forked from hzeller/rpi-rgb-led-matrix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiplex-mappers.cc
269 lines (231 loc) · 9.58 KB
/
multiplex-mappers.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// -*- mode: c++; c-basic-offset: 2; indent-tabs-mode: nil; -*-
// Copyright (C) 2017 Henner Zeller <[email protected]>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation version 2.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://gnu.org/licenses/gpl-2.0.txt>
#include "multiplex-mappers-internal.h"
namespace rgb_matrix {
namespace internal {
// A Pixel Mapper maps physical pixels locations to the internal logical
// mapping in a panel or panel-assembly, which depends on the wiring.
class MultiplexMapperBase : public MultiplexMapper {
public:
MultiplexMapperBase(const char *name, int stretch_factor)
: name_(name), panel_stretch_factor_(stretch_factor) {}
// This method is const, but we sneakily remember the original size
// of the panels so that we can more easily quantize things.
// So technically, we're stateful, but let's pretend we're not changing
// state. In the context this is used, it is never accessed in multiple
// threads.
virtual void EditColsRows(int *cols, int *rows) const {
panel_rows_ = *rows;
panel_cols_ = *cols;
*rows /= panel_stretch_factor_;
*cols *= panel_stretch_factor_;
}
virtual bool GetSizeMapping(int matrix_width, int matrix_height,
int *visible_width, int *visible_height) const {
// Matrix width has been altered. Alter it back.
*visible_width = matrix_width / panel_stretch_factor_;
*visible_height = matrix_height * panel_stretch_factor_;
return true;
}
virtual const char *GetName() const { return name_; }
// The MapVisibleToMatrix() as required by PanelMatrix here does
virtual void MapVisibleToMatrix(int matrix_width, int matrix_height,
int visible_x, int visible_y,
int *matrix_x, int *matrix_y) const {
const int chained_panel = visible_x / panel_cols_;
const int parallel_panel = visible_y / panel_rows_;
const int within_panel_x = visible_x % panel_cols_;
const int within_panel_y = visible_y % panel_rows_;
int new_x, new_y;
MapSinglePanel(within_panel_x, within_panel_y, &new_x, &new_y);
*matrix_x = chained_panel * panel_stretch_factor_*panel_cols_ + new_x;
*matrix_y = parallel_panel * panel_rows_/panel_stretch_factor_ + new_y;
}
// Map the coordinates for a single panel. This is to be overridden in
// derived classes.
virtual void MapSinglePanel(int visible_x, int visible_y,
int *matrix_x, int *matrix_y) const = 0;
protected:
const char *const name_;
const int panel_stretch_factor_;
mutable int panel_cols_;
mutable int panel_rows_;
};
/* ========================================================================
* Multiplexer implementations.
*
* Extend MultiplexMapperBase and implement MapSinglePanel. You only have
* to worry about the mapping within a single panel, the overall panel
* construction with chains and parallel is already taken care of.
*
* Don't forget to register the new multiplexer sin CreateMultiplexMapperList()
* below. After that, the new mapper is available in the --led-multiplexing
* option.
*/
class StripeMultiplexMapper : public MultiplexMapperBase {
public:
StripeMultiplexMapper() : MultiplexMapperBase("Stripe", 2) {}
void MapSinglePanel(int x, int y, int *matrix_x, int *matrix_y) const {
const bool is_top_stripe = (y % (panel_rows_/2)) < panel_rows_/4;
*matrix_x = is_top_stripe ? x + panel_cols_ : x;
*matrix_y = ((y / (panel_rows_/2)) * (panel_rows_/4)
+ y % (panel_rows_/4));
}
};
class CheckeredMultiplexMapper : public MultiplexMapperBase {
public:
CheckeredMultiplexMapper() : MultiplexMapperBase("Checkered", 2) {}
void MapSinglePanel(int x, int y, int *matrix_x, int *matrix_y) const {
const bool is_top_check = (y % (panel_rows_/2)) < panel_rows_/4;
const bool is_left_check = (x < panel_cols_/2);
if (is_top_check) {
*matrix_x = is_left_check ? x+panel_cols_/2 : x+panel_cols_;
} else {
*matrix_x = is_left_check ? x : x + panel_cols_/2;
}
*matrix_y = ((y / (panel_rows_/2)) * (panel_rows_/4)
+ y % (panel_rows_/4));
}
};
class SpiralMultiplexMapper : public MultiplexMapperBase {
public:
SpiralMultiplexMapper() : MultiplexMapperBase("Spiral", 2) {}
void MapSinglePanel(int x, int y, int *matrix_x, int *matrix_y) const {
const bool is_top_stripe = (y % (panel_rows_/2)) < panel_rows_/4;
const int panel_quarter = panel_cols_/4;
const int quarter = x / panel_quarter;
const int offset = x % panel_quarter;
*matrix_x = ((2*quarter*panel_quarter)
+ (is_top_stripe
? panel_quarter - 1 - offset
: panel_quarter + offset));
*matrix_y = ((y / (panel_rows_/2)) * (panel_rows_/4)
+ y % (panel_rows_/4));
}
};
class ZStripeMultiplexMapper : public MultiplexMapperBase {
public:
ZStripeMultiplexMapper(const char *name, int even_vblock_offset, int odd_vblock_offset)
: MultiplexMapperBase(name, 2),
even_vblock_offset_(even_vblock_offset),
odd_vblock_offset_(odd_vblock_offset) {}
void MapSinglePanel(int x, int y, int *matrix_x, int *matrix_y) const {
static const int tile_width = 8;
static const int tile_height = 4;
const int vert_block_is_odd = ((y / tile_height) % 2);
const int even_vblock_shift = (1 - vert_block_is_odd) * even_vblock_offset_;
const int odd_vblock_shitf = vert_block_is_odd * odd_vblock_offset_;
*matrix_x = x + ((x + even_vblock_shift) / tile_width) * tile_width + odd_vblock_shitf;
*matrix_y = (y % tile_height) + tile_height * (y / (tile_height * 2));
}
private:
const int even_vblock_offset_;
const int odd_vblock_offset_;
};
class CoremanMapper : public MultiplexMapperBase {
public:
CoremanMapper() : MultiplexMapperBase("coreman", 2) {}
void MapSinglePanel(int x, int y, int *matrix_x, int *matrix_y) const {
const bool is_left_check = (x < panel_cols_/2);
if ((y <= 7) || ((y >= 16) && (y <= 23))){
*matrix_x = ((x / (panel_cols_/2)) * panel_cols_) + (x % (panel_cols_/2));
if ((y & (panel_rows_/4)) == 0) {
*matrix_y = (y / (panel_rows_/2)) * (panel_rows_/4) + (y % (panel_rows_/4));
}
} else {
*matrix_x = is_left_check ? x + panel_cols_/2 : x + panel_cols_;
*matrix_y = (y / (panel_rows_/2)) * (panel_rows_/4) + y % (panel_rows_/4);
}
}
};
class Kaler2ScanMapper : public MultiplexMapperBase {
public:
Kaler2ScanMapper() : MultiplexMapperBase("Kaler2Scan", 4) {}
void MapSinglePanel(int x, int y, int *matrix_x, int *matrix_y) const {
// Now we have a 128x4 matrix
int offset = ((y%4)/2) == 0 ? -1 : 1;// Add o substract
int deltaOffset = offset < 0 ? 7:8;
int deltaColumn = ((y%8)/4)== 0 ? 64 : 0;
*matrix_y = (y%2+(y/8)*2);
*matrix_x = deltaColumn + (16 * (x/8)) + deltaOffset + ((x%8) * offset);
}
};
class P10MapperZ : public MultiplexMapperBase {
public:
P10MapperZ() : MultiplexMapperBase("P10-128x4-Z", 4) {}
// supports this panel: https://www.aliexpress.com/item/2017-Special-Offer-P10-Outdoor-Smd-Full-Color-Led-Display-Module-320x160mm-1-2-Scan-Outdoor/32809267439.html?spm=a2g0s.9042311.0.0.Ob0jEw
// with --led-row-addr-type=2 flag
void MapSinglePanel(int x, int y, int *matrix_x, int *matrix_y) const {
int yComp = 0;
if (y == 0 || y == 1 || y == 8 || y == 9) {
yComp = 127;
}
else if (y == 2 || y == 3 || y == 10 || y == 11) {
yComp = 112;
}
else if (y == 4 || y == 5 || y == 12 || y == 13) {
yComp = 111;
}
else if (y == 6 || y == 7 || y == 14 || y == 15) {
yComp = 96;
}
if (y == 0 || y == 1 || y == 4 || y == 5 ||
y == 8 || y == 9 || y == 12 || y == 13) {
*matrix_x = yComp - x;
*matrix_x -= (24 * ((int)(x / 8)));
}
else {
*matrix_x = yComp + x;
*matrix_x -= (40 * ((int)(x / 8)));
}
if (y == 0 || y == 2 || y == 4 || y == 6) {
*matrix_y = 3;
}
else if (y == 1 || y == 3 || y == 5 || y == 7) {
*matrix_y = 2;
}
else if (y == 8 || y == 10 || y == 12 || y == 14) {
*matrix_y = 1;
}
else if (y == 9 || y == 11 || y == 13 || y == 15) {
*matrix_y = 0;
}
}
};
/*
* Here is where the registration happens.
* If you add an instance of the mapper here, it will automatically be
* made available in the --led-multiplexing commandline option.
*/
static MuxMapperList *CreateMultiplexMapperList() {
MuxMapperList *result = new MuxMapperList();
// Here, register all multiplex mappers from above.
result->push_back(new StripeMultiplexMapper());
result->push_back(new CheckeredMultiplexMapper());
result->push_back(new SpiralMultiplexMapper());
result->push_back(new ZStripeMultiplexMapper("ZStripe", 0, 8));
result->push_back(new ZStripeMultiplexMapper("ZnMirrorZStripe", 4, 4));
result->push_back(new CoremanMapper());
result->push_back(new Kaler2ScanMapper());
result->push_back(new ZStripeMultiplexMapper("ZStripeUneven", 8, 0));
result->push_back(new P10MapperZ());
return result;
}
const MuxMapperList &GetRegisteredMultiplexMappers() {
static const MuxMapperList *all_mappers = CreateMultiplexMapperList();
return *all_mappers;
}
} // namespace internal
} // namespace rgb_matrix