual is not None,
dresidual_in is not None,
weight is not None,
bias is not None,
)
dw = _dw.sum(0).to(weight.dtype) if weight is not None else None
db = _db.sum(0).to(bias.dtype) if bias is not None else None
# Don't need to compute dresidual_in separately in this case
if has_residual and dx.dtype == x.dtype:
dresidual_in = dx
return (dx, do, dw, db, dresidual_in) if not recompute_output else (dx, do, dw, db, dresidual_in, y)
class LayerNormSwishGateFn(torch.autograd.Function):
@staticmethod
@contiguous
def forward(
ctx,
x,
o,
weight,
bias,
residual=None,
eps=1e-6,
prenorm=False,
residual_in_fp32=False,
is_rms_norm=False,
):
x_shape_og = x.shape
o_shape_og = o.shape
# reshape input data into 2D tensor
x = x.reshape(-1, x.shape[-1])
o = o.reshape(-1, o.shape[-1])
if residual is not None:
assert residual.shape == x_shape_og
residual = residual.reshape(-1, residual.shape[-1])
residual_dtype = (
residual.dtype
if residual is not None
else (torch.float if residual_in_fp32 else None)
)
y, mean, rstd, residual_out = layer_norm_fwd(
x, o, weight, bias, eps, residual, residual_dtype=residual_dtype, is_rms_norm=is_rms_norm
)
ctx.save_for_backward(residual_out, o, weight, bias, mean, rstd)
ctx.x_shape_og = x_shape_og
ctx.o_shape_og = o_shape_og
ctx.eps = eps
ctx.is_rms_norm = is_rms_norm
ctx.has_residual = residual is not None
ctx.prenorm = prenorm
ctx.x_dtype = x.dtype
y = y.reshape(x_shape_og)
return y if not prenorm else (y, residual_out.reshape(x_shape_og))
@staticmethod
@contiguous
def backward(ctx, dy, *args):
x, o, weight, bias, mean, rstd = ctx.saved_tensors
dy = dy.reshape(-1, dy.shape[-1])
assert dy.shape == x.shape
if ctx.prenorm:
dresidual = args[0]
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
assert dresidual.shape == x.shape
else:
dresidual = None
dx, do, dw, db, dresidual_in = layer_norm_bwd(
dy,
x,
o,
weight,
bias,
ctx.eps,
mean,
rstd,
dresidual,
ctx.has_residual,
ctx.is_rms_norm,
x_dtype=ctx.x_dtype,
)
return (
dx.reshape(ctx.x_shape_og),
do.reshape(ctx.o_shape_og),
dw,
db,
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
None,
None,
None,
None,
)
class LayerNormSwishGateLinearFn(torch.autograd.Function):
@staticmethod
@contiguous
def forward(
ctx,
x,
o,
norm_weight,
norm_bias,
linear_weight,
linear_bias,
residual=None,
eps=1e-6,
prenorm=False,
residual_in_fp32=False,
is_rms_norm=False,
):
x_shape_og = x.shape
o_shape_og = o.shape
# reshape input data into 2D tensor
x = x.reshape(-1, x.shape[-1])
o = o.reshape(-1, o.shape[-1])
if residual is not None:
assert residual.shape == x_shape_og
residual = residual.reshape(-1, residual.shape[-1])
residual_dtype = (
residual.dtype
if residual is not None
else (torch.float if residual_in_fp32 else None)
)
y, mean, rstd, residual_out = layer_norm_fwd(
x,
o,
norm_weight,
norm_bias,
eps,
residual,
residual_dtype=residual_dtype,
is_rms_norm=is_rms_norm
)
y = y.reshape(x_shape_og)
dtype = torch.get_autocast_gpu_dtype() if torch.is_autocast_enabled() else y.dtype
linear_weight = linear_weight.to(dtype)
linear_bias = linear_bias.to(dtype) if linear_bias is not None else None
out = F.linear(y.to(linear_weight.dtype), linear_weight, linear_bias)
# We don't store y, will be recomputed in the backward pass to save memory
ctx.save_for_backward(residual_out, o, norm_weight, norm_bias, linear_weight, mean, rstd)
ctx.x_shape_og = x_shape_og
ctx.o_shape_og = o_shape_og
ctx.eps = eps
ctx.is_rms_norm = is_rms_norm
ctx.has_residual = residual is not None
ctx.prenorm = prenorm
ctx.x_dtype = x.dtype
ctx.linear_bias_is_none = linear_bias is None
return out if not prenorm else (out, residual_out.reshape(x_shape_og))
@staticmethod
@contiguous
def backward(ctx, dout, *args):
x, o, norm_weight, norm_bias, linear_weight, mean, rstd = ctx.saved_tensors
dout = dout.reshape(-1, dout.shape[-1])
dy = F.linear(dout, linear_weight.t())
dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0)
assert dy.shape == x.shape
if ctx.prenorm:
dresidual = args[0]
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
assert dresidual.shape == x.shape
else:
dresidual = None
dx, do, dnorm_weight, dnorm_bias, dresidual_in, y = layer_norm_bwd(
dy,
x,
o,
norm_weight,
norm_bias,
ctx.eps,
mean,
rstd,
dresidual=dresidual,
has_residual=ctx.has_residual,
is_rms_norm=ctx.is_rms_norm,
x_dtype=ctx.x_dtype,
recompute_output=True,
)
dlinear_weight = torch.einsum("bo,bi->oi", dout, y)
return (
dx.reshape(ctx.x_shape_og),
do.reshape(ctx.o_shape_og),
dnorm_weight,
dnorm_bias,
dlinear_weight,
dlinear_bias,
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
None,
None,
None,
None,
)
def layer_norm_swish_gate_fn(
x,
o,
weight,
bias,
residual=None,
prenorm=False,
residual_in_fp32=False,
eps=1e-6
):
return LayerNormSwishGateFn.apply(
x,
o,
weight,
bias,
residual,
eps,
prenorm,
residual_in_fp32,
False
)
def rms_norm_swish_gate_fn(
x,
o,
weight,
bias,
residual=None,
prenorm=False,
residual_in_fp32=False,
eps=1e-6
):
return LayerNormSwishGateFn.apply(
x,
o,
weight,
bias,
residual,
eps,
prenorm,
residual_in_fp32,
True
)
def layer_norm_swish_gate_linear_fn(
x,
o,
norm_weight,
norm_bias,
linear_weight,
linear_bias,
residual=None,
prenorm=False,
residual_in_fp32=False,
eps=1e-6
):
return LayerNormSwishGateLinearFn.apply(
x,
o,
norm_weight,
norm_bias,
linear_weight,
linear_bias,
residual,
eps,
prenorm,
residual_in_fp32,
False
)
def rms_norm_swish_gate_linear_fn(
x,
o,
norm_weight,
norm_bias,
linear_weight,
linear_bias,
residual=None,
prenorm=False,
residual_in_fp32=False,
eps=1e-6
):
return LayerNormSwishGateLinearFn.apply(
x,
o,
norm_weight,
norm_bias,
linear_weight,
linear_bias,
residual,
eps,
prenorm,
residual_in_fp32,
True
)
class FusedLayerNormSwishGate(nn.Module):
def __init__(
self,
hidden_size,
elementwise_affine: bool = True,
eps=1e-5
) -> FusedLayerNormSwishGate:
super().__init__()
self.hidden_size = hidden_size
self.elementwise_affine = elementwise_affine
self.eps = eps
if elementwise_affine:
self.weight = nn.Parameter(torch.ones(hidden_size))
else:
self.register_parameter("weight", None)
self.register_parameter("bias", None)
def __repr__(self) -> str:
s = f"{self.__class__.__name__}({self.hidden_size}"
if not self.elementwise_affine:
s += f", elementwise_affine={self.elementwise_affine}"
s += f", eps={self.eps}"
s += ")"
return s
def forward(self, x, o, residual=None, prenorm=False, residual_in_fp32=False):
return layer_norm_swish_gate_fn(
x,
o,
self.weight,
self.bias,
residual=residual,
eps=self.eps,
prenorm=prenorm,
residual_in_fp32=residual_in_fp32
)
class FusedRMSNormSwishGate(nn.Module):
def __init__(
self,
hidden_size,
elementwise_affine: bool = True,
eps=1e-5
) -> FusedRMSNormSwishGate:
super().__init__()
self.hidden_size = hidden_size
self.elementwise_affine = elementwise_affine
self.eps = eps
if elementwise_affine:
self.weight = nn.Parameter(torch.ones(hidden_size))
else:
self.register_parameter("weight", None)
self.register_parameter("bias", None)
def __repr__(self) -> str:
s = f"{self.__class__.__name__}({self.hidden_size}"
if not self.elementwise_affine:
s += f", elementwise_affine={self.elementwise_affine}"
s += f", eps={self.eps}"
s += ")"
return s
def forward(self, x, o, residual=None, prenorm=False, residual_in_fp32=False):
return rms_norm_swish_gate_fn(
x,
o,
self.weight,
self.bias,
residual=residual,
eps=self.eps,
prenorm=prenorm,
residual_in_fp32=residual_in_fp32
)
class FusedLayerNormSwishGateLinear(nn.Module):
def __init__(
self,
hidden_size,
elementwise_affine: bool = True,
eps=1e-5
) -> FusedLayerNormSwishGateLinear:
super().__init__()
self.hidden_size = hidden_size
self.elementwise_affine = elementwise_affine
self.eps = eps
if elementwise_affine:
self.weight = nn.Parameter(torch.ones(hidden_size))
else:
self.register_parameter("weight", None)
self.register_parameter("bias", None)
def __repr__(self) -> str:
s = f"{self.__class__.__name__}({self.hidden_size}"
if not self.elementwise_affine:
s += f", elementwise_affine={self.elementwise_affine}"
s += f", eps={self.eps}"
s += ")"
return s
def forward(self, x, o, weight, bias, residual=None, prenorm=False, residual_in_fp32=False):
return layer_norm_swish_gate_linear_fn(
x,
o,
self.weight,
self.bias,
weight,
bias,
residual=residual,
eps=self.eps,
prenorm=prenorm,
residual_in_fp32=residual_in_fp32
)
class FusedRMSNormSwishGateLinear(nn.Module):
def __init__(
self,
hidden_size,
elementwise_affine: bool = True,
eps=1e-5
) -> FusedRMSNormSwishGateLinear:
super().__init__()
self.hidden_size = hidden_size
self.elementwise_affine = elementwise_affine
self.eps = eps
if elementwise_affine:
self.weight = nn.Parameter(torch.ones(hidden_size))
else:
self.register_parameter("weight", None)
self.register_parameter("bias", None)
def __repr__(self) -> str:
s = f"{self.__class__.__name__}({self.hidden_size}"
if not self.elementwise_affine:
s += f", elementwise_affine={self.elementwise_affine}"
s += f", eps={self.eps}"
s += ")"
return s
def forward(self, x, o, weight, bias, residual=None, prenorm=False, residual_in_fp32=False):
return rms_norm_swish_gate_linear_fn(
x,
o,
self.weight,
self.bias,
weight,
bias,
residual=residual,
eps=self.eps,
prenorm=prenorm,
residual_in_fp32=residual_in_fp32
)