-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathrotary.py
516 lines (464 loc) · 18.5 KB
/
rotary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
# -*- coding: utf-8 -*-
# Copyright (c) 2023, Tri Dao.
# https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/triton/rotary.py
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import triton
import triton.language as tl
from einops import rearrange, repeat
from fla.utils import contiguous
def rotate_half(x, interleaved=False):
if not interleaved:
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
else:
x1, x2 = x[..., ::2], x[..., 1::2]
return rearrange(torch.stack((-x2, x1), dim=-1), '... d two -> ... (d two)', two=2)
def rotary_embedding_ref(x, cos, sin, interleaved=False):
ro_dim = cos.shape[-1] * 2
assert ro_dim <= x.shape[-1]
cos = repeat(cos, '... d -> ... 1 (2 d)' if not interleaved else '... d -> ... 1 (d 2)')
sin = repeat(sin, '... d -> ... 1 (2 d)' if not interleaved else '... d -> ... 1 (d 2)')
return torch.cat([x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]], -1)
@triton.autotune(
configs=[
triton.Config({'BT': BT}, num_warps=num_warps)
for BT in [4, 8, 16, 32, 64, 128]
for num_warps in [2, 4, 8, 16]
],
key=['B', 'T', 'H', 'INTERLEAVED'],
)
@triton.jit
def rotary_embedding_kernel(
x,
cos,
sin,
y,
cu_seqlens,
seq_offsets, # this could be int or a pointer
# Matrix dimensions
B: tl.constexpr,
T: tl.constexpr,
H: tl.constexpr,
D: tl.constexpr,
R: tl.constexpr,
TR: tl.constexpr,
# strides
# Meta-parameters
BT: tl.constexpr,
BD: tl.constexpr,
IS_SEQLEN_OFFSETS_TENSOR: tl.constexpr,
IS_VARLEN: tl.constexpr,
INTERLEAVED: tl.constexpr,
CONJUGATE: tl.constexpr
):
i_t, i_b, i_h = tl.program_id(0), tl.program_id(1), tl.program_id(2)
if not IS_VARLEN:
x = x + i_b * T*H*D + i_h * D
y = y + i_b * T*H*D + i_h * D
else:
bos, eos = tl.load(cu_seqlens + i_b), tl.load(cu_seqlens + i_b + 1)
T = eos - bos
x = x + bos * H*D + i_h * D
y = y + bos * H*D + i_h * D
if i_t * BT >= T:
return
o_t = i_t * BT + tl.arange(0, BT)
if not IS_SEQLEN_OFFSETS_TENSOR:
o_cs = o_t + seq_offsets
else:
o_cs = o_t + tl.load(seq_offsets + i_b)
if not INTERLEAVED:
# Load the 1st and 2nd halves of x, do calculation, then store to 1st and 2nd halves of out
o_r = tl.arange(0, BD // 2)
p_x = x + o_t[:, None] * H*D + o_r[None, :]
p_cos = cos + (o_cs[:, None] * R + o_r[None, :])
p_sin = sin + (o_cs[:, None] * R + o_r[None, :])
mask = (o_t[:, None] < T) & (o_r[None, :] < R)
b_cos = tl.load(p_cos, mask=mask, other=1.0).to(tl.float32)
b_sin = tl.load(p_sin, mask=mask, other=0.0).to(tl.float32)
b_x0 = tl.load(p_x, mask=mask, other=0.0).to(tl.float32)
b_x1 = tl.load(p_x + R, mask=mask, other=0.0).to(tl.float32)
if CONJUGATE:
b_sin = -b_sin
b_o0 = b_x0 * b_cos - b_x1 * b_sin
b_o1 = b_x0 * b_sin + b_x1 * b_cos
# write back result
p_y = y + (o_t[:, None] * H*D + o_r[None, :])
tl.store(p_y, b_o0, mask=mask)
tl.store(p_y + R, b_o1, mask=mask)
else:
# We don't want to load x[0, 2, 4, ...] and x[1, 3, 5, ...] separately since both are slow.
# Instead, we load x0 = x[0, 1, 2, 3, ...] and x1 = x[1, 0, 3, 2, ...].
# Loading x0 will be fast but x1 will be slow.
# Then we load cos = cos[0, 0, 1, 1, ...] and sin = sin[0, 0, 1, 1, ...].
# Then we do the calculation and use tl.where to pick put the right outputs for the even
# and for the odd indices.
o_d = tl.arange(0, BD)
o_d_swap = o_d + ((o_d + 1) % 2) * 2 - 1 # 1, 0, 3, 2, 5, 4, ...
o_d_repeat = tl.arange(0, BD) // 2
p_x0 = x + o_t[:, None] * H*D + o_d[None, :]
p_x1 = x + o_t[:, None] * H*D + o_d_swap[None, :]
p_cos = cos + (o_cs[:, None] * R + o_d_repeat[None, :])
p_sin = sin + (o_cs[:, None] * R + o_d_repeat[None, :])
mask = (o_cs[:, None] < TR) & (o_d_repeat[None, :] < R)
b_cos = tl.load(p_cos, mask=mask, other=1.0).to(tl.float32)
b_sin = tl.load(p_sin, mask=mask, other=0.0).to(tl.float32)
b_x0 = tl.load(p_x0, mask=mask, other=0.0).to(tl.float32)
b_x1 = tl.load(p_x1, mask=mask, other=0.0).to(tl.float32)
if CONJUGATE:
b_sin = -b_sin
b_o0 = b_x0 * b_cos
b_o1 = b_x1 * b_sin
b_y = tl.where(o_d[None, :] % 2 == 0, b_o0 - b_o1, b_o0 + b_o1)
p_y = y + (o_t[:, None] * H*D + o_d[None, :])
tl.store(p_y, b_y, mask=mask)
@contiguous
def rotary_embedding_fwdbwd(
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
interleaved: bool = False,
inplace: bool = False,
conjugate: bool = False
) -> torch.Tensor:
"""
Args:
x: (N, T, H, D).
cos: (TR, R / 2)
sin: (TR, R / 2)
seqlen_offsets: integer or integer tensor of size (N,)
cu_seqlens: (N + 1,) or None
max_seqlen: int
Returns:
y: [N, T, H, D]
"""
is_varlen = cu_seqlens is not None
B, T, H, D = x.shape
if not is_varlen:
N = B
else:
assert max_seqlen is not None, "If cu_seqlens is passed in, then max_seqlen must be passed"
N, T = cu_seqlens.shape[0] - 1, max_seqlen
TR, R = cos.shape
assert sin.shape == cos.shape
R2 = R * 2
assert D <= 256, "Only support D <= 256"
assert TR >= T, "TR must be >= T"
assert cos.dtype == sin.dtype, f"cos and sin must have the same dtype, got {cos.dtype} and {sin.dtype}"
assert x.dtype == cos.dtype, f"Input and cos/sin must have the same dtype, got {x.dtype} and {cos.dtype}"
if isinstance(seqlen_offsets, torch.Tensor):
assert seqlen_offsets.shape == (N,)
assert seqlen_offsets.dtype in [torch.int32, torch.int64]
else:
assert seqlen_offsets + T <= TR
y = torch.empty_like(x) if not inplace else x
if R2 < D and not inplace:
y[..., R2:].copy_(x[..., R2:])
BD = triton.next_power_of_2(R2)
def grid(META): return (triton.cdiv(T, META['BT']), N, H) # noqa
# Need this, otherwise Triton tries to launch from cuda:0 and we get
# ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?)
with torch.cuda.device(x.device.index):
rotary_embedding_kernel[grid](
x,
cos,
sin,
y,
cu_seqlens,
seqlen_offsets,
B=B,
T=T,
H=H,
D=D,
R=R,
TR=TR,
BD=BD,
IS_SEQLEN_OFFSETS_TENSOR=isinstance(seqlen_offsets, torch.Tensor),
IS_VARLEN=is_varlen,
INTERLEAVED=interleaved,
CONJUGATE=conjugate
)
return y
class RotaryEmbeddingFunction(torch.autograd.Function):
@staticmethod
@contiguous
def forward(
ctx,
x,
cos,
sin,
interleaved=False,
inplace=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
y = rotary_embedding_fwdbwd(
x,
cos,
sin,
seqlen_offsets=seqlen_offsets,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
interleaved=interleaved,
inplace=inplace,
)
if isinstance(seqlen_offsets, int):
# Can't save int with save_for_backward
ctx.save_for_backward(cos, sin, cu_seqlens)
ctx.seqlen_offsets = seqlen_offsets
else:
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
ctx.seqlen_offsets = None
ctx.interleaved = interleaved
ctx.inplace = inplace
ctx.max_seqlen = max_seqlen
return y if not inplace else x
@staticmethod
@contiguous
def backward(ctx, do):
seqlen_offsets = ctx.seqlen_offsets
if seqlen_offsets is None:
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
else:
cos, sin, cu_seqlens = ctx.saved_tensors
# TD [2023-09-02]: For some reason Triton (2.0.0.post1) errors with
# "[CUDA]: invalid device context", and cloning makes it work. Idk why. Triton 2.1.0 works.
if not ctx.interleaved and not ctx.inplace:
do = do.clone()
dx = rotary_embedding_fwdbwd(
do,
cos,
sin,
seqlen_offsets=seqlen_offsets,
cu_seqlens=cu_seqlens,
max_seqlen=ctx.max_seqlen,
interleaved=ctx.interleaved,
inplace=ctx.inplace,
conjugate=True,
)
return dx, None, None, None, None, None, None, None
def rotary_embedding(
x,
cos,
sin,
interleaved=False,
inplace=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
"""
Args:
x: [N, T, H, D]
cos, sin: [TR, R//2]
interleaved:
If True, rotate pairs of even and odd dimensions (GPT-J style) instead of 1st half and 2nd half (GPT-NeoX style).
inplace:
If True, apply rotary embedding in-place.
seqlen_offsets: [N,] or int.
Each sequence in x is shifted by this amount.
Most commonly used in inference when we have KV cache.
cu_seqlens: [N + 1,] or None
max_seqlen: int
Returns:
out: [N, T, H, D]
"""
return RotaryEmbeddingFunction.apply(
x,
cos,
sin,
interleaved,
inplace,
seqlen_offsets,
cu_seqlens,
max_seqlen
)
class RotaryEmbedding(nn.Module):
"""
The rotary position embeddings from RoFormer_ (Su et. al).
A crucial insight from the method is that the query and keys are
transformed by rotation matrices which depend on the relative positions.
Other implementations are available in the Rotary Transformer repo_ and in
GPT-NeoX_, GPT-NeoX was an inspiration
.. _RoFormer: https://arxiv.org/abs/2104.09864
.. _repo: https://github.com/ZhuiyiTechnology/roformer
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
"""
def __init__(
self,
dim: int,
base: float = 10000.0,
scale_base: Optional[float] = None,
interleaved: bool = False,
pos_idx_in_fp32: bool = True,
device: Optional[torch.device] = None,
):
"""
interleaved:
If True, rotate pairs of even and odd dimensions (GPT-J style) instead of 1st half and 2nd half (GPT-NeoX style).
pos_idx_in_fp32:
If True, the position indices [0.0, ..., seqlen - 1] are in fp32, otherwise they might be in lower precision.
This option was added because previously (before 2023-07-02), when we construct
the position indices, we use the dtype of self.inv_freq.
In most cases this would be fp32, but if the model is trained in pure bf16 (not mixed precision), then
self.inv_freq would be bf16, and the position indices are also in bf16.
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
embeddings for some positions will coincide.
To maintain compatibility with models previously trained in pure bf16, we add this option.
"""
super().__init__()
self.dim = dim
self.base = float(base)
self.scale_base = scale_base
self.interleaved = interleaved
self.pos_idx_in_fp32 = pos_idx_in_fp32
self.device = device
# Generate and save the inverse frequency buffer (non trainable)
self.register_buffer("inv_freq", torch.empty(-(dim // -2), dtype=torch.float32, device=device), persistent=False)
scale = None
if scale_base is not None:
scale = torch.empty(-(dim // -2), dtype=torch.float32, device=device)
self.register_buffer("scale", scale, persistent=False)
self._seq_len_cached = 0
self._cos_cached = None
self._sin_cached = None
self._cos_k_cached = None
self._sin_k_cached = None
self.reset_parameters()
def reset_parameters(self):
with torch.no_grad():
self.inv_freq.copy_(self._compute_inv_freq(device=self.inv_freq.device))
if self.scale_base is not None:
self.scale.copy_(self._compute_scale(device=self.scale.device))
def __repr__(self):
s = f"{self.__class__.__name__}("
s += f"dim={self.dim}, "
s += f"base={self.base}, "
s += f"interleaved={self.interleaved}, "
if self.scale_base is not None:
s += f"scale_base={self.scale_base}, "
s += f"pos_idx_in_fp32={self.pos_idx_in_fp32})"
return s
def _compute_inv_freq(self, device=None):
return 1.0 / (
self.base
** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)
)
def _compute_scale(self, device=None):
return (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) + 0.4 * self.dim) / (1.4 * self.dim)
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
# Reset the tables if the sequence length has changed,
# if we're on a new device (possibly due to tracing for instance),
# or if we're switching from inference mode to training
if (
seqlen > self._seq_len_cached
or self._cos_cached is None
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
or (self.training and self._cos_cached.is_inference())
):
self._seq_len_cached = seqlen
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
if self.pos_idx_in_fp32:
t = torch.arange(seqlen, device=device, dtype=torch.float32)
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
# will be large. Having it in bf16 will lose a lot of precision and cause the
# cos & sin output to change significantly.
# We want to recompute self.inv_freq if it was not loaded in fp32
if self.inv_freq.dtype != torch.float32:
inv_freq = self._compute_inv_freq(device=device)
else:
inv_freq = self.inv_freq
else:
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
inv_freq = self.inv_freq
# Don't do einsum, it converts fp32 to fp16 under AMP
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, inv_freq)
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
else:
power = (
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
- seqlen // 2
) / self.scale_base
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
# We want the multiplication by scale to happen in fp32
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
def forward(
self,
q: torch.Tensor,
k: torch.Tensor,
seqlen_offset: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
q: [N, T, H, D]
k: [N, T, H, D]
seqlen_offset:
(N,) or int. Each sequence in x is shifted by this amount.
Most commonly used in inference when we have KV cache.
If it's a tensor of shape (N,), then to update the cos / sin cache, one
should pass in max_seqlen, which will update the cos / sin cache up to that length.
cu_seqlens: (N + 1,) or None
max_seqlen: int
"""
if max_seqlen is not None:
self._update_cos_sin_cache(max_seqlen, device=q.device, dtype=q.dtype)
elif isinstance(seqlen_offset, int):
self._update_cos_sin_cache(q.shape[1] + seqlen_offset, device=q.device, dtype=q.dtype)
if self.scale is None:
q = rotary_embedding(
q,
self._cos_cached,
self._sin_cached,
interleaved=self.interleaved,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen
)
k = rotary_embedding(
k,
self._cos_cached,
self._sin_cached,
interleaved=self.interleaved,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen
)
else:
q = rotary_embedding(
q,
self._cos_cached,
self._sin_cached,
interleaved=self.interleaved,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen
)
k = rotary_embedding(
k,
self._cos_k_cached,
self._sin_k_cached,
interleaved=self.interleaved,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen
)
return q, k